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This paper considers dynamic discrete choice models with conditionally inde-

pendent and additively separable unobserved state variables as in Rust (1987)

and Hotz and Miller (1993). Previous literature commonly assumed specific para-

metric distributions for the unobserved states, for example, extreme value dis-

tribution. Norets and Tang (2010) proposed an approach to identification and

inference in dynamic binary choice models that does not impose distributional

assumptions on the unobserved state variables. This paper generalizes this ap-

proach to dynamic multinomial choice models.
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1. INTRODUCTION

This paper considers dynamic discrete choice models with conditionally independent

and additively separable unobserved states as in Rust (1987) and Hotz and Miller

(1993). The observed states are assumed to be discrete. The per-period payoffs can be

specified parametrically or non-parametrically with optional shape restrictions such

as monotonicity or concavity. Norets and Tang (2010) introduced an approach for

semiparametric inference in such models when there are only two choice alternatives.

Previous literature commonly assumed specific parametric distributions for the state

variables unobserved by the econometrician, for example, extreme value distribution.

Norets and Tang (2010) do not impose distributional assumptions on the unobserved

state variables. This paper generalizes this approach to dynamic multinomial choice

models. The reader is referred to Norets and Tang (2010) for a more detailed discussion
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of how this work is related to previous literature. See also Eckstein and Wolpin (1989),

Rust (1994), Pakes (1994), Aguirregabiria and Mira (2007a) and Keane et al. (2010)

for surveys of the literature.

The organization of the paper is as follows. Section 2 describes the model and assump-

tions. Section 3 provides a characterization of the conditional choice probabilities

when the distribution of the unobserved state variables is known. Section 4 extends

this characterization to the case when the distribution of the unobserved states is

unknown. These results are then used for characterizing the identified sets for param-

eters of per-period utilities and counterfactual choice probabilities. An algorithm for

computing the identified sets based on Markov chain Monte Carlo (MCMC) methods

is briefly discussed. See Norets and Tang (2010) for applications of the methodology

to several dynamic binary choice examples. Dynamic multinomial choice applications

are a subject of future work.

2. MODEL SETUP

In an infinite horizon dynamic discrete choice model, the agent maximizes the ex-

pected discounted sum of the per-period utilities

V (xt, εt) = max
dt,··· ,dT

Et(
T∑
j=0

βju(xt+j, εt+j, dt+j)),

where T = ∞, dt ∈ D = {0, 1, . . . , J} is the control variable, xt ∈ X are state

variables observed by the econometrician, εt = (ε0t, . . . , εJt) ∈ RJ+1 are state vari-

ables unobserved by the econometrician, β is the time discount factor, and u(xt, εt, dt)

is the time-invariant per-period utility function. The state variables evolve accord-

ing to a controlled first-order Markov process. Under mild regularity conditions (see

Bhattacharya and Majumdar (1989)), the optimal lifetime utility of the agent has a

recursive representation:

(1) V (xt, εt) = max
dt∈D

[u(xt, εt, dt) + βE{V (xt+1, εt+1)|xt, εt, dt}]
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The following assumptions are standard in the literature.

Assumption 1 The state space for the observed states is finite and denoted by

X = {1, . . . , K}.

Assumption 2 The per-period utility is u(xt, εt, dt) = uji + εj when (xt, dt) = (i, j),

with E(εj|x) = 0 for any x ∈ X and j ∈ D.

Assumption 3 Pr(xt+1 = i|xt = k, εt, dt = j) = Gj
ki is independent of εt. The

distribution of εt+1 given (xt+1, xt, εt, dt) depends only on xt+1 and is denoted by Fε|x.

Assumption 4 The distribution of (ε0, . . . , εJ) given any x has a positive density

on RJ+1 with respect to (w.r.t.) the Lebesgue measure.

Assumption 3 of conditional independence is, perhaps, the strongest one. However, it

seems hard to avoid. Without Assumption 3 it is not clear whether the model can ex-

plain any possible choice pattern in the data (Rust (1994)) and whether the expected

value functions are differentiable with respect to parameters (Norets (2010)). The as-

sumption is also very convenient for computationally feasible classical (Rust (1994),

Hotz and Miller (1993)) and Bayesian (Norets (2009)) estimation of parametrically

specified models.

3. CHARACTERIZATION OF THE CCPS WHEN THE UNOBSERVED STATE
DISTRIBUTION IS KNOWN

This section characterizes the CCPs assuming that the unobserved state distribution

is known to econometricians. Under Assumptions 1-3, the Bellman equation (1) can

be rewritten in vector notation as follows,

vj = uj + βGj

∫
max{v0 + ε0, . . . , vJ + εJ}dFε|x(ε|X)(2)

where uj = (uj1, . . . , ujK)′ is a vector of stacked deterministic parts of the per-period

utilities with dt = j; vj = (vj1, . . . , vjK)′ is a vector of stacked deterministic parts of
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the alternative specific life time utilities vji = uji + βE{V (xt+1, εt+1)|xt = i, dt = j};
and Gj = [Gj

ki] is the Markov transition matrix for the observed states conditional on

dt = j. I also adopt a Matlab convention to simplify notation: for scalar εj and vector

vj, vj+εj = (vj1 +εj, . . . , vjK+εj)
′, for a scalar function/expression f(x) with a scalar

argument x, f(x1, . . . , xK) = (f(x1), . . . , f(xK))′, and
∫

max{v0+ε0, v1+ε1}dFε|x(ε|X)

stands for a K × 1 vector of integrals correspondingly.

Let ∆εj = ε0 − εj, δj = vj − v0, and

R(δ) =

∫
max{0, δ1 −∆ε1, . . . , δJ −∆εJ}dFε|x(ε|X).

Then (2) can be rewritten as follows

v0 = (I − βG0)−1[u0 + βG0R(δ)]

δj = uj − u0 + β(Gj −G0)(v0 +R(δ))

Note that I + (I − βG0)−1βG0 = (I − βG0)−1. Then, for j = 1, . . . , J ,

δj = uj − u0 + β(Gj −G0)(I − βG0)−1[u0 +R(δ)].(3)

Let us define a collection of conditional choice probabilities (CCP), p = {pjk, j =

1, . . . , J, k = 1, . . . , K} = F(δ), as follows

pjk = Pr(Ejk|x = k) =

∫
Ejk

dFε|x(ε|x = k), j = 0, 1, . . . , J, k = 1, . . . , K,

where

Ejk = {(∆ε1k, . . . ,∆εJk) : δjk + εjk ≥ δik + εik, i = 0, 1, . . . , J},

is a set of unobserved states on which alternative j is optimal. It follows from this

definition that under known Fε|x, CCP p is completely specified by δ = {δjk, j =

1, . . . , J, k = 1, . . . , K} ∈ RJK . Thus, we can define a mapping F : RJK → [0, 1]JK

such that p = F(δ) (δ0k = 0 and p0k = 1 −
∑J

j=1 pjk are not included in δ and
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p). Hotz and Miller (1993) (Proposition 1) show that under Assumptions 1 - 4 there

exists an inverse of F , F−1. Thus, the following lemma, which gives the necessary and

sufficient conditions for some p to be the CCP given structural parameters, follows

immediately.

Lemma 1 A J × K matrix p is the collection of CCPs for structural parameters

u = (u0, . . . , uJ), G = (G0, . . . , GJ), β, and F∆ε|x if and only if p is in the image of

F , F(RJK), and δ = F−1(p) satisfies (3).

Analogs of Lemma 1 for dynamic discrete choice games were obtained by Aguirre-

gabiria and Mira (2007b) and Pesendorfer and Schmidt-Dengler (2008) .

4. CHARACTERIZATION OF THE CCPS WHEN THE UNOBSERVED STATE
DISTRIBUTION IS UNKNOWN

It is convenient to rewrite R(δ) in (3) as follows.

R(δ) =
J∑
j=1

(pj ◦ δj − ej)

where “◦” is element-by-element vector multiplication and kth component of ej is

defined as

ejk =

∫
Ejk

∆εjkdFε|x(ε|k)

Let e = {ejk, j = 1, . . . , J, k = 1, . . . , K} ∈ RJK . Note that Norets and Tang (2010)

used symbol e for the negative of the definition here.

From Lemma 1, a characterization of CCP depends on Fε|x only through a finite

number of variables (δ, e). Below I establish conditions on δ and e so that p, δ,

and e correspond to some distribution Fε|x. First, I will establish such conditions on

(pjk, δjk, ejk, j = 0, 1, . . . , J, k = 1, . . . , L) when Fε|x(·|k) does not depend on k for

k = 1, . . . , L (Fε|x(·|k) = F (·)). These conditions will be useful for a characterization
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of counterfactual CCPs under the assumption of independence (L = 2K) and possible

dependence (L = 2) between x and ε.

The starting point of the argument is presented in the following lemma, which suggests

how pjk =
∫
Ejk

dF (s) and ejk =
∫
Ejk

sjdF (s1, . . . , sJ) have to be related to each other.

Lemma 2 Let E be a non-empty closed convex subset of RJ and F be a probability

measure on E (F (E) = 1). Suppose
∫
E
sdF =

(∫
E
s1dF, . . . ,

∫
E
sJdF

)′
exists. Then,∫

E
sdF ∈ E. If F has a positive on E density, then

∫
E
sdF is an interior point of

E. Conversely, if s∗ is an interior point of a closed convex set E, then there exists a

probability measure F on E that has positive density on E and s∗ =
∫
E
sdF .

Proof: By the supporting hyperplane theorem (Proposition 2.4.4 in Bertsekas

(2003)), E = ∩(c,α)∈Γ{s ∈ RJ : α′s ≤ c} for some set Γ ⊂ RJ+1. For any (c, α) ∈ Γ,

α′
∫
E

sdF =

∫
E

α′sdF ≤ c,

which means
∫
E
sdF ∈ E. When F has a density, F (s : α′s = c) = 0. Thus, the

inequality in the above expression is strict for all (c, α) ∈ Γ and
∫
E
sdF is an interior

point.

To prove the converse, define an arbitrary distribution on E, F1, that has a positive

density. Let s1 =
∫
E
sdF1. Since s∗ is interior there exists s2 and γ ∈ (0, 1) such that

s∗ = γs1 + (1− γ)s2 and a ball with a positive radius and center at s2, B2 ⊂ E. Let

F2 be a distribution with a density that puts probability 1 on B2 and
∫
sdF2 = s2

(for example, a multivariate normal with a diagonal covariance matrix and center s2

truncated to B2). Then, the mixture F = γF1 + (1− γ)F2 satisfies the conditions of

the converse.

Q.E.D.

Note that Ejk are closed and convex. When L = 1 they form a partition of RJ (up

to boundaries) and Lemma 2 can be directly applied to Ejk for characterizing the
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relationship between p, δ, and e. For general L, Ejk’s can overlap and they need

to be divided into smaller non-overlapping pieces first. Thus, consider the following

collection of subsets of RJ

A(δ) =
{
A : A =

L⋂
k=1

Ejkk, jk ∈ {0, . . . , J}, λ(A) > 0
}

= {A1, . . . , ANδ},

where λ is the Lebesgue measure and Nδ is the number of sets in A(δ). Since Ejk are

determined by δ, A(δ) is also determined by δ. One can interpret A(δ) as a refinement

of L partitions (E0k, E1k, . . . , EJk) k = 1, . . . , L. Note that since An is an intersection

of convex closed sets it is also closed and convex. Figure 1 provides an illustration for

J = 2, L = 2, and Nδ = 6.

∆ε21

∆ε11δ11

δ21

E01

E11

E21

E01

E11

E21

E02

E12

E22

A1

A2 A3

A4

A5

A6

Panel a Panel b

Figure 1.— Panel a shows sets Ejk for fixed k = 1 and j = 0, 1, . . . , J (J = 2).

Panel b shows Ejk, k = 1, 2, J = 2 and corresponding A(δ) = {A1, . . . , A6} .

For every n = 1, . . . , Nδ let

(4) qn =

∫
An

dF and rn =

∫
An

ydF (y) =

(∫
An

y1dF (y), . . . ,

∫
An

yJdF (y)

)′
.
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Lemma 2 implies that (4) can hold for given (qn, rn, n = 1, . . . , Nδ) and some prob-

ability distribution F with positive density if and only if rn/qn ∈ int(An) (int(An)

stands for the interior of An). From this, the following lemma follows immediately.

Lemma 3 Given (pjk, δjk, ejk, j = 0, 1, . . . , J, k = 1, . . . , L), where
∑J

j=0 pjk = 1

and δ0k = 0 for all k, there exists F such that

F has a density f > 0 on RJ w.r.t. the Lebesgue measure,(5) ∫
sdF = 0(6)

pjk =

∫
Ejk

dF, ∀(j, k)(7)

ejk =

∫
Ejk

sjdF (s), ∀(j, k)(8)

if and only if for A(δ) = {A1, . . . , ANδ} there exist (r1, q1, . . . , rNδ , qNδ) such that

(9) qn ∈ (0, 1), ∀n

(10) rn/qn ∈ int(An), ∀n

(11)

Nδ∑
n=1

rnj = 0, j = 1, . . . , J

(12) pjk =
∑

n: λ(An∩Ejk) 6=0

qn, ∀(j, k)

(13) ejk =
∑

n: λ(An∩Ejk)6=0

rnj, ∀(j, k)
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First, consider the case when the distribution of ε does not depend on x. Let us

denote this distribution by F . The following proposition characterizes the CCPs that

are consistent with the model and some F .

Proposition 1 For given (β, u,G), (pjk, j = 0, 1, . . . , J, k = 1, . . . , L),
∑

j pjk = 1

for all k, are CCPs for some F satisfying (5)-(6) if and only if there exist (ejk, δjk, j =

0, . . . , J, k = 1, . . . , K) such that

(i) for every j = 1, . . . , J , (p, δ, e) satisfy

δj = uj − u0 + β(Gj −G0)(I − βG0)−1[u0 +
J∑
j=1

(pj ◦ δj − ej)]

(ii) conditions (9)-(13) hold for (p, e, δ,A(δ)).

The proposition is implied by Lemmas 1 and 3. Proposition 1 can be used for char-

acterizing the identified set for the parameters of the per-period utility functions.

Suppose the utility functions are parameterized: u(θ). Then, for given (p,G, β) the

identified set for θ includes values for which p are the CCPs for (β, u(θ), G) and some

F (the proposition describes a way to verify this).

Structural models are particularly useful in analysis of counterfactual changes in

structural parameters. Suppose we are interested in the CCPs, p̃, when the per-

period payoffs and the observed state transition probabilities are changed to ũ and G̃

while F remains the same. The counterfactual transition probabilities and per-period

payoffs may either be assigned known numerical values or be known functions of the

primitives G and u in the actual (data-generating) environment. Let p denote the

actual CCPs corresponding to (u,G).

Proposition 2 For given (β, u,G, ũ, G̃), p and p̃ are actual and counterfactual

CCPs for some F satisfying (5)-(6) if and only if there exist (e, δ, ẽ, δ̃) such that

(i) (p, δ, e) satisfy condition (i) in Proposition 1,
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(ii) (p̃, δ̃, ẽ) satisfy condition (i) in Proposition 1,

(iii) conditions (9)-(13) of Lemma 3 hold for stacked ((p, p̃), (e, ẽ), (δ, δ̃),A(δ, δ̃)) (L=2K).

Proposition 2 provides a characterization of the identified set for the counterfactual

CCPs when the distribution of the unobserved states does not depend on the observed

states. The following proposition provides a similar characterization of the identified

set when the unobserved state distribution can depend on the observed state.

Proposition 3 For given (β, u,G, ũ, G̃), p and p̃ are actual and counterfactual

CCPs for some F (·|k), k = 1, . . . , K, satisfying (5)-(6) if and only if there exist

(e, δ, ẽ, δ̃) such that

(i) (p, δ, e) satisfy condition (i) in Proposition 1,

(ii) (p̃, δ̃, ẽ) satisfy condition (i) in Proposition 1,

(iii) for each k ∈ {1, . . . , K} conditions (9)-(13) of Lemma 3 hold for actual and

counterfactual variables corresponding to k: (pjk, ejk, δjk, p̃jk, ẽjk, δ̃jk, j = 0, . . . , J)

and A(δjk, δ̃jk, j = 0, . . . , J), (L = 2).

The only difference between Propositions 2 and 3 is that in the latter the distributions

of the unobserved states can be different for each value of the observed state k and

thus the conditions of Lemma 3 need to be verified separately for every k.

To exploit Propositions 1, 2, or 3 for computing identified sets one needs to be able

to verify the feasibility of systems of equalities and inequalities (9) - (13). Note that

except (10), (9) - (13) are linear in (e, r, q, δ) and (10) can be made linear in r but

would contain cross products δjkqn (sets Ejk and thus An are defined by inequalities

linear in δjk). In binary choice case (J = 1), one can express qn as a function of p only

as shown in Norets and Tang (2010). In that case all the conditions in Lemma 3 are

linear and linear programming methods can be used for verifying them. For general

J , q cannot be expressed as functions of p and one has to deal with cross-products

δjkqn. Checking feasibility of non-convex quadratic system is a very hard problem
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(NP-hard). The task of solving the quadratic problem can be avoided if we invoke

MCMC.

For example, consider the problem of recovering the identified sets for the counterfac-

tual CCPs. First, we specify a very flexible “prior” distribution for p̃, δ, δ̃. Experiments

in Norets and Tang (2010) demonstrate that a mixture of beta distributions works

well in dynamic binary choice models as a hierarchical prior for p̃. In multinomial

models, one could use a mixture of Dirichlet distributions in a similar fashion. The

prior for δ̃ conditional on p̃ can be a multivariate normal centered at values implied

by CCPs p̃ under extreme value distributed unobserved states. Additional flexibility

can be obtained by specifying a prior on the variance-covariance matrix of the normal

distribution. A prior for δ can specified similarly. Such a prior for (p̃, δ, δ̃) should be

truncated to satisfy the conditions from Proposition 2. An MCMC algorithm pro-

ducing draws from this truncated prior can be used for exploring the identified set.

To produce the draws one needs to verify the truncation restrictions. Conditional

on (δ, δ̃) the restrictions are equivalent to verifying feasibility of a system of linear

equalities and inequalities (11) - (13). This can be done by standard linear program-

ming algorithms as described in Appendix A of Norets and Tang (2010). Analogous

algorithm is shown to work for recovering the identified set for the counterfactual

CCPs in Norets and Tang (2010) for binary case. Applications of the methodology to

multinomial case are a subject of future work.
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