Optimal Auxiliary Priors and Reversible Jump Proposals for a Class of Variable Dimension Models†

Andriy Norets

Brown University, Providence, RI, USA.

E-mail: andriy_norets@brown.edu

Summary. This paper develops a Markov chain Monte Carlo (MCMC) method for a class of models that encompasses finite and countable mixtures of densities and mixtures of experts with a variable number of mixture components. The method is shown to maximize the expected probability of acceptance for cross-dimensional moves and to minimize the asymptotic variance of sample average estimators under certain restrictions. The method can be represented as a retrospective sampling algorithm with an optimal choice of auxiliary priors and as a reversible jump algorithm with optimal proposal distributions. The method is motivated by and applied to a Bayesian nonparametric model for conditional densities based on mixtures of a variable number of experts.

Keywords: Bayes, variable dimension model, reversible jump, MCMC, retrospective sampling, mixtures, mixture of experts, covariate dependent mixture, kernel mixture.

1. Introduction

Models with parameters of variable dimension play an important role in the Bayesian approach to inference. First of all, model comparison can be naturally performed in this framework. Second, many Bayesian non-parametric models, for example those based on varying degree polynomials or mixtures of densities, can be formulated as variable dimension models. The two main approaches to MCMC estimation of such models are the reversible jump MCMC (RJMCMC) (Green (1995)) and the method of auxiliary prior distributions (Carlin and Chib (1995)). These general approaches require selection of proposal distributions or auxiliary priors, which is a non-trivial task, especially, in complex models. The literature on choice of efficient proposals for RJMCMC or auxiliary priors is not very large and the suggested proposals, while quite sensible, appear to be mostly heuristically motivated (see a review in Section 4.1 of a survey by Hastie and Green (2012)).

In this paper, I develop optimal RJMCMC proposals of a certain type for models with a nesting structure. The RJMCMC algorithm under consideration is restricted to move only between the adjacent nested submodels without changing the parameters of the smaller submodel. Under these restrictions, the optimal proposal simulates the parameters present only in the larger submodel from their posterior distribution conditional on the parameters in the smaller submodel. The idea is rather natural and it has appeared in the literature at least in the form of centering the proposal distribution on the conditional posterior mode (see a discussion of the conditional maximization approach in Brooks et al. (2003)). The theoretical contribution of the present paper is to rigorously show that the conditional posterior proposal is optimal in a sense that it maximizes the expected probability of acceptance for between-submodel moves and minimizes the asymptotic variance of MCMC sample average estimators under additional restrictions.

The proposed algorithm can also be represented as a combination of auxiliary priors approach of Carlin and Chib (1995) and retrospective sampling of Papaspiliopoulos and Roberts (2008) with an optimal choice of auxiliary priors restricted to have a recursive form. The auxiliary priors

†I am grateful to participants of MCMCSki 2016, ISBA 2016 and seminars at University of Pennsylvania, Chicago, Princeton, and Yale for helpful discussions.
and retrospective sampling representation of the algorithm was developed before the RJMCMC representation, and, hence, the former is presented before the latter below.

The main motivation and application for the theoretical results described above is a practical MCMC algorithm for estimation of a Bayesian nonparametric model for conditional distributions. The model is a mixture of Gaussian regressions or experts with covariate dependent mixing weights and a variable number of mixture components. Norets and Pati (2017) show that under rather standard priors and some regularity assumptions, the posterior in this model contracts at an adaptive optimal rate up to a log factor; moreover, the rate is not affected by the presence of irrelevant covariates in the model. Given these attractive asymptotic guarantees, which do not appear to be currently available for other Bayesian nonparametric models for conditional densities, it seems important to develop reliable posterior simulation algorithms for this model. RJMCMC proposals based on moment matching (Richardson and Green (1997)) have been used in the literature to estimate mixtures of densities with a variable number of components. This approach seems difficult to implement though when mixing weights depend on covariates. Thus, I develop here an algorithm based on the conditional posterior proposals. In the model, the conditional posterior proposals can be evaluated up to normalizing constants that are difficult to compute precisely. Since the normalizing constants are required for computing acceptance probabilities, Gaussian approximations for conditional posteriors are used in the implementation of the algorithm. The resulting “approximately” optimal RJMCMC algorithm provides a feasible estimation method in a wide range of settings and specifications.

The rest of the paper is organized as follows. A general model formulation and the mixture of experts example are presented in Section 2. The auxiliary priors representation of the MCMC algorithm is given in Section 3. Section 4 provides the RJMCMC representation. Theoretical results on the algorithm optimality are given in Section 5. An application to the mixture of experts model and simulation results are presented in Section 6. Appendices contain proofs, implementation details, and auxiliary figures.

2. Model description

In this paper, we are concerned with the following class of models. Suppose that for an integer \(m, \theta_{1m} = (\theta_1, \theta_2,\ldots, \theta_m) \in \Theta^m = \Theta_1 \times \cdots \times \Theta_m \subset \mathbb{R}^{d_m}, \theta_{1\infty} = (\theta_1, \theta_2,\ldots)\), and \(Y \in \mathbb{R}^{d_Y} \). Let the observables density satisfy the following restriction

\[
p(Y|m, \theta_{1\infty}) = p(Y|m, \theta_{1m}),
\]

so that \(m \) indexes a sequence of nested models. A prior is specified as follows

\[
\Pi(\theta_{1m}|m)\Pi(m),
\]

where \(\Pi(\theta_{1m}|m) \) is a density with respect to a \(\sigma \)-finite dominating measure \(\lambda^m = \lambda_1 \times \cdots \times \lambda_m \) on the Borel \(\sigma \)-field of \(\mathbb{R}^{d_m} \). The support of \(\Pi(m) \) can be equal to the set of positive integers. This class of models encompasses finite and countable mixtures of densities (McLachlan and Peel (2000), Fruhwirth-Schnatter (2006)) and mixtures of experts (Jacobs et al. (1991), Jordan and Jacobs (1994)) with a variable number of mixture components.

2.1. Example: Nonparametric Model for Conditional Densities

The original motivation for developing the MCMC algorithm is the following nonparametric model for conditional densities:

\[
p(y_i|x_i, \mu, \alpha, h, \nu, m) = \sum_{j=1}^{m} \gamma_j(x_i) \cdot \phi(y_i, x_i^j \beta_j, (h_y \cdot \nu_y j)^{-1}), i = 1, \ldots, n
\]

\[
\gamma_j(x_i) = \frac{\alpha_j \exp \left\{-0.5 \sum_{l=1}^{d_x} h_{xl} \nu_{2jl}(x_{il} - \mu_{jl})^2\right\}}{\sum_{k=1}^{m} \alpha_k \exp \left\{-0.5 \sum_{l=1}^{d_x} h_{xl} \nu_{2kl}(x_{il} - \mu_{kl})^2\right\}},
\]

where \(\phi(y, x, \beta, (h_y \cdot \nu_y)^{-1}) \) is a Gaussian density with mean \(\beta \) and covariance matrix \(h_y \cdot \nu_y \).

where \(\phi \) is a normal density. To fit this model into the formulation (1), let \(\theta_j = (\alpha_j, \beta_j, \mu_j, \nu_j, \nu_{xj}) \), consider \((h_x, h_y) \) fixed (blocks for \((h_x, h_y) \) can be easily added to the algorithm), and add \((x_1, \ldots, x_n) \) to the conditioning set of all distributions.

3. Recursive Auxiliary Priors for Drawing \(m \)

In this subsection, let us consider only the algorithm’s block for \(m \). For many mixture models, MCMC algorithms for simulating \(\theta_{1m} \) conditional on \(m \) are readily available (see for example, Fruhwirth-Schnatter (2006), Peng et al. (1996), Geweke and Keane (2007), and Villani et al. (2009)). Section 6 describes the algorithm for the model (3).

For \(p(Y|m, \theta_{1m}) \) and \(\Pi(\theta_{1m}|m)\Pi(m) \) in (1), \(\theta_{m+1\infty} = (\theta_{m+1,1}, \theta_{m+2,\ldots}) \), and an arbitrary distribution \(\Pi(\theta_{m+1\infty}|m, \theta_{1m}, Y) \), let us define a joint distribution

\[
p(Y, \theta_{1\infty}, m) = \Pi(\theta_{m+1\infty}|m, \theta_{1m}, Y) \cdot p(Y|m, \theta_{1m}) \cdot \Pi(\theta_{1m}|m)\Pi(m).
\]

(4)

Importantly, the posterior \(\Pi(m, \theta_{1m}|Y) \) implied by this joint distribution is not affected by \(\Pi \).

Thus, we can design \(\tilde{\Pi} \) to facilitate posterior simulation from \(\Pi(m, \theta_{1m}|Y) \) by retrospective sampling (Papaspiliopoulos and Roberts (2008)). For densities \(\tilde{\pi}_m(\theta_{m+1}|\theta_{1m}, Y) \) to be chosen below, let

\[
\tilde{\Pi}(\theta_{m+1\infty}|m, \theta_{1m}, Y) = \prod_{j=1}^{\infty} \tilde{\pi}_{m+j}(\theta_{m+1+j}|\theta_{1m+j}, Y).
\]

(5)

This recursive definition of \(\tilde{\Pi} \) implies a tractable expression for Metropolis-Hastings acceptance probabilities. Specifically, let us consider the Metropolis-within-Gibbs block for \(m|Y, \theta_{1\infty} \) with the proposal \(\Pr(m^* = m + 1|m) = \Pr(m^* = m - 1|m) = 1/2 \). For a proposal draw \(m^* \) the acceptance probability is equal to \(\min\{1, \alpha(m^*, m)\} \), where

\[
\alpha(m^*, m) = \frac{p(Y|m^*, \theta_{1m^*})\Pi(\theta_{1m^*}|m^*)\Pi(m^*)}{p(Y|m, \theta_{1m})\Pi(\theta_{1m}|m)\Pi(m)} \\
\cdot \left(1\{m^* = m + 1\} \frac{1}{\tilde{\pi}_m(\theta_{m+1}|\theta_{1m}, Y)} + 1\{m^* = m - 1\} \tilde{\pi}_{m-1}(\theta_m|\theta_{1m-1}, Y) \right).
\]

(6)

When \(m^* = m + 1 \), \(\theta_{m+1} \) is simulated retrospectively from \(\tilde{\pi}_m(\theta_{m+1}|\theta_{1m}, Y) \).

3.1. Choice of Auxiliary Prior

As I show below in Section 5,

\[
\tilde{\pi}_m(\theta_{m+1}|\theta_{1m}, Y) = p(\theta_{m+1}|Y, m + 1, \theta_{1m}) \propto p(Y|m + 1, \theta_{1m+1})\Pi(\theta_{1m+1}|m + 1)
\]

(7)

is an optimal choice of \(\tilde{\pi}_m \). A simplistic choice of the auxiliary prior with \(\theta_j \) identically independently distributed for all \(j \in \{1, \ldots, \infty\} \) leads to practically zero acceptance rates for \(m \) in the application considered in this paper. Thus, the use of an (approximately) optimal \(\tilde{\pi}_m \) appears to be crucial for feasibility of the algorithm.

An approximation to \(p(\theta_{m+1}|Y, m + 1, \theta_{1m}) \), with a known normalization constant, which is necessary here, can be given, for example, by a Gaussian distribution with the mean equal to the conditional posterior mode

\[
\tilde{\theta}_{m+1} = \arg\max_{\theta_{m+1}} p(Y|m + 1, \theta_{1m+1})\Pi(\theta_{1m+1}|m + 1)
\]

and the variance calculated from the Hessian

\[
V^{-1}_{\theta_{m+1}} = -\left. \frac{\partial^2}{\partial \theta_{m+1} \partial \theta_{m+1}} \log[p(Y|m + 1, \theta_{1m+1})\Pi(\theta_{1m+1}|m + 1)] \right|_{\theta_{m+1}=\tilde{\theta}_{m+1}}.
\]

(8)
Alternatively, if a fast simulator for the conditional posterior $p(\theta_{m+1}|Y, m+1, \theta_{1m})$ is available, then one could build a normal approximation to $p(\theta_{m+1}|Y, m+1, \theta_{1m})$ from simulated draws (to make the proposal deterministic, one could use the same fixed initial draw and random generator seed).

3.2. Previous Literature on Auxiliary Priors and Retrospective Sampling

Papaspiliopoulos and Roberts (2008) developed retrospective sampling ideas in the context of Dirichlet process mixtures. In those settings, the prior for all components of $\theta_{1\infty}$ does affect the posterior, and, thus, choosing the prior to improve the MCMC performance is not an option, in contrast to the settings considered here.

Carlin and Chib (1995) introduced auxiliary prior distributions in the context of Bayesian model averaging and comparison for a finite number of parametric models. The algorithm proposed here can be thought of as an extension of ideas from Carlin and Chib (1995) to infinite dimensional settings, which also exploits the structure of the problem and more recently developed retrospective sampling ideas. Carlin and Chib apply their algorithm to finite mixture models and obtaining an approximation for $\Pi(\theta)$ from a posterior simulator output for $\Pi(\theta_{1n}|Y, \tilde{m})$. In principle, their approach if combined with retrospective sampling could be used for estimation of model in (1)-(2) with an unbounded support for m. However, the posterior for mixture models has a large number of modes and obtaining an approximation for $\Pi(\theta_{1n}|Y, \tilde{m})$ is a challenging problem, especially for larger values of $d \cdot \tilde{m}$. Hence, the need to develop an alternative algorithm for models with large/infinite dimensions, which is addressed here.

4. Reversible Jump Representation

The algorithm for drawing m described in Section 3 can also be formulated as a RJMCMC algorithm (Green (1995)). Let us denote the state space for the RJMCMC by $\mathcal{X} = \cup_{m=1}^{\infty} \{m\} \times \Theta^m$. Let Q be a Markov transition on \mathcal{X} and for $x, x' \in \mathcal{X}$, $f(x, x')$ be a density of $\Pi(dx|Y)Q(x, dx')$ with respect to a symmetric measure on $\mathcal{X} \times \mathcal{X}$ denoted by ϵ. A RJMCMC update, also called Metropolis-Hastings-Green update because it generalizes the Metropolis-Hastings update to cross-dimensional settings, simulates a proposal $x' \sim Q(x, \cdot)$ that is accepted with probability

$$\min \left\{ 1, \frac{f(x', x)}{f(x, x')} \right\}.$$

The algorithm in Section 3 is obtained when $Q((\theta_{1m}, m), \cdot)$ draws $(m', \theta'_{1m'})$ as follows: $m' = m - 1$ and $\theta'_{1m'} = \theta_{1m-1}$ with probability 0.5, otherwise $m' = m + 1$ and $\theta'_{1m'} = (\theta_{1m}, \theta'_m, \tilde{m} + 1)$, where $\theta'_{m+1} \sim \tilde{\pi}_m(\cdot|\theta_{1m}, Y)$ and $\tilde{\pi}_m$ is defined in (5). The dominating measure ϵ is defined by

$$\epsilon(m, A, m', A') = \begin{cases}
\int_A \lambda_{m+1}[z \in \Theta_{m+1} : (x, z) \in A']d\lambda^m(x) & \text{if } m' = m + 1 \\
\int_A \lambda_{m'}[z \in \Theta_{m'+1} : (x, z) \in A]d\lambda^{m'}(x) & \text{if } m' = m - 1 \\
0 & \text{if } m' \neq m \pm 1
\end{cases}$$

for Borel measurable $A \subset \Theta^m$ and $A' \subset \Theta^{m'}$. Thus, ϵ is essentially a product of a counting measure on $\{(m, m') : m, m' \in \mathbb{N}, m' = m \pm 1\}$ and a transition kernel $\lambda_{\max(m, m')}$.

The density

$$f(m, \theta_{1m}, m', \theta'_{1m'}) = 0.5 \cdot 1\{m' = m + 1, \theta_{1m} = \theta'_{1m}\}\Pi(m, \theta_{1m}|Y)\tilde{\pi}_m(\theta'_m|\theta_{1m}, Y) + 0.5 \cdot 1\{m' = m - 1, \theta_{1m-1} = \theta'_{1m-1}\}\Pi(m, \theta_{1m}|Y)$$

and the acceptance probability is given by (6).
5. Algorithm Optimality

In this section, I consider an optimal choice of $\tilde{\pi}_m$. Since at each MCMC iteration, m can only be changed by 1, one can expect that higher acceptance rates for m^* results in a more efficient MCMC algorithm. Below, I make this intuition precise. First, I show in Theorem 1 how $\tilde{\pi}_m$ can be chosen to maximize expected acceptance rates for m^*. Then, in Theorem 2, I show that this choice minimizes asymptotic variance for MCMC sample average estimators for a class of functions that depend on (m, θ_{1m-1}).

Let us define the following conditional expected acceptance rates. The expected acceptance rate for $m^* = m + 1$ conditional on (m, θ_{1m}) is

$$\int \min\{1, \alpha(m^*, m)\} \tilde{\pi}_m(\theta_{m+1}|\theta_{1m}, Y) d\lambda_{m+1}(\theta_{m+1}),$$

and for $m^* = m - 1$ conditional on (m, θ_{1m-1})

$$\int \min\{1, \alpha(m^*, m)\} p(\theta_m|Y, m, \theta_{1m-1}) d\lambda_m(\theta_m).$$

The use of the conditional posterior $p(\theta_m|Y, m, \theta_{1m-1})$ for taking the expectation in (10) is motivated by the fact that the MCMC algorithm converges to the stationary distribution.

Theorem 1. $\tilde{\pi}^*_m(\theta_{m+1}|\theta_{1m}, Y) = p(\theta_{m+1}|Y, m + 1, \theta_{1m})$ maximizes the conditional expected acceptance rates in (9) and (10).

The proof of the theorem is given in Appendix A.1. For $m^* = m + 1$, $\tilde{\pi}^*_m$ tends to produce proposals of θ_{m+1} with high value of the numerator in $\alpha(m^*, m)$, and one would intuitively expect $\tilde{\pi}^*_m$ to work well in this case (this in fact was the original motivation for trying the algorithm out even before its theoretical properties were obtained). The result for $m^* = m - 1$ seems more surprising. The mechanics of the proof are actually the same for $m^* = m + 1$ and $m^* = m - 1$, and they are about making $\alpha(m^*, m)$ as close to 1 as possible on average.

The results in Theorem 1 are of independent interest because for complex models with parameters of variable dimension, it could be hard to construct MCMC algorithms that produce any accepted draws at all in a reasonable computing time. The theorem also has more formal implications for algorithm optimality.

A standard criterion for MCMC algorithm optimality is the asymptotic variance of sample averages. Let $\mathcal{L} = \{g : \mathcal{X} \to \mathbb{R}, \int gd\pi = 0, \int g^2d\pi < \infty\}$. For a transition kernel P with the stationary distribution π and $g \in \mathcal{L}$, I define the asymptotic MCMC variance as in Tierney (1998) by

$$v(g, P) = \lim_{n \to \infty} \text{var}_P \left(\frac{1}{n} \sum_{k=1}^{n} g(X_k) \right),$$

where X_1, X_2, \ldots is a Markov chain with the initial distribution π and transition P. A transition kernel P can be called optimal if it minimizes $v(g, P)$ for all $g \in \mathcal{L}$.

Here, I obtain an optimality result under additional restrictions on P and \mathcal{L}. The MCMC algorithms I consider are indexed by $\tilde{\pi} = \{\tilde{\pi}_m, m = 1, 2, \ldots\}$ and have the following structure

$$P(\tilde{\pi}) = \frac{P_{\theta_{1m-1}}}{2} + \frac{P_{m\theta_{1m}}}{2} P_{\theta_m},$$

(11)

where $P_{m\theta_{1m}}$ denotes the Metropolis-Hastings-Green transition kernel described in Section 4, P_{θ_m} denotes the Gibbs transition kernel for $\theta_m|m, \theta_{1m-1}, Y$, and $P_{\theta_{1m-1}}$ denotes a reversible transition kernel that updates $\theta_{1m-1}|m, \theta_m, Y$, for example, a random sequence scan Gibbs or Metropolis-within-Gibbs sampler for components of θ_{1m-1}. The dependence of $P_{m\theta_{1m}}$ on $\tilde{\pi}$ is not reflected in the notation for brevity.
Theorem 2. For any $\tilde{\pi}$ and any $g \in \mathcal{L}$ that depends on (m, θ_{1m-1}) but not on θ_m,
$$v(g, P(\tilde{\pi})) \leq v(g, P(\bar{\pi})),$$
where $\bar{\pi}$ is defined in Theorem 1.

The theorem is proved in Appendix A.2. The proof uses the fact that increasing off diagonal transition probabilities of a reversible transition kernel with a fixed stationary distribution decreases the asymptotic variance for any $g \in \mathcal{L}$ (this result, due to Peskun (1973) and Tierney (1998), is formally presented in Appendix A.4).

The maximization of the expected acceptance rates for m^*, as in Theorem 1, actually reduces the off diagonal transition probabilities of $P(\tilde{\pi})$ when m stays the same (even though other off diagonal probabilities increase). There appears to be no obvious way to alter and/or combine $(P_{\theta_m}, P_{\theta_{1m-1}}, P_{m\theta_m})$ that would lead to increased probabilities of all off diagonal transitions. Nevertheless, it is still possible to exploit the increased off diagonal transition probabilities of events that involve a change in m. The key observation here is that $P(\tilde{\pi})$ in (11) induces a Markov chain for (m, θ_{1m-1}) (with θ_m excluded). For this chain, all the off diagonal transition probabilities are maximized by $\tilde{\pi}^*$ from Theorem 1. Moreover, the induced chain for (m, θ_{1m-1}) is reversible and, thus, the claim of Theorem 2 holds.

An ideal optimality result would hold for functions that can depend not only on (m, θ_{1m-1}) but on θ_m as well, and it would not depend on a particular combination of MCMC blocks in (11). Such a result appears to be difficult to obtain. Nevertheless, the demonstrated optimality is a useful justification for the proposed algorithm and an explanation for its good performance in practice. This is especially the case if we take into account that results on MCMC optimality are scarce and mostly restricted to discrete settings (see Chen (2013) for a survey).

6. Application to a Covariate Dependent Mixture Model

In this section, I apply the algorithm to model (3). In what follows, I discuss prior specification, details of algorithm implementation, and tests for correctness of the implemented algorithm. The last two subsections evaluate the algorithm performance on simulated and real data.

6.1. Prior Specification

The prior is specified as follows. For $j = 1, \ldots, m$,
$$\beta_j \stackrel{iid}{\sim} N(\beta, H_\beta^{-1}), \mu_j \stackrel{iid}{\sim} N(\mu, H_\mu^{-1}),$$
$$\nu_{yg} \stackrel{iid}{\sim} G(A_{yg}, B_{yg}), \nu_{xlj} \stackrel{iid}{\sim} G(A_{xlj}, B_{xlj}), l = 1, \ldots, d_x,$$
$$(h_y)^{1/2} \stackrel{iid}{\sim} G(A_{hy}, B_{hy}), (h_{xl})^{1/2} \stackrel{iid}{\sim} G(A_{hx}, B_{hx}), l = 1, \ldots, d_x,$$
$$\alpha_j \stackrel{iid}{\sim} G(\alpha/m, 1),$$
$$\Pi(m = k) \propto e^{-A_m k (\log k)^\tau}, \tau \geq 0, A_m > 0,$$
where $G(A, B)$ stands for a Gamma distribution with shape A and rate B. Some of these prior functional form assumptions are made so that asymptotic results in Norets and Pati (2017) apply. Specifically, a gamma prior for (h_{xl}, h_y) would not put sufficient mass in the tails for the asymptotic results, and hence, the square of a gamma prior is used. The tail of the prior for m also has to be essentially of the assumed form.

6.2. MCMC Algorithm

This subsection presents a general discussion of the MCMC algorithm for the conditional density model. A detailed description of the algorithm is provided in Appendix B. As is common
in the literature on MCMC for finite mixture models, I introduce latent mixture allocation variables \((s_1, \ldots, s_n)\) (Diebolt and Robert (1994)) to facilitate the simulation from blocks of the Metropolis-within-Gibbs for given \(m\):

\[y_i | x_i, s_i, \theta_{1m}, h_x, h_y \sim N(x'_i \beta_{s_i}, (h_y \nu_{ys_i})^{-1})\]

and \(\Pi(s_i = j) = \gamma_{j}(x_i)\), where \(\gamma_{j}(x_i)\) is defined below (3). Then, Gibbs sampler blocks for \((s_i, \beta_j, \nu_{yj})\) have standard distributions and are simulated directly. The rest of the parameters are simulated by the Metropolis-within-Gibbs algorithm. The Metropolis-within-Gibbs block for \(m\) described in Section 3 does not condition on the latent mixture allocation variables. Therefore, the block for the mixture allocation variables needs to be placed right after the block for \(m\). Random label switching on every MCMC iteration considerably increases the acceptance rate for \(m\).

6.3. Tests for Correctness of the Algorithm Design and Implementation

The simulator is implemented in Matlab. To check that the simulator is designed and implemented correctly, I conduct the joint distribution tests proposed in Geweke (2004). The tests are based on a comparison of the prior distribution and the output of a successive conditional simulator that simulates both data and parameters as follows. On each iteration, the parameters are updated by the the posterior simulator given the current data draw and then the new data draw is obtained from the likelihood conditional on the current parameter draw. The resulting algorithm is a hybrid MCMC algorithm (or just a Gibbs sampler if direct simulation rather than MCMC is used for posterior simulator) for exploring the joint prior distribution of parameters and data. If the data and posterior simulators are correct then draws from the successive conditional simulator should be consistent with the prior distribution, which can be checked by standard mean equality tests. Table 1 presents the \(t\)-statistics from the mean equality tests for the parameters and their squares. As can be seen from the table the hypotheses of mean equality are not rejected at conventional significance levels for all but one parameter, which indicates that there are no errors in simulator design and implementation (the tests did help to find and correct a few errors at the development stage).

Table 1. Joint Distribution Tests

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(t)-stat</th>
<th>Parameter</th>
<th>(t)-stat</th>
<th>Parameter</th>
<th>(t)-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_{11})</td>
<td>-2.19</td>
<td>(\mu_{11})</td>
<td>-1.17</td>
<td>(h_{x1})</td>
<td>-0.17</td>
</tr>
<tr>
<td>(\beta_{12}^2)</td>
<td>1.99</td>
<td>(\mu_{12}^2)</td>
<td>0.57</td>
<td>(h_{x2}^2)</td>
<td>-0.28</td>
</tr>
<tr>
<td>(\beta_{12})</td>
<td>-0.04</td>
<td>(\mu_{12})</td>
<td>-0.56</td>
<td>(h_{x2})</td>
<td>0.90</td>
</tr>
<tr>
<td>(\beta_{13}^2)</td>
<td>0.03</td>
<td>(\mu_{13}^2)</td>
<td>0.85</td>
<td>(h_{x3})</td>
<td>0.85</td>
</tr>
<tr>
<td>(\beta_{13})</td>
<td>-1.60</td>
<td>(\mu_{13})</td>
<td>-1.73</td>
<td>(h_{x3}^2)</td>
<td>-0.38</td>
</tr>
<tr>
<td>(\beta_{14}^2)</td>
<td>1.72</td>
<td>(\mu_{14}^2)</td>
<td>1.20</td>
<td>(h_{x4}^2)</td>
<td>-0.38</td>
</tr>
<tr>
<td>(\beta_{14})</td>
<td>1.73</td>
<td>(\mu_{14})</td>
<td>-0.02</td>
<td>(h_{x4})</td>
<td>-0.95</td>
</tr>
<tr>
<td>(\beta_{15}^2)</td>
<td>1.75</td>
<td>(\mu_{15}^2)</td>
<td>-0.03</td>
<td>(h_{x4})</td>
<td>-1.41</td>
</tr>
<tr>
<td>(\beta_{15})</td>
<td>-0.05</td>
<td>(\nu_{x11})</td>
<td>-1.01</td>
<td>(\nu_{x1})</td>
<td>-0.76</td>
</tr>
<tr>
<td>(\beta_{15}^2)</td>
<td>-0.11</td>
<td>(\nu_{x11}^2)</td>
<td>-1.39</td>
<td>(\mu_{x11})</td>
<td>-0.39</td>
</tr>
<tr>
<td>(h_{y1})</td>
<td>-0.95</td>
<td>(\nu_{x12})</td>
<td>0.37</td>
<td>(\nu_{x1})</td>
<td>0.67</td>
</tr>
<tr>
<td>(h_{y2})</td>
<td>-0.80</td>
<td>(\nu_{x12}^2)</td>
<td>0.65</td>
<td>(\nu_{x1})</td>
<td>0.67</td>
</tr>
<tr>
<td>(\nu_{y1})</td>
<td>-0.30</td>
<td>(\nu_{x13})</td>
<td>-0.14</td>
<td>(\nu_{x1})</td>
<td>-0.55</td>
</tr>
<tr>
<td>(\nu_{y2})</td>
<td>-0.07</td>
<td>(\nu_{x13}^2)</td>
<td>-0.08</td>
<td>(\nu_{x1})</td>
<td>-0.36</td>
</tr>
<tr>
<td>(\sum_{j=1}^{m} \alpha_j)</td>
<td>0.49</td>
<td>(\nu_{x14})</td>
<td>-1.64</td>
<td>(\nu_{x1})</td>
<td>0.71</td>
</tr>
<tr>
<td>((\sum_{j=1}^{m} \alpha_j)^2)</td>
<td>0.28</td>
<td>(\nu_{x14}^2)</td>
<td>-1.64</td>
<td>(\nu_{x1})</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Figure 5 in Appendix C compares the exact prior probability mass function for \(m\) and the probability mass function obtained from the successive conditional simulator. Figure 6 presents a trace plot of \(m\).
6.4. Experiments on Simulated Data

This subsection describes the performance of the MCMC algorithm on simulated data with different dimension of covariates. For a given \(d_x \), the covariates are generated from a uniform distribution, \(x_i = (x_{i1}, \ldots, x_{id_x})' \sim U[0,1]^{d_x} \). The conditional distribution of the outcome is a mixture of two normal distributions with nonlinear means, variances, and mixing probabilities.

\[
y_i | x_i \sim e^{-\sqrt{x_{i1}}} \phi (\cdot ; \Phi (\psi_1(x_i))) + (1 - e^{-\sqrt{x_{i1}}}) \phi (\cdot ; \Phi (-\psi_1(x_i)))
\]

(12)

where \(\psi_1(x_i) = \sum_{k=1}^{d_x} x_{ik}/k^4 \), \(\psi_2(x_i) = \sum_{k=1}^{d_x} x_{ik}^2/k/d_x \), \(\phi (\cdot ; \mu, \sigma) \) is a normal density with mean \(\mu \) and standard deviation \(\sigma \), and \(\Phi \) is standard normal cumulative distribution function. The number of observations in each simulated dataset is 2000. The simulated data for \(d_x = 1 \) are shown in Figure 7 in Appendix C.

The average acceptance rates for \(m \) calculated from 100,000 MCMC iterations are presented in Table 2. The corresponding MCMC trace plots are shown in Figure 8.

<table>
<thead>
<tr>
<th>(d_x)</th>
<th>(\dim(\theta_m))</th>
<th>Acceptance Rate, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0.38</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>0.19</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>0.25</td>
</tr>
<tr>
<td>10</td>
<td>33</td>
<td>0.04</td>
</tr>
</tbody>
</table>

As can be seen from the table, the acceptance rates decline as the dimension of \(\theta_m \) increases. Nevertheless, the algorithm seems to provide reasonable descriptions of the posterior distributions for \(m \). A trace plot of the log likelihood evaluated at MCMC draws of the parameters is shown in Figure 9.

6.5. Engel Curve Estimation

An Engel curve is a relationship between the fraction of income spent on a particular good (or a category of goods) and the total income of a consumer (Lewbel (2008)). In empirical economics, Engel curves are often assumed to be linear or quadratic up to an additive error term. In this section, I estimate the density of the fraction of food expenditure conditional on total income using data from Battistin and Nadai (2015). The data consists of 2311 observations on individuals. Possible measurement errors and instrumental variables specifications, which are considered in the literature on Engel curve estimation, are ignored here. In this context, I evaluate performance of the MCMC algorithm and also compare out-of-sample predictive performance of the Bayesian mixture of experts, linear and quadratic normal regressions, and a cross-validated kernel estimator.

Figure 1 shows the raw data and the estimated posterior means of the conditional densities. Figure 2 shows the prior and the estimated posterior probability mass functions for \(m \). Figures 3 and 4 show MCMC trace plots of \(m \) and the log likelihood evaluated at the parameter draws. The trace plot suggests that the algorithm converges. The average acceptance rate for \(m \) in this MCMC run is 2.9% and the effective sample size is 330. A desktop with a 3.5GHz processor and 32GB RAM takes about 5.4 seconds to perform 100 MCMC iterations.
Fig. 1. Data and estimated densities

Fig. 2. Prior and posterior for m
To compare the quality of out-of-sample predictions of the Bayesian mixture of experts and classical parametric and kernel estimators, I conduct a Monte Carlo exercise. On each iteration of the exercise, all the models are estimated on a randomly selected half of the observations and the predictive densities implied by the estimated models are evaluated on the observations not used in estimation. The log predictive densities for each model averaged over 30 iterations are reported in Table 3.

Table 3. Predictive performance

<table>
<thead>
<tr>
<th>Method</th>
<th>Average of log predictive density</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP Bayes</td>
<td>-1375</td>
</tr>
<tr>
<td>Kernel</td>
<td>-1398</td>
</tr>
<tr>
<td>Linear</td>
<td>-1444</td>
</tr>
<tr>
<td>Quadratic</td>
<td>-1444</td>
</tr>
</tbody>
</table>

The length of MCMC runs for estimation of mixtures of experts in the Monte Carlo experiment is 5000. The acceptance rates for these MCMC runs were between 2% and 7%. The kernel conditional density estimation with cross-validated bandwidth selection (Hall et al. (2004)) was performed by R package \textit{np} (Hayfield and Racine (2008)). The nonparametric Bayesian model (NP Bayes in the table) outperforms the kernel estimator, which in turn outperforms the linear and quadratic normal regressions. In line with the asymptotic results of Norets and Pati (2017), this comparison of predictive performance suggests that a mixture of variable number of experts is an attractive model for nonparametric estimation of conditional densities. The MCMC algorithm proposed in this paper makes Bayesian estimation of this model practical.
7. Conclusion

The paper proposes and analyzes an MCMC algorithm for estimation of a class of variable dimension models with a nesting structure. The algorithm is shown to possess certain optimality properties. Its usefulness in practice is demonstrated in applications to nonparametric Bayesian estimation of conditional densities.

A. Appendix. Proofs and Auxiliary Results

A.1. Proof of Theorem 1

First, observe that the problem of finding $\tilde{\pi}_m$ that maximizes the conditional acceptance rates can be reformulated as follows

$$\max_{g} \int \min \left\{ 1, \frac{c \cdot f(z)}{g(z)} \right\} g(z) d\lambda(z), \quad (13)$$

where $c \geq 0$, and g is restricted to be a density with respect to measure λ. For $m^* = m + 1$, $f(\cdot)$ denotes $p(\theta_{m+1} | Y, m+1, \theta_{1:m})$ as a function of θ_{m+1}, $g(\cdot)$ denotes $\tilde{\pi}_m(\theta_{m+1} | \theta_{1:m}, Y)$ as a function of θ_{m+1}, λ denotes λ_{m+1}, and $c = p(Y, m+1, \theta_{1:m})/p(Y, \theta_{1:m})$. For $m^* = m - 1$, $f(\cdot)$ denotes $p(\theta_{m} | Y, m, \theta_{1:m-1})$ as a function of θ_{m}, $g(\cdot)$ denotes $\tilde{\pi}_{m-1}(\theta_{m} | \theta_{1:m-1}, Y)$ as a function of θ_{m}, λ denotes λ_{m}, and $c = p(Y, m, \theta_{1:m-1})/p(Y, m - 1, \theta_{1:m-1})$.

Since $\min\{g(z), cf(z)\} = (g(z) + cf(z))/2 - |g(z) - cf(z)|/2$ and $\int g(z) d\lambda(z) = 1$, the problem in (13) is equivalent to

$$\max_{g} \int |g(z) - cf(z)| d\lambda(z). \quad (14)$$

For $c > 1$, any g^* with $g^*(z) \leq cf(z)$ for λ almost surely all z solves (14). To see this formally, consider g such that $g(z) > cf(z)$ on Z^+, $\lambda(Z^+) > 0$, and $g(z) \leq cf(z)$ on $Z^- = Z \setminus Z^+$, where Z is the domain for f and g. Let us define $g^*(z) = cf(z)$ on Z^+ and $g^*(z) = g(z) + r \cdot (cf(z) - g(z))$ on Z^-, where

$$r = \frac{\int_{Z^+} (g(z) - cf(z)) d\lambda(z)}{\int_{Z^-} (cf(z) - g(z)) d\lambda(z)}.$$

Note that g^* is a density and $r \in (0, 1)$ because $\int_{Z^+} (g(z) - cf(z)) d\lambda(z) - \int_{Z^-} (cf(z) - g(z)) d\lambda(z) = 1 - c < 0$. Also, $|g(z) - cf(z)| \geq |g^*(z) - cf(z)|$ with a strict inequality on a set of λ positive measure. Thus, g is dominated by $g^* \leq cf$. For any $g^* \leq cf$, $\int |g^*(z) - cf(z)| d\lambda(z) = c - 1$.

For $c < 1$, an analogous argument with $g^*(z) = cf(z)$ on Z^-, $g^*(z) = cf(z) + r \cdot (g(z) - cf(z))$ on Z^+, and $r = \int_{Z^+} (g(z) - cf(z)) d\lambda(z)/\int_{Z^+} (g(z) - cf(z)) d\lambda(z)$, shows that any g^* with $g^*(z) \geq cf(z)$ for λ almost surely all z solves (14). For $c = 1$, $g^* = f$ is obviously the solution. Thus, $g^* = f$ solves (13), and it is a unique solution that does not depend on c. \[
\]

A.2. Proof of Theorem 2

Let us define a transition kernel Q on $\bigcup_{m=1}^{\infty} \{m\} \times \Theta^{m-1}$ by

$$Q((m, \theta_{1:m-1}), m' \times A'_{m'-1}) = P((m, \theta_{1:m-1}), m' \times A'_{m'-1} \times \Theta_{m'}), \quad (15)$$

where $A'_{m'-1}$ is a measurable subset of $\Theta^{m'-1}$ and P is defined in (11) with dependence on $\tilde{\pi}$ not reflected in the notation for brevity ($Q(\tilde{\pi})$ is used below whenever explicit dependence on $\tilde{\pi}$ is convenient). Note that P does not depend on θ_m as it starts from redrawing $\theta_m | m, \theta_{1:m-1}, Y$, and Q is indeed a well defined transition kernel on $\bigcup_{m=1}^{\infty} \{m\} \times \Theta^{m-1}$. Note also that Q can be expressed as $Q((m, \theta_{1:m-1}), m' \times A'_{m'-1}) = P_{\theta_m} \cdot P((m, \theta_{1:m-1}), m' \times A'_{m'-1} \times \Theta_{m'})$ as the multiplication by P_{θ_m} from the left does not affect the transition for $(m, \theta_{1:m-1})$. $P_{\theta_m} \cdot P$ is a palindromic combination of reversible kernels and, thus, reversible (see Section A.3). Therefore, Lemma 1 applies and Q is a reversible transition kernel.
Next, let us show that $Q(\tilde{\pi}^*) \geq Q(\tilde{\pi})$, where “domination off diagonal” relation, “\succeq”, is defined in Section A.4. Since $P_{\theta_{1m-1}} P_{\theta_m}$ does not depend on $\tilde{\pi}$, we can consider only $Q_1 = P_{\theta_{1m-1}} P_{\theta_m}$, and it suffices to show that for any measurable sets $A_j \subset \Theta^j$, $j \in \{m-2,m\}$, $Q_1((m,\theta_{1m-1}), \{j+1\} \times A_j)$ is maximized when $\tilde{\pi} = \tilde{\pi}^*$ (for any measurable set $A_{m-1} \subset \Theta^{m-1}$, $Q_1((m,\theta_{1m-1}), \{m\} \times A_{m-1} \setminus \{\theta_{1m-1}\}) = 0$ and $j = m-1$ does not need to be considered). For $j = m$, $Q_1((m,\theta_{1m-1}), \{m+1\} \times A_m)$ is equal
\[\frac{1}{2} \int_{A_m(\theta_{1m-1})} \Pr(m+1 \text{ is accepted}|m,\theta_{1m}) \Pi(d\theta_m|m,\theta_{1m-1},Y),\]
where $A_m(\theta_{1m-1}) = \{\theta_m \in \Theta_m : (\theta_{1m-1}, \theta_m) \in A_m\}$ and $\Pr(m+1 \text{ is accepted}|m,\theta_{1m})$ is given by (9). By Theorem 1, (9) is maximized at π^*, and, thus, $Q_1((m,\theta_{1m-1}), \{m+1\} \times A_m)$ is maximized at π^* as well. For $j = m-2$, $Q_1((m,\theta_{1m-1}), \{m-1\} \times A_{m-2})$ is equal
\[\mathbb{1}_{A_{m-2}(\theta_{1m-2})} \frac{1}{2} \int_{A_m(\theta_{1m-1})} \Pr(m-1 \text{ is accepted}|m,\theta_{1m}) \Pi(d\theta_m|m,\theta_{1m-1},Y),\]
where the integral is equal to (10). By Theorem 1, (10) is maximized at π^*, and, thus, $Q_1((m,\theta_{1m-1}), \{m-1\} \times A_{m-2})$ is maximized at π^* as well.

Since $Q(\tilde{\pi})$ is reversible for any $\tilde{\pi}$ and $Q(\tilde{\pi}^*) \geq Q(\tilde{\pi})$, Peskun-Tierney theorem from Section A.4 delivers $v(g,Q(\tilde{\pi}^*)) \leq v(g,Q(\tilde{\pi}))$ for any $g \in L$ that depends on (m,θ_{1m-1}) but not θ_m. The claim of the theorem follows since $v(g,Q(\tilde{\pi})) = v(g,P(\tilde{\pi}))$ for such g. \hfill \Box

A.3. Standard Facts About Reversibility

Transition kernel P is reversible with respect to π if $\pi(dx)P(x,dy) = \pi(dy)P(y,dx)$. The following elementary MCMC updates are reversible: a Metropolis-Hastings update on a part of the parameter vector, a Gibbs sampler block, and a Metropolis-Hastings-Green update. A mixture of reversible transition kernels is reversible. A palindromic combination of reversible transition kernels is reversible, for example, $P_1 P_2 P_1$ is reversible when P_1 and P_2 are reversible. Combinations of reversible transition kernels such as a Gibbs sampler with a fixed order of blocks are not reversible in general. A random sequence scan Gibbs or Metropolis-within-Gibbs sampler is reversible. A detailed presentation of these facts can be found in Geyer (2005).

A.4. Peskun-Tierney Theorem

The earliest fundamental result in the literature on optimal MCMC is due to Peskun (1973), who shows that increasing the off-diagonal elements in a reversible Markov transition matrix with a fixed stationary distribution reduces $v(g,P)$. Tierney (1998) extends this result to Markov chains on general state space. For transition kernels P_1 and P_2 with invariant distribution π, P_1 is said to dominate P_2 off the diagonal, $P_1 \succeq P_2$, if $P_1(x,A \setminus \{x\}) \geq P_2(x,A \setminus \{x\})$ for any measurable A and π almost all x. Theorem 4 in Tierney (1998): When P_1 and P_2 are reversible, $P_1 \succeq P_2$ implies $v(g,P_1) \leq v(g,P_2)$.

A.5. Auxiliary Results

Lemma 1. If a transition kernel P on $\bigcup_{m=1}^{\infty} \{m\} \times \Theta^m$ is reversible with respect to some π and P does not depend on θ_m, then $Q((m,\theta_{1m-1}),m' \times A_{m'-1} \cap \Theta_{m'})$ is a reversible transition kernel on $\bigcup_{m=1}^{\infty} \{m\} \times \Theta^m$ with respect to $\pi(m,\theta_{1m-1}) = \int_{\theta_m} \pi(m,\theta_{1m-1},d\theta_m)$.

Proof. The reversibility of P is equivalent to
\[\int_{\{m\} \times A} P((m,\theta_{1m-1}),m' \times A') \pi(m,\theta_{1m}) = \int_{\{m'\} \times A'} P((m',\theta'_{1m'-1}),m \times A) \pi(m',\theta'_{1m'}).\]
Setting $A = A_{m-1} \times \Theta_m$ and $A' = A_{m'-1} \times \Theta_m$, immediately implies the reversibility of Q.

Andriy Norets
B. Appendix. MCMC Algorithm for Conditional Density Model

Metropolis-within-Gibbs blocks:

- \(Pr(s_i = j | \ldots) \propto \gamma_j(x_i) \cdot \phi(y_i, x'_i \beta_j, (h_y \cdot \nu_{yg})^{-1}) \), \(i = 1, \ldots, n \).

- \(\beta_j | \ldots \sim N(\tilde{\beta}_j, \tilde{H}_{\beta j}^{-1}) \), \(j = 1, \ldots, m \),
 where \(\tilde{H}_{\beta j} = H_{\beta} + h_y \nu_{yg} \sum s_i = j x_i x'_i \) and \(\tilde{\beta}_j = \tilde{H}_{\beta j}^{-1}(H_{\beta j} \beta + h_y \nu_{yg} \sum s_i = j x_i y_i) \).

- \(\nu_{yg} | \ldots \sim G(A_{ny}, B_{ny}) \), \(j = 1, \ldots, m \),
 where \(A_{ny} = A_{ny} + 0.5 \sum s_i = j \) and \(B_{ny} = B_{ny} + 0.5 h_y \sum s_i = j (y_i - x'_i \beta_j)^2 \).

- \(h_y | \ldots \) is simulated by the Metropolis-Hastings algorithm with proposal \(G(\tilde{A}_{hy}, \tilde{B}_{hy}) \),
 where \(\tilde{A}_{hy} = 0.5 A_{ny} + 0.5 \sum s_i = j \) and \(\tilde{B}_{hy} = 0.5 \sum (y_i - x'_i \beta_j)^2 \nu_{gs} \).

- \(\tilde{\alpha} = (\alpha_1 / \sum_{j=1}^m \alpha_j, \ldots, \alpha_{m-1} / \sum_{j=1}^m) \ldots \) is simulated by the Metropolis-Hastings algorithm
 with proposal \(N(\tilde{\alpha}, \tilde{H}_{\alpha}^{-1}) \). Two alternative procedures with different proposal parameters
 are implemented. The first one is a random walk with precision that is a function of the current parameter value: \(\tilde{\alpha} = \alpha \) and \(\tilde{H}_{\alpha} = -\frac{\partial^2}{\partial \alpha \partial \alpha} \log[p(Y \mid x, s, \nu, \theta_1, h_y, \nu_y)] \).
 The second one is an independence chain with \(\tilde{\alpha} \) equal to the conditional posterior mode
 (obtained by the Newton method) and the precision equal to the negative of the Hessian as
 in the first alternative but evaluated at the mode. Of course, the acceptance probabilities
 have different expressions for the two alternative procedures.

- \(\sum_{j=1}^m \alpha_j | \ldots \sim G(\tilde{\alpha}, 1) \) (this quantity is independent of data and is determined by the prior distribution only, it is used with \(\tilde{\alpha} \) for computing \(\alpha \) which is required for the block for \(m \)).

- Blocks \(h_x | \ldots, \nu_x jk| \ldots, \nu_j| \ldots \) are handled analogously to \(\tilde{\alpha} | \ldots \).

- Random label switching: simulate \(j_1 \) and \(j_2 \) randomly from a uniform distribution on \(\{1, \ldots, m\} \) and set \(\theta_{temp} = \theta_{j_1}, \theta_{j_1} = \theta_{j_2}, \) and \(\theta_{j_2} = \theta_{temp} \).

- Block for \(m | \ldots \) is as described in Section 3, except instead of (8) a block diagonal approximation is used, where cross derivatives such as \(\frac{\partial^2}{\partial \beta_j \partial \nu_{gj}} \) (but not off diagonal components in \(\frac{\partial^2}{\partial \beta_j \partial \beta_j} \)) are set to zero to simplify calculations.
C. Appendix. Additional Figures

C.1. Figures for Joint Distribution tests

Fig. 5. Probability Mass Function for m

Fig. 6. Trace Plot for m
C.2. Figures for Simulated Data Experiments

Fig. 7. Simulated data, $d_x = 1$

Fig. 8. Trace plots for m, simulated data
Fig. 9. Trace plots for log likelihood, simulated data, $d_x = 1$

References

