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Abstract

This paper develops a Markov chain Monte Carlo (MCMC) method for a class
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to minimize the asymptotic variance of sample average estimators under certain
restrictions. The method can be represented as a retrospective sampling algorithm
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1 Introduction

Models with parameters of variable dimension play an important role in the Bayesian

approach to inference. First of all, model comparison can be naturally performed in

this framework. Second, many Bayesian non-parametric models, for example those based

on varying degree polynomials or mixtures of densities, can be formulated as variable

dimension models. The main approaches to MCMC estimation of such models are the

reversible jump MCMC (RJMCMC) (Green (1995)), the method of auxiliary prior distri-

butions (Carlin and Chib (1995)), and the birth-death process of Stephens (2000). These

approaches require selection of proposal distributions, birth distributions, or auxiliary

priors, which is a non-trivial task, especially, in complex models. The literature on choice

of efficient proposals for RJMCMC is not very large and the suggested proposals, while

quite sensible, appear to be mostly heuristically motivated (see a review in Section 4.1 of

a survey by Hastie and Green (2012)).

In this paper, I develop optimal RJMCMC proposals of a certain type for models

with a nesting structure. The RJMCMC algorithm under consideration is restricted to

move only between the adjacent nested submodels without changing the parameters of the

smaller submodel. Under these restrictions, the optimal proposal simulates the parameters

present only in the larger submodel from their posterior distribution conditional on the

parameters in the smaller submodel. The idea is rather natural and it has appeared in

the literature at least in the form of centering the proposal distribution on the conditional

posterior mode (see a discussion of the conditional maximization approach in Brooks

et al. (2003)). The theoretical contribution of the present paper is to rigorously show that

the conditional posterior proposal is optimal in a sense that it maximizes the expected
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probability of acceptance for between-submodel moves and minimizes the asymptotic

variance of MCMC sample average estimators under additional restrictions.

The proposed algorithm can also be represented as a combination of auxiliary priors

approach of Carlin and Chib (1995) and retrospective sampling of Papaspiliopoulos and

Roberts (2008) with an optimal choice of auxiliary priors restricted to have a recursive

form. The auxiliary priors and retrospective sampling representation of the algorithm

was developed before the RJMCMC representation, and, hence, the former is presented

before the latter below.

The main motivation and application for the theoretical results described above is a

practical MCMC algorithm for estimation of a Bayesian nonparametric model for condi-

tional distributions. The model is a mixture of Gaussian regressions or experts with co-

variate dependent mixing weights and a variable number of mixture components. Related

mixture of experts models with a fixed or a pre-selected number of components demon-

strate excellent performance in applications and simulations (Jacobs, Jordan, Nowlan,

and Hinton (1991), Jordan and Xu (1995), Peng, Jacobs, and Tanner (1996), Wood,

Jiang, and Tanner (2002), Geweke and Keane (2007), Villani et al. (2009)). However, in

the context of nonparametric conditional density estimation, the frequentist properties of

standard Bayesian model selection procedures applied to choosing the number of compo-

nents are not understood. Moreover, model averaging, which in this context is equivalent

to a model with a varying number of mixture components, is the preferred option from the

Bayesian perspective. Norets and Pati (2017) show that under rather standard priors and

some regularity assumptions, the posterior in a model with a varying number of experts

contracts at an adaptive optimal rate up to a log factor; moreover, the rate is not affected
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by the presence of irrelevant covariates in the model. Given these attractive asymptotic

guarantees, which do not appear to be currently available for other Bayesian nonpara-

metric models for conditional densities, and excellent performance in applications of the

related models, it seems important to develop reliable posterior simulation algorithms for

the model with a varying number of components.

RJMCMC proposals based on moment matching (Richardson and Green (1997)) have

been used in the literature to estimate mixtures of densities with a variable number of

components. However, it is not clear how to implement this approach when the mixing

weights depend on covariates. Carlin and Chib (1995) applied their auxiliary priors ap-

proach to mixtures of univariate normals with a small number of components where the

cross-dimensional moves change the parameters of all the mixture components simultane-

ously. It is not clear how to implement this approach for the nonparametric conditional

density model since the parameter vector is high-dimensional and constructing good aux-

iliary priors or proposals for the high-dimensional distributions with very complex shapes

is a daunting task. Thus, I develop here an algorithm based on the conditional posterior

proposals that changes parameters of only one mixture component in a cross-dimensional

move.

In the mixture of experts model, the conditional posterior proposals can be evaluated

up to normalizing constants that are difficult to compute precisely. Since the normal-

izing constants are required for computing acceptance probabilities, approximations to

conditional posteriors have to be used in the implementation of the algorithm for this

model. Posteriors for parameters of one mixture component conditional on the number

of components and the rest of the parameters are much better behaved than posteri-
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ors for parameters of all or few mixture components as label switching is not an issue.

Quadratic approximations to the log of the conditional posterior appear to be adequate

in the considered applications. It is straightforward in principle to extend the algorithm

from changing parameters of only one mixture component at a time to two or more. How-

ever, finding good approximations to conditional posteriors for parameters of two or more

mixture components appears infeasible when covariates, especially multivariate ones, are

present in the model. Thus, the restriction of changing parameters of only one mixture

component in a cross-dimensional move is introduced not for theoretical convenience but

rather for feasibility of algorithm implementation.

The resulting “approximately” optimal RJMCMC algorithm provides a feasible pos-

terior simulation method for an attractive Bayesian nonparametric model for conditional

densities for which the previous literature does not provide a feasible posterior simulator.

The proposed methodology should also be useful for developing posterior simulators for

other varying dimension models in which good proposals for the whole parameter vector

are difficult to construct. An important class of such models are Bayesian nonparametric

models based on nonlinear transformations of polynomials or other basis expansions with

a prior on the number of basis functions.

The rest of the paper is organized as follows. A general model formulation and the

mixture of experts example are presented in Section 2. The auxiliary priors representation

of the MCMC algorithm is given in Section 3. Section 4 provides the RJMCMC represen-

tation. Theoretical results on the algorithm optimality are given in Section 5. A simple

illustration of the algorithm on a normal regression with a nonparametric prior on the

conditional mean is given in Section 6. An application to the mixture of experts model and
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simulation results are presented in Section 7. Appendices contain proofs, implementation

details, and auxiliary figures.

2 Model description

In this paper, we are concerned with the following class of models. Suppose that for an

integer m, θ1m = (θ1, θ2, . . . , θm) ∈ Θm = Θ1 × · · · × Θm ⊂ Rdm , θ1∞ = (θ1, θ2, . . .), and

Y ∈ RdY . Let the observables density satisfy the following restriction

p(Y |m, θ1∞) = p(Y |m, θ1m), (1)

so that m indexes a sequence of nested models. A prior is specified as follows

Π(θ1m|m)Π(m), (2)

where Π(θ1m|m) is a density with respect to a σ-finite dominating measure λm = λ1×· · ·×

λm on the Borel σ-field of Rdm . The support of Π(m) can be equal to the set of positive

integers. This class of models encompasses finite and countable mixtures of densities

(McLachlan and Peel (2000), Fruhwirth-Schnatter (2006)) and mixtures of experts (Jacobs

et al. (1991), Jordan and Jacobs (1994)) with a varying number of mixture components

and models based on polynomials or other basis expansions with a prior on the degree of

polynomials (or more generally number of terms in the basis expansions).

2.1 Main Application: Mixture of Experts

The main motivation and application for the MCMC algorithm is a nonparametric model

for conditional densities from Norets and Pati (2017) based on mixtures of experts. Let
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yi ∈ R denote a dependent variable and xi = (1, xi1, . . . , xidx)
′ ∈ Rdx+1 denote a vec-

tor of covariates for observation i = 1, . . . , n. It is assumed that the observations are

independently identically distributed. The marginal distribution of covariates is not of

interest and, thus, it is not modeled. The conditional density of yi given xi is modeled by

a mixture of normal linear regressions with the mixing weights that depend on covariates

p(yi|xi;m, θ1m) =
m∑
j=1

γj(xi;m, θ1m) · φ
(
yi, x

′
iβj, (hy · νyj)−1

)
, (3)

γj(xi;m, θ1m) =
αj exp

{
−0.5

∑dx
l=1 hxlνxjl(xil − µjl)2

}
∑m

k=1 αk exp
{
−0.5

∑dx
l=1 hxlνxkl(xil − µkl)2

} ,
where φ denotes a normal density and θ1m includes hx ∈ Rdx

+ and hy ∈ R+ as a part of θ1

and the sequences βj ∈ Rdx+1, αj ∈ R+, µj ∈ Rdx , νxj ∈ Rdx
+ , νyj ∈ R+, j = 1, 2, . . . ,m.

A prior Π(m)Π(θ1m|m) specified in Section 7 completes the model setup.

The scale parameters (hy, hx, νyj, νxj, j = 1, . . . ,m) are not identified in the likelihood

of the model conditional on m and covariates, and proper priors must be used for the pos-

terior to be well defined. This specification of scale parameters is justified as follows. The

multiplicative part of the scale parameters that is common across all mixture components

(hy, hx) is introduced so that there is a sufficient prior probability on very small values

of scale parameters for all mixture components at the same time, which is required for

achieving the optimal posterior contraction rates at smooth data generating densities, see

Norets and Pati (2017) for more details. The parts of scale parameters that are specific to

mixture components, (νyj, νxj, j = 1, . . . ,m), do not affect known asymptotic properties

of the model; they are introduced to improve flexibility and small sample performance of

the model when m is not large. Similar specifications of scale parameters for univariate

mixture models are used in textbooks, see, for example, Geweke (2005).
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3 Recursive Auxiliary Priors for Drawing m

In this subsection, let us consider only the algorithm’s block for m. For many mixture

models, MCMC algorithms for simulating θ1m conditional on m are readily available (see

for example, Fruhwirth-Schnatter (2006), Peng et al. (1996), Geweke and Keane (2007),

and Villani et al. (2009)). Section 7 overviews the algorithm for simulating θ1m for the

model (3) with details relegated to Appendix B.

For p(Y |m, θ1m) and Π(θ1m|m)Π(m) in (1), θm+1∞ = (θm+1, θm+2, . . .), and an arbi-

trary distribution Π̃(θm+1∞|m, θ1m, Y ), let us define a joint distribution

p(Y, θ1∞,m) = Π̃(θm+1∞|m, θ1m, Y ) · p(Y |m, θ1m) · Π(θ1m|m)Π(m). (4)

Importantly, the posterior Π(m, θ1m|Y ) implied by this joint distribution is the same as

the one implied by p(Y |m, θ1m)Π(θ1m|m)Π(m) and it is not affected by Π̃, which can be

established by integrating out θm+1∞ from (4). The auxiliary prior Π̃(θm+1∞|m, θ1m, Y )

and auxiliary variables θm+1∞ can only affect a posterior simulator for Π(m, θ1m|Y ). In

what follows, we design Π̃ to facilitate posterior simulation from Π(m, θ1m|Y ) by retro-

spective sampling (Papaspiliopoulos and Roberts (2008)). For densities π̃m(θm+1|θ1m, Y )

to be chosen below, let

Π̃(θm+1∞|m, θ1m, Y ) =
∞∏
j=1

π̃m+j(θm+1+j|θ1m+j, Y ). (5)

This recursive definition of Π̃ implies a tractable expression for Metropolis-Hastings ac-

ceptance probabilities. Specifically, let us consider the Metropolis-within-Gibbs block for

m|Y, θ1∞ with the proposal Pr(m∗ = m + 1|m) = Pr(m∗ = m − 1|m) = 1/2. For a

proposal draw m∗ the acceptance probability is equal to min{1, α(m∗,m)}, where

α(m∗,m) =
p(Y |m∗, θ1m∗)Π(θ1m∗|m∗)Π(m∗)

p(Y |m, θ1m)Π(θ1m|m)Π(m)
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·
(

1{m∗ = m+ 1}
π̃m(θm+1|θ1m, Y )

+ 1{m∗ = m− 1}π̃m−1(θm|θ1m−1, Y )

)
. (6)

When m∗ = m+ 1, θm+1 is simulated retrospectively from π̃m(θm+1|θ1m, Y ).

3.1 Choice of Auxiliary Prior

A simplistic choice of the auxiliary prior with θj identically independently distributed

for all j ∈ {1, . . . ,∞} leads to practically zero acceptance rates for m in the mixture of

experts application considered in this paper. Thus, the choice of π̃m appears to be crucial

for feasibility of the algorithm. As I show below in Section 5,

π̃m(θm+1|θ1m, Y ) = p(θm+1|Y,m+ 1, θ1m) ∝ p(Y |m+ 1, θ1m+1)Π(θ1m+1|m+ 1) (7)

is an optimal choice of π̃m. The idea of using the conditional posterior p(θm+1|Y,m+1, θ1m)

as a proposal for cross-dimensional MCMC moves is rather natural and it has appeared

in the literature in the form of centering a proposal for RJMCMC algorithm on the con-

ditional posterior mode (see a discussion of the conditional maximization approach in

Brooks et al. (2003)). In Section 5, I show that the conditional posterior proposal maxi-

mizes the expected probability of acceptance for between-submodel moves and minimizes

the asymptotic variance of MCMC sample average estimators under additional restric-

tions.

In some models, the conditional posterior p(θm+1|Y,m + 1, θ1m) can be available in

closed form as in the normal regression with a nonparametric prior on the conditional

mean considered in Section 6. However, in general and in our main application to the

mixture of experts model, direct draws from p(θm+1|Y,m + 1, θ1m) and, especially, the

normalization constant can be difficult to obtain. In this case, it is necessary to construct
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approximations to p(θm+1|Y,m + 1, θ1m) with known normalization constants and from

which fast simulation is possible.

When θm is one dimensional, as could be the case in models based on polynomials,

suitable approximations to conditional posteriors/optimal proposals can be constructed

from piece-wise linear approximations to the log of the unnormalized conditional posterior

on a grid, similarly to adaptive rejection Metropolis sampling within Gibbs algorithm

from Gilks et al. (1995). The resulting proposals would be piece-wise exponential with

analytical expressions for normalization constants and it is straight-forward to simulate

from them.

When θm is multidimensional, an approximation to p(θm+1|Y,m+1, θ1m) can be given

by a Gaussian distribution with the mean equal to the conditional posterior mode

θ̄m+1 = arg max
θm+1

p(Y |m+ 1, θ1m+1)Π(θ1m+1|m+ 1)

and the variance calculated from the Hessian

V −1
m+1 = − ∂2

∂θm+1∂θ′m+1

log[p(Y |m+ 1, θ1m+1)Π(θ1m+1|m+ 1)]

∣∣∣∣
θm+1=θ̄m+1

. (8)

This approximation can be motivated by the Bernstein-von Mises (BVM) theorem on

asymptotic normality of posterior in well behaved or regular models, see, Chernozhukov

and Hong (2003) and Kleijn and van der Vaart (2012) for versions of the theorem under

misspecification that are more relevant here. The BVM theorem may fail to hold in some

scenarios, see, for example, Chen et al. (2014). Even when it fails, the approximations

centered at the mode of the target distribution seem reasonable and I am not aware of

other possible approximations that would be feasible to obtain on every iteration of a

long MCMC run. Thus, I proceed with this approach in the mixture of experts appli-
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cation with a couple of simplifications. First, I set some of the cross derivatives in the

Hessian to zero to simplify the derivations and speed up computation. Second, for pa-

rameters restricted to be positive, such as precision parameters, I set the corresponding

cross-derivatives to zero in V −1
m+1 and use a Gamma distribution with the shape and rate

parameters selected so that the mode and the variance of the Gamma distribution match

the corresponding components in (θ̄m+1, Vm+1). Appendix B provides more details on the

algorithm implementation for the mixture of experts model.

3.2 Previous Literature

Papaspiliopoulos and Roberts (2008) developed retrospective sampling ideas in the con-

text of Dirichlet process mixtures. In those settings, the prior for all components of θ1∞

does affect the posterior, and, thus, choosing the prior to improve the MCMC performance

is not an option, in contrast to the settings considered here.

The birth-death process of Stephens (2000) is somewhat similar to the algorithm

developed here and more generally to a RJMCMC that keeps the parameters of the

smaller model unchanged when cross-dimensional moves are attempted. Stephens (2000)

uses the same prior distribution for all θj’s as a birth or proposal distribution, and, as I

mention above, such proposals produce practically zero acceptance rates in the mixture

of experts application.

Carlin and Chib (1995) introduced auxiliary prior distributions in the context of

Bayesian model averaging and comparison for a finite number of parametric models.

The algorithm proposed here can be thought of as an extension of ideas from Carlin and

Chib (1995) to infinite dimensional settings, which also exploits the structure of the prob-
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lem and more recently developed restrospective sampling ideas. Carlin and Chib apply

their algorithm to finite mixture of normals models that can be set up as (1)-(2) with

a bounded support for m. However, they treat θ1m and θ1m̃ with m̃ 6= m as two non-

overlapping vectors of parameters and for any given m, they introduce separate auxiliary

prior distributions for all θ1m̃ with m̃ 6= m; these auxiliary prior distributions are chosen

to approximate Π(θ1m̃|Y, m̃), where approximations are obtained from a posterior simu-

lator output for Π(θ1m̃|Y, m̃). In principle, their approach if combined with retrospective

sampling could be used for estimation of model in (1)-(2) with an unbounded support for

m. However, the posterior for mixture models has a large number of modes and obtaining

an approximation for Π(θ1m̃|Y, m̃) is a challenging problem, especially for larger values of

d · m̃. Hence, the need to develop an alternative algorithm for models with large/infinite

dimensions, which is addressed here.

4 Reversible Jump Representation

The reversible jump MCMC (Green (1995)) is the most popular approach to simulation

from posterior for variable dimension models. In this section, I show that the algorithm for

drawing m described in Section 3 can also be formulated as a RJMCMC algorithm. This

RJMCMC algorithm is restricted to move only between the adjacent nested submodels

without changing the parameters of the smaller submodel and it uses π̃m from Section 3 as

a part of the proposal distribution for such cross-dimensional moves. Thus, the results on

the optimal choice of π̃m presented in Section 5 below, can be interpreted as the results on

the optimal proposal distribution for a class of RJMCMC algorithms. This is noteworthy
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as the existing literature on choice of proposals for RJMCMC does not seem to contain

rigorous optimality results (see, for example, Brooks et al. (2003) and Hastie and Green

(2012)).

The RJMCMC representation of the algorithm requires additional notation. Let us

denote the state space for the RJMCMC by X = ∪∞m=1{m} × Θm. Let Q be a Markov

transition on X and for x, x′ ∈ X , f(x, x′) be a density of Π(dx|Y )Q(x, dx′) with respect to

a symmetric measure on X×X denoted by ε. A RJMCMC update, also called Metropolis-

Hastings-Green update because it generalizes the Metropolis-Hastings update to cross-

dimensional settings, simulates a proposal x′ ∼ Q(x, ·) that is accepted with probability

min

{
1,
f(x′, x)

f(x, x′)

}
.

The algorithm in Section 3 is obtained when Q((θ1m,m), ·) draws (m′, θ′1m′) as follows:

m′ = m − 1 and θ′1m′ = θ1m−1 with probability 0.5, otherwise m′ = m + 1 and θ′1m′ =

(θ1m, θ
′
m+1), where θ′m+1 ∼ π̃m(·|θ1m, Y ) and π̃m is defined in (5). The dominating measure

ε is defined by

ε(m,A,m′, A′) =



∫
A
λm+1[z ∈ Θm+1 : (x, z) ∈ A′]dλm(x) if m′ = m+ 1

∫
A′
λm′+1[z ∈ Θm′+1 : (x, z) ∈ A]dλm

′
(x) if m′ = m− 1

0 if m′ 6= m± 1

for Borel measurable A ⊂ Θm and A′ ⊂ Θm′ . Thus, ε is essentially a product of a counting

measure on {(m,m′) : m,m′ ∈ N,m′ = m ± 1} and a transition kernel λmax{m,m′}. The

density

f(m, θ1m,m
′, θ′1m′) =0.5 · 1{m′ = m+ 1, θ1m = θ′1m}Π(m, θ1m|Y )π̃m(θ′m′ |θ1m, Y )
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+0.5 · 1{m′ = m− 1, θ1m−1 = θ′1m−1}Π(m, θ1m|Y )

and the acceptance probability is given by (6).

5 Algorithm Optimality

In this section, I consider an optimal choice of π̃m. Since at each MCMC iteration, m

can only be changed by 1, one can expect that higher acceptance rates for m∗ results in

a more efficient MCMC algorithm. Below, I make this intuition precise. First, I show in

Theorem 1 how π̃m can be chosen to maximize expected acceptance rates for m∗. Then,

in Theorem 2, I show that this choice minimizes asymptotic variance for MCMC sample

average estimators for a class of functions that depend on (m, θ1m−1).

Let us define the following conditional expected acceptance rates. The expected ac-

ceptance rate for m∗ = m+ 1 conditional on (m, θ1m) is∫
min{1, α(m∗,m)}π̃m(θm+1|θ1m, Y )dλm+1(θm+1), (9)

and for m∗ = m− 1 conditional on (m, θ1m−1) is∫
min{1, α(m∗,m)}p(θm|Y,m, θ1m−1)dλm(θm). (10)

The use of the conditional posterior p(θm|Y,m, θ1m−1) for taking the expectation in (10) is

motivated by the fact that the MCMC algorithm converges to the stationary distribution.

Theorem 1. π̃?m(θm+1|θ1m, Y ) = p(θm+1|Y,m+1, θ1m) maximizes the conditional expected

acceptance rates in (9) and (10).

The proof of the theorem is given in Appendix A.1. For m∗ = m + 1, π̃?m tends to

produce proposals of θm+1 with high value of the numerator in α(m∗,m), and one would
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intuitively expect π̃?m to work well in this case (this in fact was the original motivation for

trying the algorithm out even before its theoretical properties were obtained). The result

for m∗ = m− 1 seems more surprising. The mechanics of the proof are actually the same

for m∗ = m + 1 and m∗ = m − 1, and they are about making α(m∗,m) as close to 1 as

possible on average.

The results in Theorem 1 are of independent interest because for complex models with

parameters of variable dimension, it could be hard to construct MCMC algorithms that

produce any accepted draws at all in a reasonable computing time. The theorem also has

more formal implications for algorithm optimality.

A standard criterion for MCMC algorithm optimality is the asymptotic variance of

sample averages. Let L = {g : X → R,
∫
gdπ = 0,

∫
g2dπ <∞}. For a transition kernel

P with the stationary distribution π and g ∈ L, I define the asymptotic MCMC variance

as in Tierney (1998) by

v(g, P ) = lim
n→∞

varP

(
n∑
k=1

g(Xi)

)
/n,

where X1, X2, . . . is a Markov chain with the initial distribution π and transition P . A

transition kernel P can be called optimal if it minimizes v(g, P ) for all g ∈ L.

Here, I obtain an optimality result under additional restrictions on P and L. The

MCMC algorithms I consider are indexed by π̃ = {π̃m, m = 1, 2, . . .} and have the

following structure

P (π̃) =

(
Pθ1m−1

2
+
Pmθ1m

2

)
Pθm , (11)

where Pmθ1m denotes the Metropolis-Hastings-Green transition kernel described in Sec-

tion 4, Pθm denotes the Gibbs transition kernel for θm|m, θ1m−1, Y , and Pθ1m−1 denotes a
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reversible transition kernel that updates θ1m−1|m, θm, Y , for example, a random sequence

scan Gibbs or Metropolis-within-Gibbs sampler for components of θ1m−1. The dependence

of Pmθ1m on π̃ is not reflected in the notation for brevity.

Theorem 2. For any π̃ and any g ∈ L that depends on (m, θ1m−1) but not on θm,

v(g, P (π̃?)) ≤ v(g, P (π̃)),

where π̃? is defined in Theorem 1.

The theorem is proved in Appendix A.2. The proof uses the fact that increasing off

diagonal transition probabilities of a reversible transition kernel with a fixed stationary

distribution decreases the asymptotic variance for any g ∈ L (this result, due to Peskun

(1973) and Tierney (1998), is formally presented in Appendix A.4).

The maximization of the expected acceptance rates for m∗, as in Theorem 1, actually

reduces the off diagonal transition probabilities of P (π̃) when m stays the same (even

though other off diagonal probabilities increase). There appears to be no obvious way

to alter and/or combine (Pθm , Pθ1m−1 , Pmθ1m) that would lead to increased probabilities of

all off diagonal transitions. Nevertheless, it is still possible to exploit the increased off

diagonal transition probabilities of events that involve a change in m. The key observation

here is that P (π̃) in (11) induces a Markov chain for (m, θ1m−1) (with θm excluded). For

this chain, all the off diagonal transition probabilities are maximized by π̃?m from Theorem

1. Moreover, the induced chain for (m, θ1m−1) is reversible and, thus, the claim of Theorem

2 holds.

An ideal optimality result would hold for functions that can depend not only on

(m, θ1m−1) but on θm as well, and it would not depend on a particular combination and
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order of MCMC blocks in (11). Such a result appears to be difficult to obtain. Nev-

ertheless, the demonstrated optimality results provide useful guidelines for constructing

MCMC algorithms and deliver an explanation for the good practical performance of the

approximate version of the algorithm implemented for the mixture of experts model. This

is especially the case if we take into account that results on MCMC optimality are scarce

and mostly restricted to discrete settings (see Chen (2013) for a survey).

6 Simple Illustration in Normal Regression

This section presents a very simple illustration of the proposed algorithm on a problem

of flexible estimation of conditional mean. Let us model the distribution of a univariate

yi conditional on a covariate xi by a normal distribution

yi|xi, θ1m,m ∼ N(X1m
i θ1m, 1),

where θ1m ∈ Rm contains linear coefficients, X1m
i = (ψ1(xi), . . . , ψm(xi)), and ψj(xi) is

a Legendre polynomial of order j − 1. While I use univariate Legendre polynomials in

this illustration, more generally, any basis and a multivariate xi can be accommodated

in the same fashion. It is also possible to model the variance of yi and correspondingly

extend the algorithm below, however, I set the variance to 1 for simplicity. The prior on

the degree of the polynomial is

π(m = j) = [exp(Am)− 1] · exp(−Amj) · 1{m ≥ 1}. (12)

Let us use a conditionally conjugate prior for the linear coefficients

π(θ1m|m) = φ(θ1m; θ1m, H
−1
1m),

16



where φ is a multivariate normal density, θ1m is a prior mean, and H1m is a diagonal

precision matrix with a j’s diagonal element denoted by Hj. For this model, the posterior

distribution for (m, θ1m) can be obtained in a closed form. While MCMC is not neces-

sary for estimation of this model, it does provide convenient settings for illustrating and

checking the algorithm as the simulation results can be compared with the closed form

expressions.

Let us denote the data by y = (y1, . . . , yn)′ and let us implicitly condition on covariates

hereinafter. Under a conditionally conjugate prior for θ1m, all the relevant distributions

are available in closed form. The Gibbs sampler block for linear coefficients is normal,

π(θ1m|m, y) = φ(θ1m; θ̄1m, H̄
−1
1m), (13)

where H̄1m = H1m + (X1m)′X1m, X1m = ((X1m
1 )′, . . . , (X1m

n )′)′, and

θ̄1m = H̄−1
1m[H1mθ1m + (X1m)′y].

The conditional posterior (optimal proposal) is also normal,

π(θm+1|m+ 1, θ1m, y) = φ(θm+1; θ̄m+1, H̄
−1
m+1), (14)

where H̄m+1 = Hm+1 + (Xm+1)′Xm+1, Xm+1 is the last column of X1m+1, and

θ̄m+1 = H̄−1
m+1[Hm+1θm+1 + (Xm+1)′(y −X1mθ1m)].

Finally, let us note that the likelihood is given by

p(y|m, θ1m) = (2π)−n/2 exp[−0.5(y −X1mθ1m)′(y −X1mθ1m)] (15)

and that the marginal likelihood for m has a closed form expression

p(y|m) =
p(y|m, θ1m)π(θ1m|m)

π(θ1m|m, y)
,
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where the closed forms of the likelihood, prior, and posterior for θ1m conditional on m are

specified above.

MCMC algorithm:

1. Simulate θ1m from π(θ1m|m, y) defined in (13).

2. Simulate the proposed m∗ from distribution (0.5, 0.5) on (m+ 1,m− 1).

(a) If m∗ = m + 1, simulate θ∗m+1 from π(θm+1|m + 1, θ1m, y) defined in (14) and

U from a uniform on [0, 1]. If

U ≤
exp(−Am)p(y|m+ 1, θ1m, θ

∗
m+1)φ(θ∗m+1; θm+1, Hm+1)

p(y|m, θ1m)φ(θ∗m+1; θ̄m+1, H̄
−1
m+1)

then accept the proposal (change the current state of the Markov chain from

(θ1m,m) to ((θ1m, θ
∗
m+1),m∗)). Return to step 1.

(b) If m∗ = m− 1, simulate U from a uniform on [0, 1]. If

U ≤ p(y|m− 1, θ1m−1)φ(θm; θ̄m, H̄
−1
m ) · 1{m ≥ 2}

exp(−Am)p(y|m, θ1m)φ(θm; θm, H
−1
m )

then accept the proposal (change the current state of the Markov chain from

(θ1m,m) to (θ1m−1,m− 1)). Return to step 1.

To illustrate the performance of the estimation algorithm, I simulate n = 1000 obser-

vations yi|xi ∼ N(2 · x2
i exp(xi), 1), xi = −1 + 2(i− 1)/(n− 1), i = 1, . . . , n, and use the

following prior hyper-parameters: Am = 1, θj = 0, Hj = 1 for any j. The simulated data,

the true conditional mean, and the posterior conditional mean are presented in Figure 1.
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Figure 1: Data and true and estimated conditional mean

The trace plot of MCMC draws of m in Figure 2 suggests that the Markov chain for

exploring the posterior mixes well. The acceptance rate for m is 20%.

Figure 2: MCMC trace plot

Figure 3 shows the prior for m, the posterior for m obtained from the MCMC draws,

and the posterior obtained from the closed form expression for the marginal likelihood.

The latter two probability mass function essentially coincide, which confirms that the

algorithm is implemented correctly and convergence is attained in this application.
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Figure 3: Prior and posterior for m

The following section presents a more involved application of the proposed algorithm in

settings where other approaches do not seem to be available in the literature.

7 Application to Mixture of Experts

In this section, I apply the algorithm to the mixture of experts model described in Section

2.1. In what follows, I discuss prior specification, details of algorithm implementation,

and tests for correctness of the implemented algorithm. The last two subsections evaluate

the algorithm performance on simulated and real data.

Of course, it would be desirable to compare the algorithm with some benchmark

methods. Unfortunately, the literature does not seem to provide other feasible methods

for the mixture of a variable number of experts model. Specifically, the use of priors as

proposals as in the retrospective sampling (Papaspiliopoulos and Roberts (2008)) or birth-

death process (Stephens (2000)) does not deliver any accepted cross-dimensional moves.

It is obvious that using a good approximation to the posterior of the whole parameter

vector as a proposal would deliver a more efficient MCMC algorithm (Carlin and Chib
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(1995) do that for a simpler and smaller model). However, it is not at all clear how one

could construct approximations to the complex shape posterior of the whole parameter

vector for the model considered here.

7.1 Prior Specification

The prior Π(θ1m|m)Π(m) is specified as follows. For j = 1, . . . ,m,

βj
iid∼ N(β,H−1

β ), µj
iid∼ N(µ,H−1

µ ),

νyj
iid∼ G(Aνy, Bνy), νxlj

iid∼ G(Aνxl, Bνxl), l = 1, . . . , dx,

(hy)
1/2 iid∼ G(Ahy, Bhy), (hxl)

1/2 iid∼ G(Ahxl, Bhxl), l = 1, . . . , dx, (16)

αj
iid∼ G(a/m, 1),

Π
(
m = k

)
∝ e−Am·k(log k)τ , τ ≥ 0, Am > 0,

where G(A,B) stands for a Gamma distribution with shape A and rate B. Some of these

prior functional form assumptions are made so that asymptotic results in Norets and Pati

(2017) apply. Specifically, a gamma prior for (hxl, hy) would not put sufficient mass in

the tails for the asymptotic results, and hence, the square of a gamma prior is used. The

division by m in G(a/m, 1) prior for αj is also required. The tail of the prior for m also

has to be essentially of the assumed form.

7.2 Overview of MCMC Algorithm

This subsection presents an overview of the MCMC algorithm for the conditional density

model. A complete description of the algorithm is provided in Appendix B. As is common

in the literature on MCMC for finite mixture models, I introduce latent mixture allocation
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variables (s1, . . . , sn) (Diebolt and Robert (1994)) to facilitate the simulation from blocks

of the Metropolis-within-Gibbs for given m: yi|xi, si,m, θ1m ∼ N((1;xi)
′βsi , (hyνysi)

−1)

and Π(si = j) = γj(xi;m, θ1m), where γj(xi;m, θ1m) is defined below (3). Then, Gibbs

sampler blocks for (si, βj, νyj) have standard distributions and are simulated directly.

The rest of the parameters are simulated by the Metropolis-within-Gibbs algorithm. The

Metropolis-within-Gibbs block for m described in Section 3 does not condition on the la-

tent mixture allocation variables. Therefore, the block for the mixture allocation variables

needs to be placed right after the block for m.

When the algorithm attempts to jump from m to m − 1 the mth component that

would be deleted in case of a successful jump is selected randomly from all the current

mixture components. This is essentially a random label switching that does not affect the

stationary distribution of the chain and helps the chain not to get stuck when the mth

component is important for explaining the data. More details are provided in Appendix

B.

7.3 Tests for Correctness of the Algorithm Design and Imple-

mentation

The simulator is implemented in Matlab. To check that the simulator is designed and

implemented correctly, I conduct the joint distribution tests proposed in Geweke (2004).

The tests are based on a comparison of the prior distribution and the output of a succes-

sive conditional simulator that simulates both data and parameters as follows. On each

iteration, the parameters are updated by the the posterior simulator given the current

data draw and then the new data draw is obtained from the likelihood conditional on the
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current parameter draw.

Table 1: Joint Distribution Tests

Parameter t-stat Parameter t-stat Parameter t-stat

β11 -2.19 µ11 -1.17 hx1 -0.17

β2
11 1.99 µ2

11 0.57 h2
x1 -0.28

β12 -0.04 µ12 -0.56 hx2 0.90

β2
12 0.03 µ2

12 0.85 h2
x2 0.85

β13 -1.60 µ13 -1.73 hx3 -0.37

β2
13 1.72 µ2

13 1.20 h2
x3 -0.38

β14 1.73 µ14 -0.02 hx4 -0.95

β2
14 1.75 µ2

14 -0.03 h2
x4 -1.41

β15 -0.05 νx11 -1.01 m -0.76

β2
15 -0.11 ν2

x11 -1.39 m2 -0.81

hy -0.95 νx12 0.37 1{m = 1} 0.67

h2
y -0.80 ν2

x12 0.65 1{m = 2) -0.53

νy1 -0.30 νx13 -0.14 1{m = 3) -0.55

ν2
y1 -0.07 ν2

x13 -0.08 1{m = 4) -0.36∑m
j=1 αj 0.49 νx14 -1.64 1{m = 5) -0.71

(
∑m

j=1 αj)
2 0.28 ν2

x14 -1.64 1{m = 6) -0.52

The resulting algorithm is a hybrid MCMC algorithm (or just a Gibbs sampler if direct

simulation rather than MCMC is used for posterior simulator) for exploring the joint prior

distribution of parameters and data. If the data and posterior simulators are correct then

draws from the successive conditional simulator should be consistent with the prior dis-

23



tribution, which can be checked by standard mean equality tests. Table 1 presents the

t-statistics from the mean equality tests for the parameters and their squares. As can

be seen from the table the hypotheses of mean equality are not rejected at conventional

significance levels for all but one parameter, which indicates that there are no errors in

simulator design and implementation (the tests did help to find and correct a few errors

at the development stage).

Figure 8 in Appendix C compares the exact prior probability mass function for m and

the probability mass function obtained from the successive conditional simulator. Figure

9 presents a trace plot of m.

7.4 Experiments on Simulated Data

This subsection describes the performance of the MCMC algorithm on simulated data

with different dimension of covariates. For a given dx, the covariates are generated from a

uniform distribution, xi = (xi1, . . . , xidx)
′ ∼ U [0, 1]dx . The conditional distribution of the

outcome is a mixture of two normal distributions with nonlinear means, variances, and

mixing probabilities.

yi|xi ∼ e−
√
xi1φ (·; Φ (ψ1(xi)) , 0.5ψ1(xi)) + (1− e−

√
xi1)φ (·; Φ (−ψ1(xi)) , 0.1ψ2(xi)) , (17)

where ψ1(xi) =
∑dx

k=1 xik/k
4, ψ2(xi) =

∑dx
k=1 x

2+k
ik /dx, φ(·;µ, σ) is a normal density with

mean µ and standard deviation σ, and Φ is standard normal cumulative distribution

function. The number of observations in each simulated dataset is 2000. The simulated

data for dx = 1 are shown in Figure 10 in Appendix C.

The average acceptance rates for m calculated from 100,000 MCMC iterations are

presented in Table 2. The corresponding MCMC trace plots are shown in Figure 11.
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Table 2: Acceptance rates

dx dim(θm) Acceptance Rate, %

1 6 0.38

4 15 0.19

7 24 0.25

10 33 0.04

As can be seen from the table, the acceptance rates tend to decline as the dimension of

θm increases. Nevertheless, the algorithm seems to provide reasonable descriptions of the

posterior distributions for m. A trace plot of the log likelihood evaluated at MCMC draws

of the parameters is shown in Figure 12.

7.5 Engel Curve Estimation

An Engel curve is a relationship between the fraction of income spent on a particular

good (or a category of goods) and the total income of a consumer (Lewbel (2008)). In

empirical economics, Engel curves are often assumed to be linear or quadratic up to

an additive error term. In this section, I estimate the density of the fraction of food

expenditure conditional on total income using data from Battistin and Nadai (2015).

The data consists of 2311 observations on individuals. Possible measurement errors and

instrumental variables specifications, which are considered in the literature on Engel curve

estimation, are ignored here. In this context, I evaluate performance of the MCMC

algorithm and also compare out-of-sample predictive performance of the Bayesian mixture

of experts, linear and quadratic normal regressions, and a cross-validated kernel estimator.

The prior hyperparameters in (16) in this estimation exercise are selected in an em-
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pirical Bayes fashion as follows. First, all the variables in the dataset are standardized

to have zero mean and unit variance. The prior mean for βj is set to the ordinary least

squares (OLS) estimate and the prior variance to the variance of the OLS estimator un-

der homoskedasticity multiplied by 103. The prior mean and variance for µj are set to

(0, 1) to match the sample mean and variance of the standardized covariates. To limit the

variation of component specific scale parameters and help mitigate their lack of likelihood

identification the hyperparameters of the Gamma priors for (νyj, νxjk) in (16) are chosen

so that they have mean 1 and variance 0.1 . The hyperparameters of the Gamma prior

for h
1/2
y are chosen so that it has the variance equal to 10 and the mean equal to the in-

verse of the standard error of regression in the OLS. The hyperparameters of the Gamma

prior for h
1/2
xk are chosen so that it has the variance equal to 10 and the mean equal to

1 (or, more generally, the inverse of the sample standard deviation of the corresponding

covariate). Finally, a = 8, Am = 1, and τ = 0. In the out of sample prediction exercises,

only the estimation part of the data (but not the prediction part) is used to compute

the hyperparameters as described above. The estimation results are not very sensitive to

moderate variations in prior hyperparameters around the values suggested by the empiri-

cal Bayes procedure; however, moving prior means away from corresponding data analogs

and reducing the prior variances can result in estimation results that are dominated by

such a strong prior.
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Figure 4: Data and estimated densities and means

Figure 4 shows the raw data and the estimated posterior means of the conditional densi-

ties and conditional expectations. Figure 5 shows the prior and the estimated posterior

probability mass functions for m.

Figure 5: Prior and posterior for m

Figures 6 and 7 show MCMC trace plots of m and the log likelihood evaluated at the
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parameter draws. The trace plot suggests that the algorithm converges. The average

acceptance rate for m in this MCMC run is 2.9% and the effective sample size is 330. A

desktop with a 3.5GHz processor and 32GB RAM takes about 5.4 seconds to perform 100

MCMC iterations.

Figure 6: MCMC trace plot for m

To compare the quality of out-of-sample predictions of the Bayesian mixture of experts

and classical parametric and kernel estimators, I conduct a Monte Carlo exercise. On each

iteration of the exercise, all the models are estimated on a randomly selected half of the

observations and the predictive densities implied by the estimated models are evaluated

on the observations not used in estimation.

Figure 7: Trace plot of log likelihood

The log predictive densities for each model averaged over 30 iterations are reported in

Table 3.
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Table 3: Predictive performance

Method Average of log predictive density

NP Bayes -1375

Kernel -1398

Linear -1444

Quadratic -1444

The length of MCMC runs for estimation of mixtures of experts in the Monte Carlo

experiment is 5000. The acceptance rates for these MCMC runs were between 2% and

7%. The kernel conditional density estimation with cross-validated bandwidth selection

(Hall et al. (2004)) was performed by R package np (Hayfield and Racine (2008)). The

nonparametric Bayesian model (NP Bayes in the table) outperforms the kernel estimator,

which in turn outperforms the linear and quadratic normal regressions. In line with the

asymptotic results of Norets and Pati (2017), this comparison of predictive performance

suggests that a mixture of variable number of experts is an attractive model for nonpara-

metric estimation of conditional densities. The MCMC algorithm proposed in this paper

makes Bayesian estimation of this model practical.

8 Conclusion

The main objective of this research project is to develop a feasible posterior simulator for

a theoretically attractive Bayesian nonparametric model for conditional densities based

on mixtures of variable number of experts (Norets and Pati (2017)). After extensive

experimentation with different proposals and methods, I have not managed to come up

29



with an alternative MCMC algorithm for this model with non-zero acceptance rates for

cross-dimensional moves. The success of the method in simulation experiments stimu-

lated my interest in its theoretical properties. The theoretical results developed in the

paper indeed show that the method is an approximation to an RJMCMC with a proposal

distribution that is optimal under the restriction of keeping the parameter values in the

smaller submodel unchanged when the cross-dimensional moves are attempted. It is worth

emphasizing that the restrictions under which the proposals are optimal and the use of

approximations to the optimal proposals are dictated by the feasibility of the method

implementation for the mixture of experts model. The proposed methodology should also

be useful for developing posterior simulators for other varying dimension models with a

nesting structure in which good proposals for the whole parameter vector are difficult to

construct.

A Appendix. Proofs and Auxiliary Results

A.1 Proof of Theorem 1

First, observe that the problem of finding π̃m that maximizes the conditional acceptance

rates can be reformulated as follows

max
g

∫
min

{
1,
c · f(z)

g(z)

}
g(z)dλ(z), (18)

where c ≥ 0, and g is restricted to be a density with respect to measure λ. For m∗ = m+1,

f(·) denotes p(θm+1|Y,m+1, θ1m) as a function of θm+1, g(·) denotes π̃m(θm+1|θ1m, Y ) as a

function of θm+1, λ denotes λm+1, and c = p(Y,m+1, θ1m)/p(Y,m, θ1m). For m∗ = m−1,
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f(·) denotes p(θm|Y,m, θ1m−1) as a function of θm, g(·) denotes π̃m−1(θm|θ1m−1, Y ) as a

function of θm, λ denotes λm, and c = p(Y,m, θ1m−1)/p(Y,m− 1, θ1m−1).

Since min{g(z), cf(z)} = (g(z) + cf(z))/2− |g(z)− cf(z)|/2 and
∫
g(z)dλ(z) = 1, the

problem in (18) is equivalent to

min
g

∫
|g(z)− cf(z)|dλ(z). (19)

For c > 1, any g∗ with g∗(z) ≤ cf(z) for (λ almost surely) all z solves (19). To see this

formally, consider g such that g(z) > cf(z) on Z+, λ(Z+) > 0, and g(z) ≤ cf(z) on

Z− = Z \Z+, where Z is the domain for f and g. Let us define g′(z) = cf(z) on Z+ and

g′(z) = g(z) + r · (cf(z)− g(z)) on Z−, where

r =

∫
Z+

(g(z)− cf(z))dλ(z)

/∫
Z−

(cf(z)− g(z))dλ(z).

Note that g′ is a density and r ∈ (0, 1) because
∫
Z+(g(z) − cf(z))dλ(z) −

∫
Z−

(cf(z) −

g(z))dλ(z) = 1− c < 0. Also, |g(z)− cf(z)| ≥ |g′(z)− cf(z)| with a strict inequality on a

set of λ positive measure. Thus, the integral in (19) evaluated at g is strictly larger than

the integral evaluated at g′ ≤ cf . For any g∗ ≤ cf ,
∫
|g∗(z)− cf(z)|dλ(z) = c− 1.

For c < 1, an analogous argument with g′(z) = cf(z) on Z−, g′(z) = cf(z)+r · (g(z)−

cf(z)) on Z+, and r =
∫

(g(z)− cf(z))dλ(z)/
∫
Z+(g(z)− cf(z))dλ(z), shows that any g∗

with g∗(z) ≥ cf(z) for (λ almost surely) all z solves (19). For c = 1, g∗ = f is obviously

the solution. Thus, g∗ = f solves (18), and it is a unique solution that does not depend

on c.
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A.2 Proof of Theorem 2

Let us define a transition kernel Q on ∪∞m=1{m} ×Θm−1 by

Q((m, θ1m−1),m′ × A′m′−1) = P ((m, θ1m−1),m′ × A′m′−1 ×Θm′), (20)

where A′m′−1 is a measurable subset of Θm′−1 and P is defined in (11) with dependence on π̃

not reflected in the notation for brevity (Q(π̃) is used below whenever explicit dependence

on π̃ is convenient). Note that P does not depend on θm as it starts from redrawing

θm|m, θ1m−1, Y , and Q is indeed a well defined transition kernel on ∪∞m=1{m} × Θm−1.

Note also that Q can be expressed as Q((m, θ1m−1),m′×A′m′−1) = Pθm ·P ((m, θ1m−1),m′×

A′m′−1 ×Θm′) as the multiplication by Pθm from the left does not affect the transition for

(m, θ1m−1). Pθm ·P is a palindromic combination of reversible kernels and, thus, reversible

(see Section A.3). Therefore, Lemma 1 applies and Q is a reversible transition kernel.

Next, let us show that Q(π̃∗) � Q(π̃), where “domination off diagonal” relation,

“�”, is defined in Section A.4. Since Pθ1m−1Pθm does not depend on π̃, we can consider

only Q1 = Pmθ1mPθm , and it suffices to show that for any measurable sets Aj ⊂ Θj,

j ∈ {m−2,m}, Q1((m, θ1m−1), {j+1}×Aj) is maximized when π̃ = π̃? (for any measurable

set Am−1 ⊂ Θm−1, Q1((m, θ1m−1), {m} × Am−1 \ {θ1m−1}) = 0 and j = m − 1 does not

need to be considered). For j = m, Q1((m, θ1m−1), {m+ 1} × Am) is equal

1

2

∫
Am(θ1m−1)

Pr(m+ 1 is accepted|m, θ1m)Π(dθm|m, θ1m−1, Y ),

where Am(θ1m−1) = {θm ∈ Θm : (θ1m−1, θm) ∈ Am} and Pr(m + 1 is accepted|m, θ1m) is

given by (9). By Theorem 1, (9) is maximized at π?, and, thus, Q1((m, θ1m−1), {m+ 1}×

Am) is maximized at π? as well. For j = m− 2, Q1((m, θ1m−1), {m− 1}×Am−2) is equal

1Am−2(θ1m−2)
1

2

∫
Am(θ1m−1)

Pr(m− 1 is accepted|m, θ1m)Π(dθm|m, θ1m−1, Y ),
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where the integral is equal to (10). By Theorem 1, (10) is maximized at π?, and, thus,

Q1((m, θ1m−1), {m− 1} × Am−2) is maximized at π? as well.

Since Q(π̃) is reversible for any π̃ and Q(π̃∗) � Q(π̃), Peskun-Tierney theorem from

Section A.4 delivers v(g,Q(π̃?)) ≤ v(g,Q(π̃)) for any g ∈ L that depends on (m, θ1m−1)

but not θm. The claim of the theorem follows since v(g,Q(π̃)) = v(g, P (π̃)) for such g.

A.3 Standard Facts About Reversibility

Transition kernel P is reversible with respect to π if π(dx)P (x, dy) = π(dy)P (y, dx). The

following elementary MCMC updates are reversible: a Metropolis-Hastings update on a

part of the parameter vector, a Gibbs sampler block, and a Metropolis-Hastings-Green

update. A mixture of reversible transition kernels is reversible. A palindromic combina-

tion of reversible transition kernels is reversible, for example, P1P2P1 is reversible when

P1 and P2 are reversible. Combinations of reversible transition kernels such as a Gibbs

sampler with a fixed order of blocks are not reversible in general. A random sequence

scan Gibbs or Metropolis-within-Gibbs sampler is reversible. A detailed presentation of

these facts can be found in Geyer (2005).

A.4 Peskun-Tierney Theorem

The earliest fundamental result in the literature on optimal MCMC is due to Peskun

(1973), who shows that increasing the off-diagonal elements in a reversible Markov tran-

sition matrix with a fixed stationary distribution reduces v(g, P ). Tierney (1998) extends

this result to Markov chains on general state space. For transition kernels P1 and P2

with invariant distribution π, P1 is said to dominate P2 off the diagonal, P1 � P2, if
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P1(x,A \ {x}) ≥ P2(x,A \ {x}) for any measurable A and π almost all x. Theorem 4 in

Tierney (1998): When P1 and P2 are reversible, P1 � P2 implies v(g, P1) ≤ v(g, P2).

A.5 Auxiliary Results

Lemma 1. If a transition kernel P on ∪∞m=1{m} ×Θm is reversible with respect to some

π and P does not depend on θm, then Q((m, θ1m−1),m′ × A′m′−1) = P ((m, θ1m−1),m′ ×

A′m′−1 × Θm) is a reversible transition kernel on ∪∞m=1{m} × Θm−1 with respect to

π(m, θ1m−1) =
∫
π(m, θ1m−1, dθm).

Proof. The reversibility of P is equivalent to

∫
{m}×A

P ((m, θ1m−1),m′ × A′)dπ(m, θ1m) =

∫
{m′}×A′

P ((m′, θ′1m′−1),m× A)dπ(m′, θ′1m′).

Setting A = Am−1 × Θm and A′ = A′m′−1 × Θm′ immediately implies the reversibility of

Q.

B Appendix. MCMC Algorithm for Mixture of Ex-

perts Model

This Appendix presents a detailed description of the MCMC algorithm for the mixture of

experts model introduced in Section 2.1. The likelihood function for this model is given

by

p(Y |X;m, θ1m) =
n∏
i=1

p(yi|xi;m, θ1m)
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where p(yi|xi;m, θ1m) is defined in (3). As mentioned in the algorithm overview in Section

7.2, it is convenient to introduce latent mixture allocation variables s = (s1, . . . , sn) with

p(Y, s|X;m, θ1m) =
n∏
i=1

p(yi|si, xi;m, θ1m)p(si|xi;m, θ1m) (21)

=
n∏
i=1

φ
(
yi, x

′
iβsi , (hy · νysi)−1

)
γsi(xi;m, θ1m).

The prior distribution Π(θ1m|m)Π(m) is specified in Section 7.1. To pin down the param-

eterization and transformations of the Gamma distributions note that the prior density

of νyj is proportional to

ν
Aνy−1

yj exp{−Bνyνyj}

and the prior density of hy is proportional to

h
Ahy/2−1
y exp{−Bhyh

1/2
y }.

Next, I present Metropolis-within-Gibbs blocks for all parameters and latent variables.

Metropolis-within-Gibbs blocks

Block for si

For each i = 1, . . . , n, the latent mixture allocation variable si has a multinomial distri-

bution on (1, . . . ,m) with the probabilities proportional to

Pr(si = j|Y,X,m, θ1m, s−i) ∝ γj(xi;m, θ1m) · φ
(
yi, x

′
iβj, (hy · νyj)−1

)
, j = 1, . . . ,m.

Block for βj

For j = 1, . . . ,m,

p (βj|Y, s,X,m, θ1m \ {βj}) ∝ p(Y, s|X;m, θ1m)Π(θ1m|m)
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and with the normal conditionally conjugate prior it is also a normal distribution

N(β̄j, H̄
−1
βj ), with precision H̄βj = Hβ + hyνyj

∑
i: si=j

xix
′
i and mean β̄j = H̄−1

βj (Hββ +

hyνyj
∑

i: si=j
xiyi).

Block for νyj

For j = 1, . . . ,m,

p (νyj|Y, s,X,m, θ1m \ {νyj}) ∝ p(Y, s|X;m, θ1m)Π(θ1m|m)

and with the conditionally conjugate gamma prior, it is a gamma distribution

G(Āνyj, B̄νyj), where Āνyj = Aνy + 0.5
∑

i 1{si = j} and B̄νyj = Bνy + 0.5hy
∑

i: si=j
(yi −

x′iβj)
2.

Block for hy

The density of the Gibbs sampler block for hy satisfies

p (hy|Y, s,X,m, θ1m \ {hy}) ∝ p(Y, s|X;m, θ1m) · Π(θ1m|m)

∝ hn/2y exp{−0.5hy

n∑
i=1

(yi − x′iβsi)2νysi} · h
Ahy/2−1
y exp{−h1/2

y Bhy}. (22)

As described in Section 7.1, the prior for hy (h
1/2
y ∼ G(Ahy, Bhy)) is not conditionally con-

jugate, which is required for good asymptotic properties. Hence, I use Metropolis-within-

Gibbs step for this block. Specifically, the Metropolis-Hastings proposal distribution is

G(Āhy, B̄hy), with Āhy = (Aνy +n)/2 and B̄hy = 0.5
∑

i(yi− x′iβsi)2νysi , motivated by the

functional form of the likelihood part and the polynomial part of the prior in (22). A

proposed draw h∗y is accepted with probability min{1, exp(−Bhy((h
∗
y)

1/2 − (hy)
1/2))}.
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Blocks for hx, νxj, µj

Gibbs sampler block distributions for hx, νxj, and µj do not have a known form and can

only be evaluated up to a normalization constant. Hence, I use a random walk Metropolis-

Hastings within Gibbs for each of these blocks. For a block index b, θ1m = (θ1m,b, θ1m,−b)

and θ1m,b ∈ {hx, νxj, µj, j = 1, . . . ,m}. Then, for the current parameter draw θ1m and

latent variables s the proposal distribution for θ∗1m,b is N(θ1m,b, H(θ1m,b)
−1) centered at

the current value θ1m,b and the precision

H(θ1m,b) = − ∂2

∂θ1m,b∂θ′1m,b
log[p(Y, s|X,m, θ1m)Π(θ1m|m)],

which is motivated by asymptotic normal approximations to the conditional posterior.

The acceptance probability is

min

{
1,
p(Y, s|X,m, θ∗1m,b, θ1m,−b)Π(θ∗1m,b, θ1m,−b|m)φ(θ1m,b; θ

∗
1m,b, H(θ∗1m,b)

−1)

p(Y, s|X,m, θ1m)Π(θ1m|m)φ(θ∗1m,b; θ1m,b, H(θ1m,b)−1)

}
,

where φ is the multivariate normal density. Note that the proposal precision in the

numerator, H(θ∗1m,b), needs to be recomputed at the proposed value θ∗1m,b. If H(θ1m,b)

is not positive definite I replace it by a diagonal matrix with the absolute values of the

second derivatives on the diagonal; this does not happen often in simulations.

If a proposed draw θ∗1m,b is outside of the parameter support (a negative component

in hx, for example), then it is automatically rejected as the prior density is zero at such

values; this does not happen often in simulations.

An alternative independence chain algorithm for this type of blocks with the normal

proposal centered at the conditional posterior mode found by a Newton method takes

more time but does not lead to any substantial reduction in serial correlation of MCMC

draws. Therefore, the described random walk approach is used in simulations.
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Block for αj

The simulation of (α1, . . . , αm) is performed in two steps: (i) simulate α̃ =

(α1/
∑m

j=1 αj, . . . , αm−1/
∑m

j=1 αj) and (ii) simulate
∑m

j=1 αj. The reason for this is that

the posterior of
∑m

j=1 αj is equal to its prior, G(a, 1), and the likelihood of the model

depends on (α1, . . . , αm) only through its normalized version α̃. Therefore, to simulate

(α1, . . . , αm), I first simulate α̃ from the random walk within Gibbs algorithm described

above for (hx, νxj, µj), and then simulate
∑m

j=1 αj from G(a, 1). Note that the implied

prior for α̃ that is used in the the random walk within Gibbs algorithm is equal to the

Dirichlet distribution with the parameter (a/m, . . . , a/m).

Block for Label Switching

Simulate j1 from a uniform distribution on {1, . . . ,m} and set θtemp = θm, θm = θj1 , and

θj1 = θtemp.

The purpose of this block is to ameliorate the well known problem of insufficient label

switching in MCMC algorithms for mixture models (Geweke (2007)) and how it interacts

with jumps from m to m − 1 here. For a fixed m, an MCMC algorithm can get stuck

in one of the m! symmetric posterior modes and produce little if any label switching. If

the mth mixture component happens to be very important one then the algorithm is very

unlikely to ever jump from m to m−1. Random label switching simply resolves this issue.

Note that a random permutation of the labels is a Markov transition that preserves the

target posterior distribution as the likelihood and prior are invariant to label switching. If

this permutation is performed so that the resulting Markov transition is reversible (e.g.,

as described above, or more generally the distribution on permutations should be such
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that any permutation has the same probability as its inverse), then, the theoretical results

presented in the paper are not affected in any way if such a reversible Markov transition

is added to the algorithm in a reversible fashion.

Block for m

As mentioned in Section 7.2, mixture allocation variables si, i = 1, . . . , n are marginalized

out and not present in the conditioning set of block for m.

The proposed draw m∗ is equal to m + 1 or m − 1 with probabilities (1/2, 1/2). For

m∗ = m+ 1, θm+1 is simulated from π̃m(θm+1|θ1m, Y ), which is described precisely below,

and m∗ is accepted with probability min{1, α(m+ 1,m)}, where

α(m+ 1,m) =
p(Y |m+ 1, θ1m+1)Π(θ1m+1|m+ 1)Π(m+ 1)

p(Y |m, θ1m)Π(θ1m|m)Π(m)π̃m(θm+1|θ1m, Y )
.

Proposed m∗ = m− 1 is accepted with probability min{1, α(m− 1,m)}, where

α(m− 1,m) =
p(Y |m− 1, θ1m−1)Π(θ1m−1|m− 1)Π(m− 1)π̃m−1(θm|θ1m−1, Y )

p(Y |m, θ1m)Π(θ1m|m)Π(m)
.

When m = 1, m∗ = m−1 is immediately rejected as the prior probability of m∗ = 0 is zero

and it enters the numerator of the acceptance probability. The approximately optimal

proposal, π̃m(θm+1|θ1m, Y ), is constructed as follows. First, the mode of the conditional

posterior, θ̄m+1 = (µ̄m+1, β̄m+1, ν̄ym+1, ν̄xm+1, ᾱm+1), is obtained

θ̄m+1 = arg max
θm+1

log[p(Y |X,m+ 1, θ1m+1)Π(θ1m+1|m+ 1)].

The maximization is performed by a Newton method.

To increase the computation speed and avoid calculations of cross-derivatives, the

parameter subvectors µm+1, βm+1, νym+1, νxm+1k, and αm+1 are set to be indepen-

dent in the proposal. The proposal variance for each parameter subvector θm+1,b ∈
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{µm+1, βm+1, νym+1, ᾱm+1, ν̄xm+1k, k = 1, . . . , dx} is obtained from the Hessians

Vm+1,b = −

[
∂2

∂θm+1,b∂θ′m+1,b

log[p(Y |X,m+ 1, θ1m+1)Π(θ1m+1|m+ 1)]

∣∣∣∣
θm+1=θ̄m+1

]−1

.

For θm+1,b ∈ {µm+1, βm+1}, the proposal is normal with mean θ̄m+1,b and variance Vm+1,b.

For θm+1,b ∈ {νym+1, ᾱm+1, ν̄xm+1k, k = 1, . . . , dx}, the proposal is Gamma with mode

θ̄m+1,b and variance Vm+1,b (using a truncated normal instead of a Gamma proposal for

these parameters lead to a slightly worse algorithm performance).

The Newton method for finding the mode θ̄m+1 sets cross subvector derivatives

∂2/∂θm+1,b1∂θ
′
m+1,b2 to zero for b1 6= b2, so that the Hessian is block diagonal.

C Appendix. Additional Figures

C.1 Figures for Joint Distribution tests
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Figure 8: Probability Mass Function for m
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Figure 9: Trace Plot for m

C.2 Figures for Simulated Data Experiments
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Figure 10: Simulated data, dx = 1
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Figure 11: Trace plots for m, simulated data
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Figure 12: Trace plots for log likelihood, simulated data, dx = 1
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