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1 Independence of the Axioms in Theorem 1

EFF: Consider a set X with four elements, let’s say X = {a, b, c, d}, and let C be the
preference-based bargaining solution that coincides with Cf , except as follows: C�(X) =
Cf
�(X)∪{x}, for all x ∈ X and all �∈ L(X)×L(X) such that �1 and �2 are completely

opposite on X \ {x}, and x is Pareto dominated by either the �1-optimal element or the
�2-optimal element, but by no other element of X. For instance, C�∗(X) = {a, b, c},
while Cf

�∗(X) = {b, c}, when b �∗
1 a �∗

1 c �∗
1 d and d �∗

2 c �∗
2 b �∗

2 a. The modification
thus amounts to add some options to the fallback solution in some cases, and will satisfy
RA a fortiori. By construction, C is regular, but violates EFF. ATT does not apply in
those cases where C is different from Cf (because the Pareto dominated option falls below
an option that is not chosen in the triplet obtained by deleting that Pareto dominated
option), and hence C satisfies it (since Cf does). It is straightfoward to check NBC.
Finally, SYM is satisfied because Cf satisfies it, and a Pareto dominated option is never
selected out of any triplet.

ATT: Consider the fallback solution applied only to the set of Pareto efficient alternatives,
C�(S) = Cf

�[EFF�(S)], where

EFF�(S) = {x ∈ S | for all y ∈ S, x �i y for some i ∈ {1, 2}} (1)

Note that the fallback solution is applied here to a subset of options, whose score is
unaffected by dominated elements. Hence, C� violates ATT. It is straightforward to
verify that C� is regular and satisfies NBC, RA, EFF, EX and IPUA. To see that it also
satisfies SYM, suppose x, y ∈ C�(S) but x /∈ C�(S\{z}) for some z ∈ S\{x, y}. Then
z ∈ EFF�(S). Let T ≡ EFF�(S), then x, y ∈ Cf

�(T ) but x /∈ Cf
�(T\{z}) for some
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z ∈ T\{x, y}. Then by SYM, y /∈ Cf
�(T\{z′}) for some z′ ∈ T\{x, y}, which implies that

y /∈ C�(S\{z′}).
NBC: Consider the analogue of the Borda rule in our setting:

C�(S) = arg max
x∈S

[s1(x, S,�) + s2(x, S,�)],

for each subset S of X. It is straightforward to check that this defines a regular preference-
based bargaining solution that satisfies EFF and ATT. It violates NBC. For instance, it
does not refine the set of Pareto efficient options when the two preferences are strict
opposite to each others. It remains to show that the solution satisfies both RA and
SYM. Since it satisfies EFF, the sum of the scores must decrease by at least one point for
each option that is chosen, when removing x from the original problem S. Any element
of C�(S) such that the sum of the scores decreases by exactly one point when removing
x clearly belongs to C�(S \ {x}). Hence we must consider the case where the sum of
the scores decreases by two points, for each element of C�(S). This implies that x is
Pareto dominated by some elements of S, and the set of Pareto efficient options remains
unchanged when removing x. The sum of the scores of any element of the Pareto frontier
decreases by at least one point when removing x, and hence C�(S) ⊆ C�(S\{x}), and we
are done proving RA. For SYM, suppose on the contrary that one can find x, y ∈ C�(S)
and z ∈ S \ {x, y} such that x 6∈ C�(S \ {z}) and y ∈ C�(S \ {z}). Both x and y being
Pareto efficient in S, it must be that the sum of the scores decreases by at least one
point for both of them when removing z. Since y remains chosen, but not x, it must
be that the sum of the scores of x decreases by two points while the sum of the scores
of y decreases by exactly one point. In other words, x Pareto dominates z, but y does
not Pareto dominates z. It is easy to check that one would get a contradiction with
x, y ∈ C�(S) if there does not exist z′ ∈ S that is Pareto dominated by y, but not by x.
For any such z′, we’ll have y 6∈ C�(S \ {z′}), and we are done proving SYM.

RA: Let CLf be the lexicographic refinement of the fallback solution,

CLf
�(S) = {x ∈ Cf

�(S) | si(x, S,�) ≥ si(y, S,�) ∀y ∈ Cf
�(S)},

for each S ⊆ X, amd each �∈ L(X) × L(X). It is easy to check that CLf inherits
the properties of regularity, EFF, ATT, and NBC from Cf . To see that it violates
RA, consider S = {a, b, c, d} and the preference pair �∗ that give rise to the following
ranking on S: b �∗

1 a �∗
1 c �∗

1 d and d �∗
2 c �∗

2 b �∗
2 a. Then CLf

�∗(S) = {b} while

CLf
�∗(X\{a}) = {c}. All what remains is to check SYM. Suppose that x, y ∈ CLf

�(S)

and that there exists z ∈ S \ {x, y} such that x 6∈ CLf
�(S \ {z}). This implies that

x, y ∈ Cf
�(S). If there exists z ∈ S \ {x, y} such that x 6∈ Cf

�(S \ {z}), then there exists
z′ ∈ S \{x, y} such that y 6∈ Cf

�(S \{z′}), by SYM. If there exists z′ ∈ S \{x, y} such that
y 6∈ Cf

�(S\{z′}), then y 6∈ CLf
�(S\{z′}), as desired, since CLf refines Cf . Hence the last

case that could lead to a possible violation of SYM for CLf is when x, y ∈ Cf (S \ {z}),
for all z ∈ S \{x, y}. But we know from Lemma 1 that this configuration of choice for Cf

is possible only if x � z and y � z, for all z ∈ S \ {x, y}. In such cases, it is impossible
to have x 6∈ CLf

�(S \ {z}), and we are done proving SYM.
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SYM: Consider a set X with five elements, let’s say X = {a, b, c, d, e}, and let C be the
preference-based bargaining solution that coincides with Cf , except as follows: C�(X) =
Cf
�(X \{x}), for all x ∈ X and all �∈ L(X)×L(X) such that �1 and �2 are completely

opposite on X \ {x}, and x is Pareto dominated by either the �1-optimal element or
the �2-optimal element, but by no other element of X. For instance, C�∗(X) = {c, d},
while Cf

�∗(X) = {c}, when b �∗
1 a �∗

1 c �∗
1 d �∗

1 e and e �∗
2 d �∗

2 c �∗
2 b �∗

2 a. The
modification thus amounts to add some options to the fallback solution in some cases,
and will satisfy RA a fortiori. By construction, C is regular and satisfies EFF. ATT does
not apply in those cases where C is different from Cf (because the Pareto dominated
option falls below an option that is not chosen in the quadruplet obtained by deleting
that Pareto dominated option), and hence C satisfies it (since Cf does). Finally, SYM is
violated. For instance, C�∗(X) = {c, d}, c is selected from any quadruple that includes
it, but d /∈ C�∗(X\{e}).

2 Independence of the Axioms in Theorem 2

EFF: Consider the choice correspondence C�∗ introduced when showing that EFF does
not follow from the other axioms in Theorem 1. A similar argument implies that C�∗

satisfies the current versions of ATT, NBC, RA, and SYM, but violates EFF. EC and
PC are satisfied since C�∗ coincides with the fallback solution on pairs and triplets. OC
does not apply, and is thus satisfied trivially.

ATT: Let � be a pair of linear orderings on X satisfying that there exists at least one
pair of elements, x, y ∈ X such that x � y. Define C(S) be a choice correspondence
defined as the fallback solution applied only to the set of �-Pareto efficient alternatives
in S, C(S) = Cf

�[EFF�(S)], where EFF�(S) is defined in (1). We’ve already shown
that this choice correspondence violates ATT, while satisfying NBC, RA, EFF and SYM.
C({x, y}) = {x} and C({y, z}) = {y} imply that x � y and y � z, which in turn implies
that x � z, and hence, C({x, z}) = {x}. This verifies PC. If the choice out of any pair
in {x, y, z} is the pair itself, then EFF�({x, y, z}) = {x, y, z}. Since Cf

�({x, y, z}) is a
singleton, so is C({x, y, z}), which verifies EC. Suppose the choice out of any pair in
{x, y, z} is the pair itself and C({x, y, z}) = {y}. Then both individuals must rank y in
between x and z. If C({w, x, y, z}) = {w}, then w cannot be Pareto dominated by any
of the elements. It is easy to check that, if w does not Pareto dominate y, then y also
belongs to C({x, y, z, w}), a contradiction. Hence, it must be that w � y, confirming
OC.

NBC: Consider two orderings �1 and �2 that are opposite on X: x �1 y if and only
if y �2 x. Let then C be the choice correspondence defined as follows: C(S) = Cf

�(S)
if S has exactly three elements, and C(S) = S otherwise. C satisfies EFF and ATT
trivially since no two elements are Pareto comparable under �. NBC is clearly violated
in sets with at least four elements. C is larger than the fallback solution applied to �,
and hence C satisfies RA. SYM are trivially satisfied when applied to any set whose
cardinality is not equal to four. For any element in a quadruplet, there exists a triplet
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where that element is available, yet not selected, and hence SYM is verified. PC and EC
are satisfied since C coincides with the fallback on pairs and triplets. OC does not apply
since C never selects a singleton in quadruplets.

RA: As in the previous example, two orderings �1 and �2 that are opposite on X.
Inspired by Masatlioglu et al. (2009), suppose that the decision maker can pay attention
to at most five options. Formally, he has an attention filter α : P (X) → P (X): α(S) ⊂ S,
for all S ⊆ X such that |α(S)| = min{5, |S|} and x ∈ α(T ) if x ∈ T ⊆ S. We will assume
in addition that, if x and y belong to α(S), then there does not exist z ∈ S\α(S) that falls
in between x and y according to � (it is easy to construct various attention filters with
this property). Let then C(S) = Cf

�(α(S)). EFF and ATT are both satisfied because
the choice out of any pair is the pair itself. EC is satisfied because the choice out of any
triplet is a singleton. NBC is satisfied because of the second property we imposed on the
attention filter. OC is satisfied because there is no singleton choice out of quadruplets.
PC is satisfied because the choice out of any pair is the pair itself. If C(S) contains
two elements, then it must be that S contains at most four elements, in which case C
coincides with the fallback, and hence C satisfies SYM. Finally, let’s check that C violates
RA. Indeed, let S be a set that contains six elements. Let y be the element of S that
does not belong to α(S). Let i be such that y is better than the element selected in S
for �i. Let then z ∈ α(S) be an option that is worse than the element selected in S for
�i. It is easy to check that the element selected in S \ {z} is different from the element
selected in S, thereby showing that RA is violated.

SYM: Consider the choice correspondence C�∗ introduced when showing that SYM does
not follow from the other axioms in Theorem 1. A similar argument implies that C�∗

satisfies the current versions of EFF, ATT, NBC, and RA, but violates SYM. PC, EC
and OC are satisfied since C�∗ coincides with the fallback solution on pairs and triplets.

PC: Let P be a strict complete and transitive ordering on X, and let C be the choice
obtained by maximizing this ordering, except that C({x, y}) = {x, y}, where x is the
best element in X and y is the worst element in X. It is easy to check that C satisfies
all the axioms of Theorem 2, except PC.

EC: Consider the analogue of the Borda rule introduced in the previous section to show
that NBC is not implied by the other axioms in Theorem 1. We already proved that
it satifies EFF, ATT, NBC, RA, and SYM, for any given pair of preferences. PC is
straightforward to check, and OC never applies because the choice out of any triplet is
the triplet itself if no two elements are Pareto comparable. For the same reason, the
choice correspondence will violate EC, as soon as there are at least three elements that
are not Pareto comparable.

OC: See the two examples given before introducing OC.

3 Proof of Proposition 1

EFF and PC follow from the definition of the fallback bargaining solution. As already
observed in the main text, the case where the choice out of any pair in {x, y, z} is the
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pair itself, and the choice out of {x, y, z} is {z}, is consistent with fallback bargaining
only if some orderings are of the form x �i z �i y, some other orderings are of the form
y �j z �j x, and any other ordering (if any) places z above both x and y. So indeed,
if both x and y belong to the fallback solution of some problem S, there cannot exist a
z as claimed in NBC, as it would obtain a minimal score that is strictly larger than the
minimal score of both x and y.

We now establish property 1. If y ∈ C(S), then

min
i=1,...n

si(y,�, S) ≥ min
i=1,...n

si(z,�, S),

for all z ∈ S. On the other hand, C({x, y}) = {y} implies that y �i x, for all i. Hence

min
i=1,...n

si(y,�, S ∪ {x}) = min
i=1,...n

si(z,�, S) + 1.

At the same time,

min
i=1,...n

si(z,�, S ∪ {x}) ≤ min
i=1,...n

si(z,�, S) + 1,

and hence y ∈ C(S ∪ {x}), as desired.
We now move to the first part of property 2, which will also imply RA. For any

z ∈ C(S) \ {x} and any j ∈ arg mini=1,...n si(z,�, S), we must have x �j z, because
x ∈ C(S). Hence

min
i=1,...n

si(z,�, S \ {x}) = min
i=1,...n

si(z,�, S),

while the minimal score of the other elements of S does not increase, and hence z ∈
C(S \ {x}). As for the second part of property 2, suppose that x 6∈ C(S) and that there
exists y ∈ C(S \ {x}) \ C(S). Let z ∈ C(S). The fact that y 6∈ C(S) implies that the
minimal score of y in S is at least one point smaller than the minimal score of z in S.
Since, in addition, y ∈ C(S \ {x}), it must be that the minimal score of y in S is exactly
one point smaller than the minimal score of z in S, as must be the minimal score of z in
S \ {x}, and hence z ∈ C(S \ {x}), as desired.

We conclude the proof of Proposition 1 by establishing property 3. As already oberved
earlier, the choice pattern on {a, b, c} implies that some orderings are of the form a �i

b �i c, some other orderings are of the form c �j b �j a, and any other ordering (if any)
places b above both a and c. Since d is chosen uniquely out of the quadruplet, it must be
that d is ranked first or second best out of {a, b, c, d} in all ranking (otherwise b would
also be chosen), and it is easy to conclude that d is selected uniquely out of any triplet
that contains it. �
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