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Abstract

We study the testable implications of serial dictatorship, stable many-to-one
matchings, and the core of housing markets. We show that serial dictator-
ship is easy to test, and explain how elements of the power ranking between
agents can be identified. Stability is also easy to test for an interesting class
of many-to-one matching problems, and is tightly related to serial dictator-
ship. We provide an insightful characterization of the core of Shapley and
Scarf (1974)’s housing markets using revealed top-trading cycles. This char-
acterization proves useful in many examples, but is also used to prove that
testing the core is generally NP-hard.
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1 Introduction

Rationality, as captured by the maximization of a preference ordering, is a

building block of most economic models. This creates a difficulty for testing:

while outcomes may be observable, preferences are not. The testable impli-

cations of a model, or its empirical content, describe patterns of outcomes

that can arise under the theory for some preference profile. For instance, the

Strong Axiom of Revealed Preference (SARP) provides the empirical content

of rational choice with a single decision maker. Building on this classic result,

this paper studies simple models of interactive decision making: serial dicta-

torship, stable many-to-one matching, and the core/competitive equilibrium

of housing markets.1

Under serial dictatorship, a collective bounty of indivisible objects have

to be allocated to participants, each of whom needs at most one object.

Who consumes what is determined through the combination of power and

preferences: starting with the most powerful person and then moving down

the ladder, each participant picks her most preferred object (or none if she

prefers) from among the remaining ones. As coined by Piccione and Rubin-

stein (2007), this is the economics of the jungle.

Shapley and Scarf’s (1974) housing markets also study the assignment

of indivisible objects to participants with unit demand. A first difference is

that housing markets come with property rights. Second, rather than objects

being allocated through the exercise of power, houses are allocated through

voluntary trades. Thus, no group of participants should be better off by

trading among themselves. This corresponds to the classic core solution,

1Other works on testable implications in interactive settings include Brown and Matzkin
(1996) on general equilibrium, Sprumont (2000) on Nash equilibrium and Pareto efficiency,
Ray and Zhou (2001) on backwards induction, Echenique (2008) on stable matchings
(which we expand upon later), Forges and Minelli (2009) on Nash equilibrium in market
games, Carvajal, Deb, Fenske and Quah (2013) on Cournot oligopoly, and Chambers and
Echenique (2014) on Nash bargaining.
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which also happens to coincide with the Walrasian equilibrium.2

A third setting of interest is two-sided matching, in which participants

are divided in two groups (e.g. firms and workers in a job market). Instead

of assigning objects to participants, the problem is to match participants

on one side of the market to participants on the other side. In many-to-

one markets, participants on at least one side of the market do not want

to be matched (or simply cannot be matched) to more than one participant

on the other side. For instance, exclusivity clauses may prevent a full-time

employee from working for another firm. While we focus on the job market

as an application, there are many others: a student might be forbidden to

enroll in multiple colleges at the same time, it may be illegal to be married

to more than one person at the same time, etc. Once again, we will focus on

the core, which also coincides with the set of stable matchings.

Our results characterizing the testable implications of these settings build

on the general methodology of de Clippel and Rozen (2018). They introduce

the concept of acyclic satisfiability as a natural extension of SARP. Quite

simply, a collection of restrictions on a relation is acyclically satisfiable if

there is an acyclic relation satisfying them. Acyclic satisfiability boils down

to SARP when restrictions take the form of simple comparison (e.g. a must

be ranked above b). For theories other than rational choice, the data often

reveals more complex restrictions about an underlying ordering (e.g. a prefer-

ence ordering that the decision maker imperfectly maximizes). For instance,

a choice pattern may reveal that a is inferior to either b or c. This restricts

the upper contour set of a, by requiring that it intersects {b, c}. Using a

simple enumeration procedure, testing acyclic satisfiability is comparable to

testing SARP when facing only upper-contour set restrictions. By contrast,

testing acyclic satisfiability becomes NP-hard when allowing for mixed sets

of restrictions, with some pertaining to upper-contour sets, and others to

lower-contour sets.

2Preferences are assumed to be strict throughout the paper, hence the equivalence.
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While de Clippel and Rozen (2018) apply these ideas to theories of bounded

rationality for a single decision maker, this paper shows that they also prove

useful for testing theories of interactive decision making with rational par-

ticipants. Under serial dictatorship, we use observed assignments of objects

to infer restrictions on the underlying power relation. To gain some intu-

ition, suppose we conjecture that i is the most powerful individual. Then her

assigned objects are systematically her most preferred. If the data reveals

that this is impossible (as it would lead to a violation of SARP for i), then

one must conclude that at least one other individual is more powerful than

i. This corresponds to an upper-contour set restriction on the underlying

power relation. We extend this reasoning in Section 2, and show that acyclic

satisfiability of restrictions such as these captures the empirical content of

serial dictatorship. With all restrictions pertaining to upper-contour sets,

testing can be performed using a simple enumeration procedure.

Building on Echenique (2008), the work of Kalyanaraman and Umans

(2008) establishes that testing stability in matching is NP-hard (even for the

case of one-to-one matching). By contrast, when studying stable many-to-

one matchings in Section 3, we use our serial-dictatorship result to provide

an insightful and tractable testing procedure when all firms are conjectured

to share the same ranking over workers.3 Indeed, the set of stable matchings

corresponds in that case to the outcome of serial dictatorship applied to

workers, with firms as objects and the power relation given by the firms’

common (unknown) ranking of workers.

In Section 4, we characterize the testable implications of core compat-

ibility in housing markets by exploiting the well-known fact that the core

coincides with the outcome of Gale’s top-trading-cycle algorithm (Shapley

3Though restrictive, such an assumption is not uncommon. In fact, it is sometimes
assumed that agents on each side of the market share a common preference, thereby having
an objective ranking of the firms in addition to an objective ranking of the workers. In
that case, a stable matching is assortative, with the best workers employed in the best
firms.
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and Scarf, 1974). In a nutshell, one must find a way to rank revealed trading

cycles in each observation of the dataset. By consuming a house h, a partic-

ipant not only reveals that she prefers h over all other houses in her trading

cycle, but also over all houses appearing in later cycles. Core compatibility is

equivalent to verifying SARP for the individual revealed preferences induced

in this way. While simplifying matters greatly, one must still explore all the

possible ways to rank revealed trading cycles, which can be demanding. Is

there a much more efficient way to proceed? While the test can be refined

marginally, we prove that there is no hope to do much better. Indeed, we

establish that testing core compatibility is NP-hard, by showing that the

problem is reducible in polynomial time to de Clippel and Rozen (2018)’s

NP-hard problem of testing acyclic satisfiability of mixed sets of restrictions.

2 Serial Dictatorship

There is a group I of individuals, and a set X of conceivable objects, which are

assumed to be distinct and indivisible. An assignment problem is described

by the subset S ⊆ X of objects to assign. A feasible assignment for S is a

vector (xi)i∈I whose components each belong to S∗ ≡ S∪{∅}, and which does

not assign the same object to two different individuals; that is, if xi = xj

for some i 6= j, then xi = xj = ∅. The symbol ∅ represent the absence

of consumption. A consumption function c associates to each assignment

problem S a feasible allocation c(S) for S.

Under Serial Dictatorship, individuals are endowed with preference or-

derings (�i)i∈I on X ∪ {∅}, and are themselves ranked according to a power

ordering �p. Consumption is determined by first letting the most powerful

individual pick her preferred option in S∗; then letting the second-most pow-

erful individual pick her preferred option among those that remain; and so on
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so forth. Formally, c(S) is defined by induction using the following formula:

ci(S) = arg max
�i

Ai(S) ∪ {∅},

where

Ai(S) = {x ∈ S | @j with j �p i and x = cj(S)}

represents the set of objects available to individual i after the more powerful

individuals have made their consumption decisions. An individual might not

consume an object, either because she prefers not to consume, or because

there are too few objects to go around.

A dataset D is a collection of assignment problems, and an observed

consumption function cobs associating to each allocation problem S ∈ D
a feasible allocation cobs(S) for S. The observed consumption function is

consistent with serial dictatorship if there exists a consumption function c

under that theory such that cobs(S) = c(S) for all S ∈ D.

We apply de Clippel and Rozen’s (2018) testing methodology by figur-

ing out what key information one may infer about the power ordering from

observed consumption. Consider a group G of individuals, and i one of its

members. As cobs is vector-valued, let cobs,i(S) denote the object received

by i under the observed assignment problem S. If i is most powerful within

G, then her choice in each observed assignment problem S ∈ D must be

consistent with maximizing a preference given the objects remaining once

those allocated to individuals outside of G have been removed. Otherwise,

she would not be the most powerful individual in G.

Formalizing this idea, for each group G and assignment problem S, define

S∗(G,S) = {x ∈ S | @j ∈ I \G : cobs,j(S) = x} ∪ {∅}.

Then, let RSD(cobs) denote the following collection of restrictions on the

power relation: for each combination (G, i) with G ⊆ I and i ∈ G, if there is
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a SARP violation4 in the auxiliary data comprising the choice of cobs,i(S)

from S∗(G,S) for each S ∈ D, then there exists j ∈ G more powerful

than i. Clearly, consistency with Serial Dictatorship means there must exist

an acyclic relation that satisfies RSD(cobs) or, using de Clippel and Rozen

(2018)’s terminology, RSD(cobs) must be acyclically satisfiable. Indeed, the

restrictions are satisfied in that case by the underlying true power relation

over individuals.

Before describing how acyclic satisfiability of these restrictions can be

easily tested, we first establish that it encapsulates the empirical content of

serial dictatorship.

Proposition 1. The observed assignment function cobs is consistent with

serial dictatorship if and only if RSD(cobs) is acyclically satisfiable.

Proof. Necessity was established in the above paragraph. As for sufficiency,

suppose that there is an acyclic relation �p that satisfies the restrictions in

RSD(cobs). We can assume without loss of generality that �p is an ordering,

as satisfying restrictions is preserved under completion. For each individual

i, let G(i) be the set of individuals that are no more powerful than i:

G(i) = {j ∈ I|j = i or i �p j}.

Observe that the auxiliary data where i picks cobs,i(S) out of S∗(G(i), S) for

each S ∈ D satisfies SARP. Otherwise, RSD(cobs) contains a restrictions of

the form ‘some j ∈ G(i) is more powerful than i’, which cannot be since �p

violates that restriction. Let then �i be an ordering that is consistent with

the revealed preferences arising from this auxiliary data, that is, such that

cobs,i(S) �i x, for all x ∈ S∗(G(i), S) and each S ∈ D. To conclude the proof,

we check that the assignment function generated by the power relation �p

4SARP stands for the classic Strong Axiom of Revealed Preference. Violating it means
that Samuelson’s revealed preference associated to the auxiliary data is cyclic: there exists
a sequence (x1, . . . , xK) of objects in S∗ such that xk = cobs,i(S

k) and x(k+1)modK ∈
S∗(G,Sk) for each k = 1, . . . ,K.
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and the preference profile (�i)i∈I coincides with cobs(S), for each S ∈ D.

Indeed, if the object x ∈ S has not been claimed by any more powerful

individual (that is, x 6= cobs,j(S) for all j �p i), then x ∈ S∗(G(i), S) and

cobs,i(S) �i x, by construction of �i.

Proposition 1 is based on the idea that we must be able to construct a

power ranking of individuals that leads to choices consistent with the data.

There may be multiple such power rankings. When can we infer that an

individual i is revealed more powerful than j, meaning that every power

ranking which is consistent with the data ranks i above j? A small variation

of Proposition 1 allows us to test this as well. Indeed, by appending the con-

trary restriction ‘j is more powerful than i’ to the original set of restrictions

RSD(cobs), it is easy to see that i is revealed more powerful than j if and only

if the augmented restrictions fail to be acyclically satisfiable. Taking this a

step further, if i is revealed more powerful than j, then i’s assigned object is

revealed preferred to j’s according to i’s preference ranking.

It turns out that testing acyclic satisfiability of RSD(cobs) is quite sim-

ple, both in concept and computational complexity (the test is doable in

polynomial time in the size of I and D). Moreover, these features extend

to testing revealed power. The simplicity of testing RSD(cobs), from which

the simplicity of testing revealed power easily follows, relies on two obser-

vations. First, all restrictions in RSD(cobs) restrict the upper-contour set of

the power ordering. Indeed, the restriction for a (G, i) combination, when

one applies, requires some j ∈ G \ {i} to be more powerful than i. Test-

ing acyclic satisfiability can be done through de Clippel and Rozen (2018)’s

enumeration procedure for upper-contour set (or lower contour-set restric-

tions), as we explain in the next paragraph. Second, while figuring out the

set of all restrictions appearing in RSD(cobs) would be demanding (as there

are exponentially groups of individuals G ⊆ I to consider), one need only

identify the small subset of restrictions that matter for the implementation

the enumeration procedure.
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Here is how these broad ideas apply to test acyclic satisfiability in the

present context. First, identify a candidate most-powerful individual in I,

namely, an i1 ∈ I whose upper-contour set is not restricted in any way, that

is, who is not involved at the ‘bottom’ of any restriction in RSD(cobs). Notice

that it suffices to check that (I, i1) is not associated with a SARP violation,

for if (G, i) led to a SARP violation for some G ⊂ I and i ∈ G, then (I, i)

would have a SARP violation too. Of course, if acyclic satisfiability holds,

than such an individual i1 can be found, while if every person in I must be less

powerful than someone else, then acyclic satisfiability fails. Next, we identify

a candidate most-powerful person in I \ {i1}; namely, an i2 ∈ I \ {i1} for

whom there is no other person in I \{i1} who is required to be more powerful

according to RSD(cobs). Again, this only requires finding a i2 ∈ I \ {i1}
such that (I \ {i1}, i2) is not associated with a SARP violation. Continuing

in this manner, one can enumerate all of I (with the interpretation that

individuals enumerated earlier are more powerful) if and only if RSD(cobs)

is acyclically satisfiable. This test takes at most polynomial time, as the

number of iterations of the procedure is bounded by the number of individuals

in I, and only restrictions for those sets encountered along the path of the

procedure need to be checked.

3 Stable Matchings

The technique developed in the previous section also proves useful when test-

ing the core of some interesting matching problems. A many-to-one match-

ing problem is characterized by two sets of agents. To fix ideas, say F is

a set of firms and W is a set of workers. Each firm f ∈ F has a number

nf ≥ 0 of positions to fill, where nf is an integer. A matching is a function

µ that associates to each worker w ∈ W an element of F ∪ {∅} such that

µ−1(f) = {w ∈ W | µ(w) = f} contains at most nf elements for each firm

f . Having µ(w) = ∅ means that w is left unemployed.
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Assume each firm f has a preference ordering �f over W ∪ {∅}, and

each worker w has a preference ordering �w over F ∪ {∅}. This rules out

the possibility of complementarity and substitutability between workers in a

firm: if free to choose a subset of nf workers from any set of prospective hires,

a firm f systematically picks the top nf options according to �f . This is a

classic assumption, which we maintain in this work, although we recognize

it is restrictive beyond the special case of one-to-one matching. Workers

ranked below ∅ according to �f are considered unworthy of hiring by firm f .

Similarly, firms ranked below ∅ according to �w are considered by worker w

to be unworthy of working for. While this model uses language relating to

the job market, many other applications of such bilateral matching problems

are discussed in the literature, including school assignment with priorities,

resident-hospital matching, and marriage (oftentimes the special case of one-

to-one matching).

A matching µ is stable if (a) no firm f hires an undesirable worker: w �f

∅, for all w ∈ µ−1(f), (b) no worker w works for an undesirable firm: µ(w) �w

∅ if µ(w) 6= ∅, (c) there is no firm-worker pair (f, w) such that the worker

prefers f over her current situation (f �w µ(w)) and the firm prefers w

over leaving a vacant spot or over another putative hire (w �f ∅ if µ−1(f)

is strictly inferior to nf , or w �f w′ for some w′ ∈ µ−1(f)). As is well-

known, the set of stable matching coincides with the core, that is, adding the

possibility of deviations by larger coalitions of workers and firms does not

further reduce the set of robust matchings.

The question we are interested in is the following. Suppose we observe

different matchings crystallize for different configurations of labor supply

(the subset of workers available) and demand (the number of positions open

in each firm). How do we test whether there exist preference orderings for

firms and workers such that these observed matchings are stable? Building

on Echenique (2008), Kalyanaraman and Umans (2008) establish that this

problem is NP-hard (even for the case of one-to-one matching). By contrast,
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we show that an insightful and tractable testing procedure is available when

all firms are conjectured to share the same preference over workers.5 Firms

are thus assumed to have equal information about workers, and to share the

same assessment function over worker characteristics. Under this assumption,

professionals in the industry agree on an objective way to rank workers,

but the modeler does not know this common ranking a priori (for instance,

she may not know which characteristics of workers are most valued in the

industry, or would need to interview the workers herself). Nonetheless, the

modeler may be able to partially identify the industry ranking of workers by

scrutinizing observed matchings. Workers may have different rankings over

firms (for instance, due to locational preferences or firm culture), which the

modeler similarly does not know but may be able to partially infer from the

data.

An initial market condition is characterized by a collection of job openings

(nf )f∈F and a setW ′ ⊆ W of prosective employees. Note that nf can be equal

to zero for some f , meaning that such firms are not looking to hire under that

initial condition. A dataset D is the collection of initial market conditions

for which one has observed matchings occur. An observed matching function

µobs associates a matching of prospective employees to open positions (or

self-employment), for each initial market condition. It is consistent with

stability if there exist a common preference ordering � over workers, and a

profile (�w)w∈W of preference orderings of the firms, such that the observed

matching associated to each initial market condition in D is stable.

Testing for consistency with stability can be done using the techniques

developed in the previous section. This follows from the close link between

serial dictatorship and stability when firms share a common preference. In-

5Though restrictive, such an assumption is not uncommon. In fact, it is sometimes
assumed that agents on each side of the market share a common preference, thereby having
an objective ranking of the firms in addition to an objective ranking of the workers. In
that case, a stable matching is assortative, with the best workers employed in the best
firms.
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deed, such problems admit a unique matching, which can be found as follows.

For each firm f ∈ F and each of the nf open positions at this firm, define

a new ‘object’, which corresponds to a position at that firm. The set X of

all such objects contains
∑

f∈F nf elements. As the nf objects constructed

for a firm f are all identical, each worker w is indifferent among them. Thus

each worker’s preference is only a weak ordering over X ∪ {∅}, with strict

preferences only across those objects coming from different firms or ∅. Let-

ting the set of individuals I be the set of workers W , the definition of serial

dictatorship and the analysis of the previous section easily generalize to this

setting. Indeed, we can apply the serial dictatorship procedure using the

firm’s common ranking of the workers as their priority. It turns out that the

unique stable matching coincides with the serial dictatorship allocation of

this auxiliary problem.

Observation. Matching problems with firms sharing a common preferences

admit a unique stable matching, which coincides with the serial dictatorship

allocation of the auxiliary allocation problem described above. The analysis

of the previous section thus also provides a tractable test for consistency with

this theory.

In this setting, the implicit power relation that the test tries to infer is

the firms’ common preference, while information inferred about each indi-

vidual’s preferences over objects pertains to workers’ preferences over firms.

Revealed-power relationships thus correspond to identifying the industry

preference over workers; and in turn, this can reveal information about a

worker’s preference over firms.

4 The Core of Housing Markets

As in Section 2, there is a group I of individuals, and a set X of objects,

which are assumed to be distinct and indivisible. A first difference, though, is
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that housing markets come with property rights. We will assume that there

is an equal number of objects and individuals, and each agent is endowed

with one object. Second, rather than objects being allocated through the

exercise of power, houses are allocated through voluntary trades. In addition

to individual rationality, it will be required that no group of agents would

be better off by trading their endowments among themselves. This is the

standard definition of the core.

Formalizing these ideas, a housing market is described by an assignment

ω of individuals to objects: their (observable) initial endowment. Each indi-

vidual i is assumed to have a preference ordering �i on X. Individual prefer-

ences are unknown to the modeler. We write h �i h
′ if h �i h

′ or h = h′. A

coalition is any non-empty subset of X. Coalition S blocks an assignment α

of individuals to objects if there exists an assignment α′ of members of S to

those objects they own ({ωi|i ∈ S}) such that α′i(ω) �i αi(ω), for all i ∈ S,

with strict preference for at least one i ∈ S. The assignment α belongs to

the core given ω if it cannot be blocked by any coalition. As is well-known,

the core of housing markets with preference orderings is single valued and

coincides with the competitive equilibrium (Shapley and Scarf, 1974).

A dataset D is the collection of initial endowments for which one has

observed trade occur. An observed trading function τobs associates to each

endowment ω ∈ D an assignment τobs(ω) of individuals to objects. It is

core compatible if there exist preference orderings (�i)i∈I such that τobs(ω)

belongs to the core at ω, for all ω ∈ D.

The test we develop exploits the fact that the core of housing markets can

be obtained by performing Gale’s top-trading cycle algorithm (Shapley and

Scarf, 1974). Each agent first points to their most preferred house. There

must be at least one cycle of agents pointing to each others’ houses (including

trivial cycles in which an agent points to their own house). Any one such

cycle is picked, with the corresponding agents and houses from this cycle

removed (note that the final assignment will not depend on which cycle is

12



chosen in each step, if multiple cycles exist). The process is then repeated

with the remaining agents and their houses, until every house is assigned.

For a given endowment ω and observed trading assignment τobs(ω), let

C(ω, τobs(ω)) be the partition of X into revealed trading cycles when moving

from ω to τ . Formally, C ∈ C(ω, τobs(ω)) if C = {ωi|τobs,i(ω) ∈ C}, and there

is no C ′ ⊂ C such that C ′ = {ωi|τobs,i(ω) ∈ C ′}. Finding revealed trading

cycles is easy. Start with any individual, say agent i. Her final consumption

is τobs,i(ω), which was the initial endowment of some agent j. If j = i (that

is, i does not trade), then we have already found a revealed trading cycle

C = {ωi}. If j 6= i, then the object τobs,j(ω) which j consumes is the initial

endowment ωk of some agent k. If k = i, then we have found a revealed cycle

C = {ωi, ωj}; otherwise, the object τobs,k(ω) which k consumes is itself the

endowment of some other agent, etc. With a finite number of agents and both

ω and τobs(ω) one-to-one mappings of individuals to objects, we are bound to

end up with an agent whose consumption is i’s initial endowment. Thus one

is sure to find a revealed trading cycle, and we can repeat the process with

remaining individuals to find all the other revealed trading cycles as well.

Since the core can be derived by applying Gale’s top-trading procedure,

it must be that the object τobs,i(ω) consumed by each agent i is part of the

top-trading cycle for remaining individuals and objects when agent i ‘exits’

the procedure. As shown above, the modeler can infer the cycles from the

data, but the order in which they exit in Gale’s procedure isn’t clear a priori.

Suppose the modeler conjectures that, for each ω ∈ D, the right order

in which the cycles in C(ω, τobs(ω)) are exited is given by �ω; that is, if

C �ω C
′, then C exits before C ′. Then the data at each ω ∈ D would reveal,

for each individual i, that she prefers τobs,i(ω) over all other objects in her

revealed trading cycle, as well as all objects in revealed trading cycles that are

�ω-inferior. More succinctly, agent i prefers her assigned house τobs,i(ω) to

any object belonging to a �ω-inferior trading cycle. This revealed preference

must be acyclic for each individual i. Being able to find some profile (�ω)ω∈D
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of possible exit orderings of cycles which yields acyclic revealed preferences

is thus a necessary condition for core compatibility. The next proposition

shows that no additional restriction for core compatibility can be inferred

from the data, as this condition is also sufficient.

Proposition 2. τobs is core compatible if and only if there exist rankings

(�ω)ω∈D of revealed trading cycles (elements of C(ω, τobs(ω))) at each ω ∈ D
such that the revealed preferences �∗1, . . . , �∗I are each acyclic, where h �∗i h′

if there exists ω ∈ D such that τi(ω) = h and h′ 6= h belongs to a revealed

trading cycle in C(ω, τobs(ω)) which is �ω-inferior to the revealed trading cycle

to which h belongs.

Proof. Necessity follows from the discussion above. As for sufficiency, for

each i ∈ I, let �i be a preference ordering that respects �∗i comparisons.

By definition of �∗i , for each ω ∈ D, the top-trading cycle procedure applied

to (�i)i∈I generates τobs(ω), as desired. Indeed, the �ω-top revealed trading

cycle is a top trading cycle according to Gale’s procedure. After eliminating

the goods involved in that cycle, the second-highest revealed trading cycle

according to �ω is the next top-trading cycle according to Gale’s procedure,

and so on so forth.

The next example and ensuing discussion illustrate the proposition.

Example 1. Consider a problem with three individuals, I = {i, j, k}, three

objects, X = {x, y, z}, and two observations, D = {ω, ω′}. Initial endow-

ments and observed trades are given in the following tables

i j k

ω x y z

ω′ x z y

i j k

τobs(ω) y x z

τobs(ω
′) x y z

The above proposition allows us to conclude that this data is not core com-

patible. To see this, first note that the revealed trading cycles are C1 = {x, y}
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and C2 = {z} at ω, and C ′1 = {x} and C ′2 = {y, z} at ω′. To see that the con-

dition in the above proposition is violated, first note that because τobs,j(ω) = x

and x, y belong to the same revealed trading cycle at ω, it is revealed that j

prefers x to y. Analogously, because τobs,i(ω) = y, it is revealed that i prefers

y to x. Now consider the possible rankings of the ω′-revealed trading cycles.

If C ′1 dominates C ′2, then x is revealed preferred to y for i, violating acyclicity

of i’s revealed preference. On the other hand, if C ′2 dominates C ′1, then y is

revealed preferred to x for j, violating acyclicity of j’s revealed preference.

A couple of points are worth emphasizing following this simple example.

First, it illustrates how testing using the above proposition can be both more

insightful and quicker than computing the assignment resulting from Gale’s

algorithm for all6 18 preference profiles and checking whether one matches

the observed trading function. Second, it shows that taking into account the

rankings of revealed preference cycles is critical for testing. Merely observing

that an agent prefers her assigned object over others in the same trading

cycle does not create any preference cycle in the above example.7

Though insightful and quick to check in many problems, testing using

Proposition 2 can remain long and tedious in others (those with many ob-

servations that have many revealed cycles), as one must consider all possible

rankings of revealed cycles at each observation. It may sometimes be possi-

ble to improve the result by finding tractable ways to narrow down the set

of possible such rankings. In the example above, for instance, the data at

ω reveals that i prefers y over x since it belongs to the same trading cycle.

Knowing this, it must be that C ′2 dominates C ′1. Hence, such straightforward

revealed preference comparisons can reveal information about the ranking of

revealed cycles. Unfortunately, one can only go so far. As we now prove, no

6More generally, this exhaustive approach would require computing the assignment for
n(n!) preference profiles, where n is the number of individuals or objects.

7This simpler observation leads to the following conclusion: i prefers y over x, j ranks
the three objects alphabetically, and k ranks z above y. This information is compatible
with preference orderings for all three agents. Yet the data is not core compatible.
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test is tractable for all datasets, as testing core compatibility is NP-hard.

To prove this, we rely on Proposition 3 in de Clippel and Rozen (2018).

There it is shown that the class of problems where one must figure out

whether there is an acyclic relation satisfying a mixed set of binary restric-

tions, where some are lower-contour set (LCS) restrictions8 and others are

upper-contour set (UCS) restrictions,9 is NP-hard. We show that every such

acyclic-satisfiability problem is reducible in polynomial time to a problem of

core compatibility for some observed trading function. While the complete

proof of this result is available in the Appendix, a couple of examples can

provide some intuition.

Example 2. Consider a problem with four individuals, {i, j, k, `}, and two

observations. The initial endowments and observed trades are as follows:

i j k `

ω y a x z

ω′ a y x z

i j k `

τobs(ω) y x a z

τobs(ω
′) z x y a

It is easy to check that τobs is core compatible by using Proposition 2.10 More

importantly, this example illustrates how core compatibility can impose an

UCS restriction on i’s revealed preference: agent i ranks x below either y

or z. Indeed, suppose that i ranks x above y. Then it must be that the

revealed trading cycle {a, x} in ω must exit before the revealed trading cycle

{y} associated to i. In that case, it must be that k ranks a above y. Hence

the revealed trading cycle {a, z} in ω′ must exit before the revealed trading

cycle {x, y}, in which case i prefers z over x.

Example 3. Consider a problem with six individuals, I = {i, j, k, `,m, n},
six objects, X = {a, b, c, x, y, z}, and two observations, D = {ω, ω′}. Initial

8Restrictions of the form, x is superior to either y or z, for some x, y, z.
9Restrictions of the form x is inferior to either y or z, for some x, y, z.

10E.g., the four individuals’ revealed preferences are acyclic when ranking the revealed
trading cycles as follows: {y} above {a, x} above {z} in ω, and {x, y} above {a, z} in ω′.
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endowments and observed trades are as follows:

i j k ` m n

ω a x y b z c

ω′ b a z x c y

i j k ` m n

τobs(ω) x a b y z c

τobs(ω
′) x z a b c y

Using Proposition 2, it is easy to check that τobs is core compatible.11 More

importantly, this example illustrates how core compatibility can impose an

LCS restriction on i’s revealed preference: agent i ranks x above either y

or z. Indeed, suppose that i ranks y above x. Then it must be that the

revealed trading cycle {b, y} in ω exits before the revealed trading cycle {a, x}
associated to i. In that case, it must be that k ranks b above a. Hence the

revealed trading cycle {x, b} in ω′ must dominate the revealed trading cycle

{a, z}, in which case i prefers x over z.

Examples 2 and 3 show how any given binary UCS (resp. LCS) restriction

can be replicated as a revealed preference restriction on an individual i when

a wisely-constructed auxiliary dataset is core compatible. Thus core com-

patibility of the auxiliary dataset implies acyclic satisfiability of the original

problem (simply using the preference that arises for i from core compatibil-

ity). To establish that that testing core compatibility is NP-hard, it remains

to show that acyclic satisfiability of the original problem implies core com-

patibility for the auxiliary dataset. The ordering satisfying the restrictions

of the original problem is used as a preference for individual i, and one can

construct preference orderings for the other individuals to check that the

auxiliary dataset is core compatible. In particular, the constructed auxiliary

dataset has the feature that core compatibility can be captured entirely as

revealed preference restrictions for i. Details are available in the Appendix.

Proposition 3. Testing core compatibility is NP-hard.

11E.g., the six individuals’ revealed preferences are acyclic when ranking the revealed
trading cycles as follows: {z} above {a, x} above {b, y} above {c} in ω, and {y} above
{a, z} above {b, x} above {c} in ω′.
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Appendix: Proof of Proposition 3

Fix a mixed set R of binary restrictions defined on a set X, as in de Clippel

and Rozen (2018, Proposition 3). For each restriction r, let xr be the option

whose contour set is being restricted, and let yr, zr be the two options po-

tentially included in the upper (or lower) contour set of xr if r is an UCS (or

LCS) restriction. We assume wlog that yr 6= zr. Consider the following sets

of agents and houses

A = X ∪ {i} ∪ {jr, kr, `r|r ∈ R}

H = X ∪ {d} ∪ {ar, br, cr|r ∈ R}.

The dataset consists of two endowments – ωr and ω′r – for each restriction

r. In all these endowments, each individual x ∈ X \ {xr, yr, zr} owns x,

and for each s 6= r, js owns as, ks owns bs, and `s owns cs. The remaining

components of these endowments are defined in the two tables below:

i jr kr `r xr yr zr

ωr yr ar xr d br cr zr

ω′r ar yr xr zr br cr d

for each UCS restriction r, and

i jr kr `r xr yr zr

ωr ar xr yr br d cr zr

ω′r br ar zr xr cr yr d

for each LCS restriction r.

The observed trading function τobs is defined in the following two tables,
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where NT stands for ‘no trade’ (that is, consume one’s own endowment)

i jr kr `r other agents

τobs(ωr) NT xr ar NT NT

τobs(ω
′
r) zr xr yr ar NT

for each UCS restriction r, and

i jr kr `r other agents

τobs(ωr) xr ar br yr NT

τobs(ω
′
r) xr zr ar br NT

for each LCS restriction r.

We conclude the proof, by showing that there exists an acyclic relation

satisfying the restrictions listed in R if and only if τobs is core-compatible.

If R is acyclically satisfiable, then let P be a strict acyclic relation on X

satisfying the restrictions inR. We can assume without loss of generality that

P is complete, that is, an ordering. We now define rankings (�ω)ω∈D of the

minimal trading cycles for each ω ∈ D. For each r, both �ωr and �ω′
r

places

the singleton cycles {x} on top (in any order), for each x ∈ X \ {xr, yr, zr}.
Right below these cycles, �ωr and �ω′

r
have:

(a) For an UCS restriction r with yrPzr: {yr} �ωr {ar, xr} �ωr {zr} and

{xr, yr} �ω′
r
{ar, zr}.

(b) For an UCS restriction r with zrPyr: {zr} �ωr {ar, xr} �ωr {yr} and

{ar, zr} �ω′
r
{xr, yr}.

(c) For an LCS restriction with yrPzr: {br, yr} �ωr {zr} �ωr {ar, xr} and

{yr} �ω′
r
{br, xr} �ω′

r
{ar, zr}.

(d) For an LCS restriction with zrPyr: {zr} �ωr {xr, ar} �ωr {br, yr} and

{yr} �ω′
r
{ar, zr} �ω′

r
{br, xr}.
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Fix a ranking P ′ of H such that a’s are above b’s, b’s are above c’s, and c’s

are above d. The remaining cycles are singletons, and �ωr and �ω′
r

rank

these at the bottom according to P ′.

It remains to check that the individuals’ revealed preferences induced by

the observed trading function using these rankings of atoms are acyclic. We

do this by providing such a preference ordering for each agent. Starting with

agent i, let �i be any preference ordering that agrees with P on X and ranks

all other houses below the elements of X.

• For an UCS restriction r such that yrPzr, the revealed preference is that

yr is superior to elements of (H \X)∪{xr, zr} (from observed trade at

ωr), and that zr is superior to elements of H \X (from observed trade

at ω′r). Given that yrPxr or zrPxr (since r is satisfied), it must be that

yrPxr. Hence �i satisfies these revealed preferences.

• For an UCS restriction r such that zrPyr, the revealed preference is

that yr is superior to elements of H \ (X ∪ {ar}) (from observed trade

at ωr), and that zr is superior to elements in (H \X) ∪ {xr, yr} (from

observed trade at ω′r). Given that yrPxr or zrPxr (since r is satisfied),

it must be that zrPxr. Hence �i satisfies these revealed preferences.

• For an LCS restriction r such that yrPzr, the revealed preference is

that xr is superior to elements of (H \X) ∪ {zr} (combining observed

trades at ωr and ω′r). Given that xrPyr or xrPzr (since r is satisfied),

it must be that xrPzr. Hence �i satisfies these revealed preferences.

• For an LCS restriction r such that zrPyr, the revealed preference is

that xr is superior to elements of (H \X) ∪ {yr} (from observed trade

at both ωr and ω′r). Given that xrPyr or xrPzr (since r is satisfied), it

must be that xrPyr. Hence �i satisfies these revealed preferences.

For jr where r is an UCS restriction, any preference that ranks xr at the

top and ar right below, satisfies the revealed preferences induced by observed
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trades. For jr where r is an LCS restriction, any preference that ranks zr at

the top, following right after by ar, satisfies the revealed preferences induced

by observed trades.

For kr where r is an UCS restriction with yrPzr, any preference that ranks

yr at the top, followed by ar and then br, satisfies the revealed preferences

induced by observed trades. For kr where r is an UCS restriction with zrPyr,

any preference that ranks ar at the top, followed by yr, and then br, satisfies

the revealed preferences induced by observed trades. For kr where r is an

LCS restriction with yrPzr, any preference ranking br at the top, followed

by ar, satisfies the revealed preferences induced by observed trades. For kr

where r is an LCS restriction with zrPyr, any preference ranking ar at the

top, followed by br, satisfies the revealed preferences induced by observed

trades.

For `r where r is an UCS restriction, any preference that ranks ar at the

top, and cr right below it, satisfies the revealed preferences induced by ob-

served trades. For `r where r is an LCS restriction, any preference that ranks

yr at the top, followed by br, and then cr, satisfies the revealed preferences

induced by observed trades.

Finally, for any agent w in X, any preference ordering with w at the

top, following by the elements of H according to P ′, satisfies the revealed

preferences induced by observed trades. This concludes the proof that τobs is

core compatible if R is core compatible.

We now show the converse, namely that R is acyclically satisfiable if τobs

is core-compatible. Thus there must exists a profile of preference orderings

(one for each agent in A) such that the core at each endowment ω in D
corresponds to τobs(ω). Focus in particular on agent i’s preference �i. For

any x, y ∈ X, say that xRy if i prefers x over y. Clearly R is acyclic, and it

remains to prove that it satisfies the restrictions in R. Consider first an UCS

restriction r. Suppose that xrRyr, in which case i prefers xr over yr. Then,

looking at trades for ωr, the cycle {ar, xr} must precede the cycle {yr}, and
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hence kr must prefer ar over yr. In that case, looking now at trades for ω′r, it

must be that the cycle {ar, zr} precedes the cycle {xr, yr}, which reveals that

i prefers zr over xr, or zrRxr. Thus yrRxr or zrRxr, as desired. Consider next

an LCS restriction r. Suppose, by way of contradiction, that both yrRxr and

zrRxr, in which case i prefers both yr and zr over xr. Then, looking at trades

for ωr, the cycle {br, yr} must precede the cycle {ar, xr}, and hence kr must

prefer br over ar. A similar reasoning applied to trades at ω′r reveals that

kr prefers ar over br. This contradiction confirms that the LCS restriction r

holds.
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