
Behavioral Implementation

By Geoffroy de Clippel∗

Implementation theory assumes that participants’ choices are ra-
tional, in the sense of being consistent with the maximization of a
context-independent preference. The paper investigates implemen-
tation under complete information when individuals’ choices need
not be rational.

Implementation under complete information is a classic problem in mechanism
design. The designer would like to implement a rule that selects acceptable out-
comes as a function of a problem’s characteristics. Unfortunately, while commonly
known among participants, these characteristics are unknown to him. He must
thus rely on their reports to tailor his selection of outcomes. Taking into account
the participants’ incentives to misrepresent their information, what are the rules
that the designer can effectively implement?

Characteristics encode participants’ preferences in standard implementation
models. However, there is ample evidence in marketing, psychology and behav-
ioral economics that people’s choices need not be consistent with the maximization
of a preference relation. Classic examples, which have played a key role in recent
developments in choice theory,1 include status-quo biases, attraction, compromise
and framing effects, temptation and self-control, consideration sets, and choice
overload. This paper expands implementation theory so as to be applicable in
these circumstances as well. The following examples illustrate the scope of the
analysis.

(a) (Hiring with Attraction Effect) Members of a hiring committee are meet-
ing to select a new colleague. Up to six candidates are considered: x, y, z, x∗,
y∗ and z∗. The first three candidates are above the bar, while the last three fall
below. For each a ∈ {x, y, z}, a∗ is similar to a, but dissimilar to other candi-
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dates. In the spirit of the “attraction” effect,2 the committee members’ individual
choices may be influenced by the availability of a similar inferior alternative, e.g.
choosing y out of {x, y, z}, but choosing x out of {x, x∗, y, z}. Finding which out-
comes can be selected as a function of committee members’ characteristics thus
falls beyond the scope of standard implementation theory.

(b) (Collective Choice with Limited Willpower) Individuals in a support
group are committing to make joint decisions. They take part in this group to
achieve a common long-term goal. The problem is that individual choices are also
influenced by a conflicting short-term craving. In a stylized model, think of an
individual’s willpower as the number k of alternatives that he or she can overlook
to better fulfill his or her long-term goal: chosen options are top-ranked according
to the long-term goal among those that are dominated by at most k alternatives
for the short-term craving. Such behavior need not be consistent with rationality:
one may be able to resist eating a slice of pizza for lunch when the alternative is
a salad, but unable to resist both the burger and the pizza slice, and go for the
slice if these two options are available on the menu in addition to the salad.3

(c) (Groups as Participants) The president of a University is consulting the
chairs of its various departments to implement a new policy. Departmental deci-
sions may be reached by following some negotiation protocol. Other chairs may
reach decisions by aggregating their colleagues’ preferences according to some rule.
Either way, the social choice literature teaches us that, in most cases, the chairs’
decisions cannot be explained through the maximization of a context-independent
preference. The scope of this paper is thus broader than accommodating people’s
possible behavioral biases: violations of rationality also occur when individuals
in the model represent groups of rational agents.4

In order to capture all these examples, and many more applications, states in
this paper will encode the participants’ choice correspondences instead of prefer-
ences. A social choice rule (SCR) associates a set of outcomes to each state. It
captures the goal that the mechanism designer would like to implement. Unfor-
tunately he does not know the state. He must thus rely on a mechanism, which
defines a set of messages for each individual, and a function that associates an
outcome to each message profile. A mechanism implements a SCR if the set of
equilibrium outcomes coincides with the set of outcomes prescribed by the SCR,
at every state.

To make the definition of implementation complete, one must specify what is
meant by an equilibrium. A strategy profile forms a Nash equilibrium when indi-
viduals maximize preferences if the resulting outcome is among each individual’s
most-preferred options, within the set of outcomes that he or she can generate

2First identified by Huber, Payne and Puto (1982), it has been documented since then in various
empirical and experimental settings, see references in Ok, Ortoleva, and Riella (2011, footnotes 2 and 3).

3Such choice pattern is consistent with k = 1, a long-term goal that ranks the salad above the pizza
slice, in turn above the burger, and an opposite short-term goal.

4This interpretation motivated Hurwicz’s (1986) work, a discussion of which is available at the end
of this Introduction.
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through unilateral deviations. This equilibrium notion admits a straightforward
behavioral extension, replacing ‘most-preferred’ by ‘chosen.’ An equilibrium in
this sense will still be referred to as a Nash equilibrium. Formal definitions are
provided in Section I, and are illustrated in Section II with two examples of
implementation, one (as in (a) above) where individuals may be subject to an at-
traction effect, and one (as in (b) above) where individuals have limited willpower
to exercise self-control.

Section III provides necessary, and sufficient conditions for Nash implementabil-
ity, which extends Maskin’s (1999) classic result5 from domains containing only
choice correspondences that are consistent with preference maximization to any
domain of choice correspondences. These conditions prove useful to delineate the
limits of implementation in any application, but as for Maskin monotonicity, more
work is usually needed to identify some or all implementable SCRs in each given
problem. This paper is dedicated to the study of implementable extensions of
the Pareto SCR. Additional practical implications of the general necessary and
sufficient conditions are provided in de Clippel (2012).6

Pareto efficiency provides a classic example of SCR that is Nash implementable
in the standard framework. How does Pareto’s concept extend beyond the ratio-
nal domain? Which extensions, if any, remain Nash implementable? Section IV
applies the general results derived in Section III to provide sharp answers. There
exist multiple extensions of the Pareto SCR that are Nash implementable on all
domains. Interestingly, there exists a maximal implementable extension of the
Pareto SCR, which can be characterized in simple terms: an option x is efficient
in this sense if one can find implicit opportunity sets, one for each individual,
such that (a) all individuals would pick x out of their respective opportunity sets,
and (b) all options are accounted for, in the sense that each alternative to x
belongs to the opportunity set of at least one individual. Similar properties on
opportunity sets were independently introduced by Sugden (2004) in economic
environments with private consumption, under the name of “opportunity crite-
rion.” The maximal implementable extension always refines, sometimes strictly,
Bernheim and Rangel’s (2009) extended notion of efficiency. There also exists a
minimal implementable extension, which happens to be simple variant of its max-
imal counterpart, where implicit opportunity sets are essentially disjoint. Finally,
I show that a social planner may sometimes design a mechanism to guarantee
Pareto efficiency when individuals maximize preferences, but imperfectly so, for
instance when individuals may be prone to mistakes when being overwhelmed by
too many options (see Iyengar and Kamenica (2010) and some references therein).

5The paper circulated as a working paper from 1977 and 1998. Surveys on the large literature on
implementation theory include Maskin (1985), Moore (1992), Palfrey (1992, 2002), Corchón (1996),
Jackson (2001), Maskin and Sjöström (2002), and Serrano (2004).

6In particular, the working paper touches upon an important direction for future research, namely to
understand what the general necessary and sufficient conditions imply in applications where individuals
are subject to specific forms of biases. New implementable SCRs are identified for instance for classes of
order-dependant choices. A notion of rich domain is also introduced in the paper, which allows to extend
classic impossibility results.
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Section V is dedicated to Shapley and Scarf’s (1974) housing market, which
captures some key features of matching problems and exchange economies. I char-
acterize both the maximal, and a nearly minimal implementable extension of the
strong Pareto SCR. In exchange economies, aggregate demand functions emanate
from individual choices from budget sets. The concept of competitive equilibrium
can thus be defined without relying on preferences (see Sugden (2004) and Bern-
heim and Rangel (2009) among others). I show that a competitive equilibrium
exists in housing markets, independently of the individuals’ choice functions. We
will see that implementable extensions of Pareto play a key role in extending the
two fundamental theorems of welfare economics. Finally, taking property rights
into account raises the question of coalitional deviations and in particular of in-
dividual rationality in the absence of preferences. I show that the strong core
also admits a maximal implementable extension, which corresponds to a simple
refinement of Sugden’s (2004) opportunity criterion. More importantly, competi-
tive allocations belong to this extended core, which refines the first fundamental
theorem of welfare economics.

The analysis throughout the paper highlights the key role of “opportunity sets”
when taking individual choices instead of preferences as exogenous variables. Op-
portunity sets capture what is available to an individual in various circumstances.
They take the form of budget sets in the case of a competitive equilibrium, cap-
ture the set of outcomes an individual can generate through unilateral deviations
in case of a Nash equilibrium, or represent the set of objects that remain avail-
able after higher priority individuals have made their pick in serial dictatorship
procedures. The classic property of Maskin monotonicity extends into a general
necessary condition for Nash implementability that requires finding opportunity
sets that are consistent with the SCR. It then follows that implementable exten-
sions of Pareto efficiency (or the core) must themselves be defined in terms of
implicit opportunity sets, which is the route that Sugden (2004) already followed,
but for independent, normative reasons.

Related Literature

The importance of taking behavioral biases into account when designing mech-
anisms is attracting attention in the popular press, especially since Thaler and
Sunstein’s (2008) book “Nudge.” This interest is also apparent in the academic
literature, with an effort to adapt models in industrial organization to determine
the best contracts that a monopolist or competing firms can offer to maximize
their profits when customers are subject to specific choice biases (see Spiegler’s
(2011) book for a synthesis). The present paper extends implementation theory
to problems where individual choices may be inconsistent with the maximization
of a context-independent preference, motivated by recent developments in the
theories of choice and welfare.

Proposition 2, which offers necessary and sufficient conditions for Nash imple-
mentability, is the only result in this paper that has some precedence in the liter-
ature. Inspired by implementation problems where a mechanism designer tries to
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elicit information from groups, Hurwicz (1986) shows how Maskin’s (1999) classic
results extend to the case where individual choice correspondences select the set
of options that are undominated for some binary relation. By contrast, my anal-
ysis accommodates any form of individual behavior, which is important in view
of the many varied choice patterns that may occur under bounded rationality. To
illustrate the limits of Hurwicz’s approach, notice that a choice correspondence
is single-valued in his framework only if it is rational. Korpela7 (2012) (see also
Ray (2010)) independently studied the question of characterizing Nash imple-
mentability with no restriction on individual choices. I will explain in Section III
the similarities and differences of Proposition 2 with these other results.

A few other relevant references include Eliaz (2002), who studies full implemen-
tation in Nash equilibrium that is robust to the presence of any number of “faulty”
individuals below a fixed threshold, where faulty individuals may behave in any
possible way; Cabrales and Serrano (2011), who investigate implementation prob-
lems under the behavioral assumption that agents myopically adjust their actions
in the direction of better-responses or best-responses; Saran (2011), who studies
under which conditions over individual choice correspondences over Savage acts
does the revelation principle hold for partial Nash implementation with incom-
plete information; Glazer and Rubinstein (2012), who introduce a mechanism
design model in which both the content and framing of the mechanism affect the
agent’s ability to manipulate the information he provides; and Bierbrauer and
Netzer (2012) who study a first model of partial Bayesian implementation with
intentions.

I. Definitions

Consider a set I of individuals who must select an option from a set X . It is
assumed throughout the paper that there are at least three individuals, except
when discussing the case of two individuals at the end of Section III. Each
individual i’s choice behavior is captured by a choice correspondence that may
vary with a state. Formally, i’s choice correspondence given a state θ selects a
non-empty subset, denoted Ci(S, θ), of each choice problem S ⊆ X . The set of all
relevant states is denoted Θ. Information is complete, meaning that the state is
common knowledge among individuals (but of course unknown to the mechanism
designer).

Individual i’s choice correspondence is rational at θ if there exists a complete
transitive preference � such that C(S, θ) = arg max� S, for each subset S of X .
As is well-known, a choice correspondence is rational if and only if it satisfies
Sen’s (1971) properties α (“Independence of Irrelevant Alternatives”, or IIA) and
β (“Expansion”). Rational choice correspondences are single-valued (in which
case rationality is equivalent to IIA) when preferences are strict.

A social choice rule (SCR) is a correspondence f : Θ → X that selects a non-

7I thank Rene Saran for the reference.
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empty subset of options for each state. A mechanism is a collection ((Mi)i∈I , µ),
where Mi is the set of messages available to i, and µ : M → X is the outcome
function (with M =M1 × · · · ×Mi).

A strategy for individual i is the choice of a message in Mi. Under rationality,
a strategy profile forms a Nash equilibrium if the resulting outcome is most-
preferred for each individual within the set of options he or she can generate
through unilateral deviations, that is by varying his or her own strategy while
others play their part of the equilibrium. This definition admits a straightforward
extension to games involving individual choice correspondences that cannot be
explained by the maximization of a well-behaved preference: for each individual,
the equilibrium outcome is among the chosen options within the set of outcomes
he or she can generate through unilateral deviations.

Formally, individual i’s opportunity set given a strategy profile m−i for the
other individuals is given by Oi(m−i) = {µ(mi,m−i) | mi ∈ Mi} ⊆ X . Then
a strategy profile (m∗i (θ))i∈I forms a Nash equilibrium of the game induced by
the mechanism (M, µ) at a state θ if µ(m∗(θ)) ∈ Ci(Oi(m∗−i(θ)), θ), for all i ∈ I.
The mechanism (M, µ) implements the SCR f in Nash equilibrium if f(θ) =
{µ(m∗(θ)) | m∗(θ) is a Nash equilibrium at θ}, for all θ ∈ Θ. The SCR f is then
said to be Nash implementable.

Individuals’ choices are thus assumed to depend only on the set of options
available to them. This rules out other, more general forms of bounded rationality
where individual choices may vary for instance with the number of times an
option appears in an opportunity set, the order in which messages are presented
in the definition of the mechanism, or the very phrasing of messages in a common
language. Incorporating these features provides an interesting direction for future
research.

II. Illustration

A. Building Willpower in Groups

Temptation is often understood in economics through the lens of commitment
preferences (see Lipman and Pesendorfer (2013) for a survey): an individual who
anticipates having to fight temptation at the time of making a choice, may want
to commit to a smaller set of options. By contrast, the focus in the psychology
literature is often on individuals who make choices while being tempted, and how
they deplete their willpower when exercising self-control (see e.g. Baumeister and
Tierney (2011)).8

Here is a stylized model of choice that captures temptation, self-control and
willpower in a way that is closer to the psychology literature. There are n indi-

8First attempts to capture willpower in economics include Ozdenoren, Salant and Silverman (2012)
who study the optimal management of willpower over time, and Masatlioglu, Nakajima and Ozdenoren
(2011) who study commitment preferences for individuals who anticipate having to fight temptation with
limited willpower when having to make a choice.
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viduals with a common long-term goal. This long-term goal is difficult to achieve
due to the presence of tempting alternatives: choices are also influenced by a
short-term craving. Each individual has some limited willpower to exercise self-
control. In this example, willpower is captured by the number of tempting options
an individual can overlook to better fulfill his long-term goal. Formally, given an
ordering �L on X capturing the long-term goal, an ordering �S on X capturing
the short-term craving, and an integer ki capturing i’s willpower, i’s choice out
of any T ⊆ X is the most-preferred element for �L among those that are domi-
nated by at most ki alternatives according to �S . Such behavior typically leads
to violations of IIA. For instance, one may be able to resist eating a slice of pizza
for lunch when the alternative is a salad, but unable to resist the temptation
of both the burger and the pizza slice, and go for the slice if these two options
are available on the menu in addition to the salad. This choice pattern can be
explained with ki = 1, salad �L pizza slice �L burger, and burger �S pizza slice
�S salad.

Consider now a situation where a state determines a common long-term goal,
and the individuals’ (possibly different) short-term cravings. Is there a way to
combine the individuals’ limited willpower to help them better fulfill their com-
mon long-term goal? One idea is to decentralize the burden of choice by letting
each individual be ‘in charge of’ only a small number of alternatives. Here is a
simple mechanism to achieve this. Let Ai ⊂ X be the subset of ki elements that
individual i will be in charge of. Let’s assume that

∑
i∈I ki ≥ #X , so that these

subsets can be chosen so as to cover X , that is X = ∪i∈IAi. Each individual
picks a message in support of one of the elements he is in charge of, as well as a
non-negative integer representing the intensity with which he makes that state-
ment. Formally, Mi = Ai × Z+. The outcome is the option supported by the
individual with most intense report (using any fixed tie-breaking rule if multiple
messages are reported with the highest intensity).

The mechanism has the property that, for any message profile, individual i can
generate at most ki + 1 options when varying his own message, out of which he
picks the option that is best for his long-term goal. Clearly, the option that is
top ranked in X for the long-term goal is an equilibrium outcome of this mech-
anism, e.g. with the individual in charge of it suggesting it with intensity 1 and
all other individuals supporting other options with intensity 0. Conversely, any
Nash equilibrium outcome must be the best element in X for the long-term goal.
Otherwise, the individual in charge of it will deviate by supporting it in a message
whose intensity is larger than the messages from all other individuals. We have
thus proved the following result.

PROPOSITION 1: If
∑

i∈I ki ≥ #X , then the SCR that systematically selects
the top-choice of the common long-term goal is Nash implementable.

The result assumes that the mechanism designer knows each individual’s willpower
index. More generally, willpower indices could vary with the state. Clearly,
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Proposition 1 remains valid provided the assumption
∑

i∈I ki ≥ #X holds with
ki as the minimum of i′’s willpower index over all states.

B. Hiring with Attraction Effect

Remember the problem of hiring with attraction effect described in (a) in the
Introduction. Formally, the set X of options is {x, y, z, x∗, y∗, z∗, nh}, where “nh”
stands for “not hiring,” while the set of states is Θ = (P × {0, 1})I , where P is
the set of strict preferences on X that rank any of x, y, z above nh, and nh above
any of x∗, y∗, z∗. Indices 1 or 0 capture whether the corresponding individual is
subject to the attraction effect, or not. Having θi = (�, 0) means that individual
i is rational and maximizes � at θ. If θi = (�, 1) instead, then individual i is
subject to the attraction effect, and in particular, picks x out of {x, x∗, y, z, nh},
y out of {x, y, y∗, z, nh}, and z out of {x, y, z, z∗, nh}.

Now fix two individuals, say i and j, and consider the following mechanism:
Mi = {x, y, z, j, j∗},Mj = {x, y, z}, with the outcome function µ (which depends
only on i and j’s messages) defined as follows:

µ x y z
x nh x x
y y nh y
z z z nh
j x y z
j∗ x∗ y∗ z∗

Individual i’s opportunity set given any message from j contains x, y, z, nh and
one of x∗, y∗, z∗. If θi = (�, 0), a case in which i is rational, then the equilibrium
outcome must be �-maximal on X . If θi = (�, 1) instead, a case in which
individual i is subject to the attraction effect, then “j” is the only message for i
that can be part of a Nash equilibrium, as it is the only message that gives i the
option a in the column where a∗ is available in his opportunity set. Individual j’s
opportunity set given this message is {x, y, z}. Hence the equilibrium outcome
must be j’s most-preferred option among {x, y, z}.

It is immediate to check, conversely, that the candidate equilibrium outcomes
we have identified as a function of θ are indeed supported by equilibrium strate-
gies. We have thus identified a mechanism that implements the social choice
rule fij that picks i’s most-preferred option when i is rational, and picks j’s top
choice within {x, y, z} when i is subject to the attraction effect. Interestingly,
the domain is rich to the extent that it contains all profiles of individual choice
correspondences associated to the maximization of some strict preference over
{x, y, z}, the range of fij . With such a rich domain, a SCR that is implementable
via a mechanism that relies on messages from only two rational individuals must
be dictatorial (see Jackson and Srivastava (1992)). We see that such a result does
not extend beyond the rational domain, as the outcome picked by fij varies with
the reports of both i and j.
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III. Necessary and Sufficient Conditions

The previous section provides only two examples of SCRs that are Nash imple-
mentable in two specific applications. It would be useful to have general conditions
that could help us identify more systematically SCRs that are Nash implementable
in various applications.

Necessary Condition

I start by providing a necessary condition that extends Maskin monotonicity
beyond the rational domain. Consider a SCR f : Θ → X that is Nash imple-
mentable by a mechanism ((Mi)i∈I , µ). Let then m∗ be a Nash equilibrium at θ
whose associated outcome µ(m∗) coincides with an element x of f(θ). This strat-
egy profile defines an opportunity set for each individual, call it Oi, by varying his
or her own strategy while others play m∗−i. By definition of Nash equilibrium, it
must be that x ∈ Ci(Oi, θ), for all i. In addition, if there is some alternative state
θ′ such that x ∈ Ci(Oi, θ′) for all i, then clearly m∗ forms a Nash equilibrium at
θ′ as well. Hence x is an equilibrium outcome at θ′ and x ∈ f(θ′) if f is Nash
implementable.

A collection O = {Oi(x, θ) | i ∈ I, x ∈ f(θ), θ ∈ Θ} of opportunity sets is
consistent with f if

1) x ∈ Ci(Oi(x, θ), θ), for all θ ∈ Θ, all x ∈ f(θ), and all i ∈ I,

2) For all θ, θ′ and x ∈ f(θ), if x ∈ Ci(Oi(x, θ), θ′), for all i, then x ∈ f(θ′).

The argument from the previous paragraph illustrates how the existence of a
consistent collection of opportunity sets must be a necessary condition for Nash
implementability.

PROPOSITION 2: a If a SCR f is Nash implementable, then there exists a col-
lection of opportunity sets that is consistent with f .

Consistency with a SCR f requires x to be a chosen alternative for each indi-
vidual out of his or her opportunity set at (x, θ) when the state is θ. In addition,
if x ∈ f(θ) \ f(θ′), then one must find at least one individual who would not pick
x out of his or her (x, θ)-opportunity set when the state is θ′. This is reminiscent
of Maskin monotonicity for the rational case: if x ∈ f(θ) \ f(θ′), then there exists
i and y in x’s lower contour set for �i(θ) such that i strictly prefers y over x at
θ′.

The key distinction is that checking consistency simplifies under rationality:
there is a collection of opportunity sets that is consistent with f if and only if
the collection of lower contour sets is consistent with f .9 The added complexity

9Indeed, the premise of condition 2 in the definition of consistency is harder to meet with larger
opportunity sets, and opportunity sets cannot be larger than lower contour sets to avoid a contradiction
with condition 1.
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of having to consider many collections of opportunity sets is the price to pay for
the necessary condition to be valid independently of any theory of choice. The
many applications presented in this paper and in de Clippel (2012) show how
consistency remains nonetheless workable and can provide important insights.

To illustrate consistency, notice how it is satisfied in the examples from Section
II: for the willpower example, take Oi(x, θ) = Ai ∪ {x}, where Ai ⊆ X is the set
of options that i is “in charge charge of”; for the hiring example, i’s opportunity
set contains x, y, z at all states, in addition to a∗, where a = fij(θ), if i is subject
to the attraction effect at θ, and a∗, for some a 6= fij(θ), if i is rational at θ, while
j’s opportunity set is {x, y, z} at states where i is subject to the attraction effect
(all other opportunity sets contain only the option picked by fij).

Sufficient Condition

The existence of a collection of opportunity sets that is consistent with a SCR
does not guarantee its implementability. For instance, it is well-known under
rationality that an implementable SCR with a full range must pick alternatives
that are top-ranked by all individuals. In the absence of rationality, “top-ranked”
can be replaced by “chosen within X .” The SCR f respects unanimity if x ∈ f(θ)
for any x, θ such that x ∈ ∩i∈ICi(X , θ).

Combining unanimity in this sense with a strengthening of consistency provides
a useful sufficient condition for implementability. The collection O of opportunity
sets is strongly consistent with f if it is consistent with f , and x ∈ f(θ), for all
x, θ for which there exists j, θ′ and x′ ∈ f(θ′) such that x ∈ Ci(X , θ), for all
i 6= j, and x ∈ Cj(Oj(x′, θ′), θ). The condition distiguishing strong consistency
from its plain counterpart shares some resemblance with the unanimity property:
if a state θ is such that all individuals except j include x in their set of choices
from X , and j includes x in his set of choices when facing one of his opportunity
sets in the collection O, then the SCR must include x at θ. We are now ready to
state a partial converse to Proposition 2.a.

Proposition 2.b If f respects unanimity and there exists a collection of oppor-
tunity sets that is strongly consistent with f , then f is Nash implementable.

With rationality, this sufficient condition is also necessary for full-range SCRs
(see Moore and Repullo (1990)). This ceases to be the case when accommodating
bounded rationality. For instance, the full-range SCR that picks the top-choice
of the common long-term goal in Section II is implementable while violating the
sufficient condition from Proposition 2.b.

While Proposition 2.b allows to prove most results in the rest of the paper, a
limit to its applicability comes from the fact that strong consistency and una-
nimity involves restrictions on the SCR as a function of what individuals would
pick when facing X in its entirety. The example from Section II illustrates how
SCRs can sometimes be successfully implemented by decentralizing the burden
of choice, making sure that individuals always face small option sets. The next
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proposition provides a simple alternative sufficient condition that builds on this
insight.

Proposition 2.b’ If there exists a collection of opportunity sets that is consis-
tent with a SCR f , and there exist (Xi)i∈I such that x ∈ f(θ) for each x, θ with
|{i ∈ I | x ∈ Ci(Xi ∪ {x}, θ)}| ≥ |I| − 2, then f is Nash implementable.

Elements in Xi can be interpreted as outside options. In addition to the neces-
sary condition of consistency, f(θ) is required to contain any alternative that all
but at most two individuals would pick at θ when it is available in addition to
their respective outside options. One is free to decide on the content of the sets
Xi, which in particular may be small. This offers a useful alternative to Propo-
sition 2.b (see Proposition 6 below, for instance). The sufficient conditions from
Propositions 2.b and 2.b’ are not necessary though.10 While their proofs suggest
ways to provide finer sufficient conditions, I conjecture that a condition that is
both necessary and sufficient would be so intricate that it would be of limited
help in applications.

Independently of my work, Korpela (2012) studies under which assumptions on
individual behavior, Moore and Repullo’s (1990) conditions remain both necessary
and sufficient for implementability (for SCRs with or without a full range). While
always sufficient, necessity is shown to require Sen’s property α. Unfortunately,
most choice models with bounded rationality violate Sen’s property.11 Korpela’s
sufficient condition is the same as that of Proposition 2.b when considering SCRs
with a full range, as in most of this paper. Ray (2010) shows that implementability
implies a choice-based version of Maskin monotonicity.12 It is not difficult to check
that Ray’s property is satisfied whenever there exists a collection of opportunity
sets that is consistent with a SCR, and that it is too restrictive to provide the
basis for a widely applicable sufficient condition (see de Clippel (2012)).

Proposition 2.a holds also in the case of two individuals. As in Moore and
Repullo (1990) (see the difference between their conditions µ and µ2; as well
as Dutta and Sen (1991)), an additional necessary condition holds in that case:
there exists a function e that associates an element of X to each x, θ, x′, θ′ with
x ∈ f(θ) and x′ ∈ f(θ′), such that (a) e(x, θ, x′, θ′) ∈ O1(x, θ) ∩ O2(x′, θ′), and
(b) e(x, θ, x′, θ′) ∈ f(θ′′), for all θ′′ such that e(x, θ, x′, θ′) ∈ C1(O1(x, θ), θ′′) ∩
C2(O2(x′, θ′), θ′′). Remember indeed that Oi(x, θ) corresponds to outcomes that
i can reach through unilateral deviations when the other individuals play their
part of the Nash equilibrium at θ in the mechanism that implements f . With
only two individuals, columns and rows of such outcomes must intersect, hence
the existence of such a function e. It is not difficult to check that Proposition 2.b

10For instance, the SCR that picks the top-choice of the common long-term goal in the willpower
example from Section II.A is implementable but does not satisfy either sufficient conditions when ki = 1
for all i and |I| = |X | = 3.

11For instance, it implies rationality for single-valued choice correspondences.
12This property previously appeared in Aizerman and Aleskerov (1986), who extend Arrow’s impos-

sibility theorem when aggregating arbitrary individual choice correspondences.
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applies with two individuals after adding this condition. Clearly, Proposition 2.b’
applies only when there are three or more individuals.

IV. Efficiency

With rational individuals, an option is said to be (weakly) Pareto efficient if
there is no alternative that is unanimously strictly preferred. The Pareto SCR
provides a classic example of SCR that is Nash implementable. In this section, I
discuss possible extensions of the Pareto principle when individual choices need
not be consistent with the maximization of a well-behaved preference.

Maximal and Minimal Implementable Extensions

A SCR f : Θ→ X is an extension of the Pareto SCR if Θ contains all profiles of
rational choice correspondences and f(θ) coincides with the set of Pareto efficient
options when choice correspondences are rational at θ. It is a maximal imple-
mentable extension if it is Nash implementable and contains any implementable
extension of the Pareto SCR. It turns out that there exist multiple implementable
extensions of the Pareto SCR, that there exists a maximal implementable exten-
sion, which also admits a simple expression and is closely related to Sugden’s
(2004) opportunity criterion.

Say that an option x is efficient given a profile of individual choice corre-
spondences if one can find a collection of implicit opportunity sets, one for each
individual, such that all individuals would pick x out of their own implicit op-
portunity sets, and all the options have been accounted for, in the sense that any
option in X belongs to the implicit opportunity set of at least one individual.
Formally,

feff (θ) = {x ∈ X |(∃(Yi)i∈I subsets of X ) : x ∈ Ci(Yi, θ), for all i, and X = ∪i∈IYi},

for each θ ∈ Θ.13

PROPOSITION 3: feff is Nash implementable on all domains, and is the max-
imal implementable extension of the Pareto SCR.

Sugden (2004, pages 1016-17) writes: “In normative economics, there is an in-
creasing interest in criteria of opportunity rather than of preference satisfaction.
In opportunity-based theories, value is attached to the size and richness of an
individual’s opportunity set - that is, the set of options from which he is free to
choose.” The use of implicit opportunity sets in the definition of feff is in line
with this point of view. In fact, the property imposed on implicit opportunity
sets used to justify the efficiency of an option is closely related to the opportunity

13Notice that feff has non-empty values, since it contains any option x such that x ∈ Ci(X , θ), for
some i ∈ I, in the same way that any most preferred alternative of any individual is always Pareto
efficient when choices are rational.
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criterion proposed by Sugden (2004) for economic environments with private con-
sumption. This relation will be made precise in the context of housing markets
studied in the next section.

Remarkably, there is also a non-empty minimal implementable extension of the
Pareto SCR, which is a simple, intuitive variant of feff . The only difference is
that implicit opportunity sets are required to be essentially disjoint. Formally,
for each θ, let f̂eff (θ) be the set of options x for which one can find a collection
(Yi)i∈I of subsets of X such that x ∈ Ci(Yi, θ), for all i, Yi ∩ Yj = {x}, for all
i 6= j, and X = ∪i∈IYi. The process of accounting for all alternatives is now fully
“decentralized,” with each individual facing a distinct subset of alternatives to
test against the option being sustained. Clearly f̂eff ⊆ feff , and f̂eff has non-
empty values.14 The SCR f̂eff is the minimal implementable extension of the
Pareto SCR in the sense that f̂eff ⊆ f , for each Nash implementable extension
f of the Pareto SCR.

PROPOSITION 4: f̂eff is Nash implementable on all domains, and is the min-
imal implementable extension of the Pareto SCR.

Bernheim and Rangel’s (2009) Notion of Efficiency

The question of how to extend the Pareto principle beyond the rational domain
is being debated in the recent literature. Bernheim and Rangel (2009) posit
that an option a is (strictly) unambiguously preferred to an alternative b given a
choice correspondence C if b 6∈ C(S), for all S containing a. Though necessarily
incomplete when Property α is violated, this revealed ordering and the associated
Pareto ranking may allow to compare some options. An option is BR-efficient
if there is no alternative that is unambiguously preferred by all individuals. Let
f bre be the SCR that associates to each state θ the set of BR-efficient options at
θ.

I now show that feff (and hence any implementable extension of the Pareto
SCR) is a selection of f bre, and that BR-efficient options need not belong to feff .
Say that a SCR is weakly Nash implementable if it contains a Nash implementable
SCR. By Proposition 3, we can conclude that f bre is weakly Nash implementable,
but not Nash implementable.

PROPOSITION 5: feff ⊆ f bre, and there exist states θ for which feff (θ) (
f bre(θ). Hence, f bre is weakly Nash implementable, but not Nash implementable.

Weak implementation guarantees that equilibrium outcomes systematically be-
long to the SCR, but leaves open the possibility that there may be states at which
outcomes picked by the SCR cannot be achieved at equilibrium. It is thus weaker
than the notion of (full) implementation introduced in Section I and studied in

14Again, any option x such that x ∈ Ci(X , θ), for some i, belongs to f̂eff (θ) (simply take Yi = X and
Yj = {x}, for all j 6= i).
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a majority of the implementation literature with rational individuals. There are
reasons to prefer full over weak implementability, see e.g. Thomson (1996). Even
so, learning that a SCR is weakly implementable is valuable, and may be sufficient
to fulfill the goal of the mechanism designer in some circumstances.

Pareto Efficiency for ‘True’ Underlying Preferences

Some models of bounded rationality offer structured departures from rational-
ity, with new primitives (e.g. consideration sets, or salience ordering) influencing
choices in addition to preferences. In such circumstances, welfare analysis could
be conducted in terms of the ‘true’ underlying preferences, as suggested for in-
stance by Rubinstein and Salant (2008, 2012), Manzini and Mariotti (2012), and
Masatlioglu, Nakajima and Ozbay (2012). Is Pareto efficiency in that sense Nash
implementable?

To tackle this question, consider choice models where individuals are rational
when facing small choice problems; let’s say binary problems so as to encompass
as many choice correspondences as possible. Formally, states are restricted to the
set Θ∗ with the following property: for each θ ∈ Θ∗, there exists a preference
profile (�i)i∈I such that x �i y if and only if x ∈ Ci({x, y}, θ).

The Pareto SCR fpar associates to each θ ∈ Θ∗ the set of options that are
Pareto efficient for the unique preference profile defined by pairwise choices at
θ. Thinking in terms of implicit opportunity sets is helpful to study the imple-
mentability of fpar. Consider for instance a state where all individual preferences
coincide. Pareto efficiency requires picking the common top element, say x. Sup-
pose however that individuals do not pick x when facing large choice problems
(e.g., they opt for a more salient option when overwhelmed by too many options).
With only few individuals compared to the number of options available, any col-
lection of implicit opportunity sets that is consistent with fpar (see Proposition
2.a) must omit some alternative y. By consistency, the SCR must still pick x at
states where y Pareto dominates x, which means that fpar is not implementable
when there are only few individuals.

With sufficiently many individuals, however, it is possible to better decentralize
the burden of choice.15 Consider a selection of f̂eff , where each implicit opportu-
nity set Yi used to justify an option x is required to contain at most two elements.
The condition X = ∪i∈IYi then implies that x is Pareto efficient, since individuals
are rational over binary problems. With sufficiently many individuals, one can
show that there always exists at least one Pareto efficient option x that can be
justified via binary implicit opportunity sets, and that the variant of f̂eff is Nash
implementable, which means that fpar is weakly Nash implementable. Even with
many individuals, not all Pareto efficient options can be obtained this way, and
fpar as a whole is not implementable.

15A similar idea already proved useful to establish Proposition 1.
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PROPOSITION 6: If |I| ≥ 3|X |, then fpar is weakly Nash implementable. On
the other hand, fpar is not Nash implementable, whatever the number of individ-
uals, and no selection of fpar is Nash implementable if |I| ≤ |X | − 2.

Illustration

To better grasp what differentiates the concepts discussed in this section, con-
sider three individuals, I = {1, 2, 3}, who pick options from X = {a, b, . . . , z}.
In all scenarios below, each individual’s choices are among the top two feasible
elements for some underlying preference.

In a first scenario, all three individuals have the same alphabetical preference
a � b � · · · � z. While the first individual systematically maximizes that order-
ing, the other two systematically pick the second-best option (a choice procedure
first studied by Baigent and Gaertner (1996), and further discussed in Kalai, Ru-
binstein and Spiegler (2002)). All options are BR-efficient: options other than a
are not unambiguously dominated by any alternative for individuals 2 and 3, and
a is not unambiguously dominated by any alternative for the first individual. The
SCR fpar is applicable to the extent that pairwise choices of all three individuals
appear transitive. However, the concept is meaningful only if one believes that
individuals maximize preferences in pairwise choices, which contradicts the story
of how choices emerge in this scenario. Applying fpar gives X in its entirety as
for BR-efficiency, since the pairwise choices of the first individual are always dif-
ferent from those of the other two individuals. The SCRs feff and f̂eff happen
to coincide, both selecting {a, b, c}.16

In a second scenario, the first individual also picks the second-best option for
the alphabetical order. BR-efficiency now selects X \ {a}, fpar selects {z}, while

feff and f̂eff both select {b, c, d}.
More generally, if the three individuals’ choices always belong to the top two

elements of underlying preferences, then for each option selected by feff (and a

fortiori f̂eff ), it is impossible to find more than three alternatives that Pareto
dominate it for these underlying preferences, thus never picking an option that is
too inefficient.

To find a case where feff and f̂eff differ, suppose that all three individuals
maximize the common alphabetical preference in all problems containing less than
twenty elements, but may happen to make a small mistake, picking at worst the
second-best option, when facing larger sets. Suppose in particular that c is picked
both out of {a, c, d, . . . , z} and out of {b, c, d, . . . , z}. In this scenario, c belongs
to feff , using the implicit opportunity sets Y1 = {c}, Y2 = {a, c, d, . . . , z}, and

Y3 = {b, c, d, . . . , z}, but not to f̂eff .17

16Indeed, a is picked by the first individual out of X , b is picked by the second individual out of X ,
and implicit opportunity sets supporting c are Y1 = {c, d, . . . , z}, Y2 = {a, c} and Y3 = {b, c}. However,
there is no way to find implicit opportunity sets supporting options d to z, as they are dominated in the
common underlying ordering by more than two options.

17To support c, at least one implicit opportunity set must contain a, c, and at least 18 other elements
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V. Housing Markets

Results from Section III are now applied to Shapley and Scarf’s (1974) housing
market, which captures key features of exchange economies and matching prob-
lems. Individuals each own one indivisible object h∗i , their initial endowment.
The set of all available objects is given by H = {h∗i | i ∈ I}, while the set of
allocations achievable through trade is given by X = {x ∈ HI | xi 6= xj , ∀i 6= j}.

In most matching models, preferences over objects are strict, and individuals
care only about their own consumption. I follow the same methodology, but
without requiring individuals to be rational. For each S ⊆ X , let Si be the set
of objects that accrue to i in the different elements of S. At each θ, individual
i’s choices among objects are captured by a function γi(·, θ) : P (H)→ H, where
P (H) is the set of subsets of H. His choice correspondence over allocations is
then given by: Ci(S, θ) = {x ∈ S | xi = γi(Si, θ)}, for each S ⊆ X .

Efficiency

The SCR feff identified in the previous section admits an equivalent formula-
tion in terms of opportunity sets of objects instead of opportunity sets of alloca-
tions: an object allocation x ∈ X belongs to feff (θ) if and only if18 there exists a
collection (Zi)i∈I of subsets of objects such that (a) xi = γi(Zi, θ), for each i ∈ I,
and (b) for each allocation y ∈ X there exists at least one individual j for which
Zj contains yj .

Any allocation x for which γi(H, θ) = xi for some i belongs to feff . Yet, there
might be two rational individuals j and k who would be better off by consuming
xk and xj respectively. Under rationality, an option is strongly Pareto efficient
if there is no alternative that leaves everyone at least as well off, and makes
someone strictly better off. Interestingly, Proposition 3 admits an analogue for
strong Pareto in housing markets.19 Say that an allocation x ∈ X belongs to
fs.eff (θ) if there exists a sequence (Zi)i∈I of subsets of objects such that (a)
xi = γi(Zi, θ), for each i ∈ I, and (b) for each allocation y ∈ X \ {x} there exists
at least one individual j for which Zj \ {xj} contains yj . Observe that condition
(b), interpreted as a property of the collection (Zi)i∈I of opportunity sets, is
precisely Sugden’s (2004) “Opportunity Criterion.”

different from b, while another implicit opportunity set must contain b, c, and at least 18 other elements
different from a. These two implicit opportunity sets will have to contain a common option other than

c, which is incompatible with c ∈ f̂eff .
18If the original definition is satisfied with the collection (Yi)i∈I of subsets of X , then the new definition

is satisfied with Zi = {yi | y ∈ Yi}, for each i ∈ I. Conversely, if the new definition is satisfied with the
collection (Zi)i∈I of subsets of H, then the original definition is satisfied with Yi = {y | yi ∈ Zi}, for
each i ∈ I.

19As is well-known, the strong Pareto SCR is not always Nash implementable. This is why its exten-
sions were not discussed in the general framework of the previous section. However, implementability
does prevail in housing markets if individuals have strict preferences (with individual i being indifferent
between two allocations x and y if and only if xi = yi).
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PROPOSITION 7: fs.eff is the maximal implementable extension of the strong
Pareto SCR.

It remains unknown whether strong Pareto admits a minimal implementable
extension. However, I can propose an implementable extension that is close to
being minimal. Let π : I → {1, . . . , n} be an enumeration of the individuals, and
Π be the set of all such enumerations. The serial dictatorship SCR associated
to π, denoted fπ, is defined by induction: for each k, individual j with π(j) =
k receives the object γj(H \ Sk, θ), where Sk is the set of objects allocated to
individuals who precede j in the enumeration. Hence, j is effectively free to choose
from an opportunity set whose content is given by his rank and what individuals
with lower rank pick. Let then fSD be the SCR obtained by considering all
possible enumerations π, fSD(θ) = ∪π∈Πf

π(θ), and f̂ s.eff be the SCR defined

by: f̂s.eff (θ) = fSD(θ) ∪ {x ∈ X | ∃j, ∀i 6= j : γi(H, θ) = xi}.

PROPOSITION 8: f̂s.eff is Nash implementable. If f is an implementable ex-
tension of the strong Pareto SCR, then fSD ⊆ f .

Fundamental Theorems of Welfare Economics

The notion of competitive equilibrium is another central concept in economic en-
vironments with property rights. Opportunity sets play a key role in its definition,
making it easy to extend the concept beyond rational choice. Suppose that ob-
jects’ prices are given by p ∈ RH+ . By selling his or her endowment, i enjoys an in-
come $p(h∗i ); he or she can afford any object whose price is lower or equal to p(h∗i ).
Denote by Bi(p) the corresponding budget set: Bi(p) = {h ∈ H | p(h) ≤ p(h∗i )}.
If the state is θ, then he or she picks γi(Bi(p), θ). A price vector p is a compet-
itive equilibrium if supply equals demand, that is, for each object h there exists
a unique individual i who picks h out of his or her budget set. An allocation is
competitive if there is a competitive equilibrium inducing it.

The same equilibrium notion was introduced and studied by Sugden (2004) and
Bernheim and Rangel (2009) in economies with divisible goods. The focus on
housing markets allows to provide a first existence result. Remarkably, existence
holds independently of the individuals’ choice behavior. With rational individuals,
the (unique) competitive allocation can be found via Shapley and Scarf’s (1974)
top trading cycle procedure. Dropping rationality, I prove in the Appendix that
competitive allocations coincide with the outcome of an extended trading cycle
procedure. Existence of a competitive equilibrium will follow, but multiplicity is
now a possibility.

PROPOSITION 9: There is at least one competitive allocation, sometimes more.

The next proposition provides an extension of the two fundamental theorems
of welfare economics beyond the rational domain.
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PROPOSITION 10: (a) Competitive allocations at θ belong to fs.eff (θ), but
need not belong to other (smaller) implementable extensions of strong Pareto.

(b) Any element of f̂s.eff (θ) is competitive at θ for some endowment. The result
need not hold for other (larger) implementable extensions of strong Pareto.

If individuals are rational at θ, then fs.eff (θ) = f̂s.eff (θ), and Proposition 10
indeed boils down to the well-known theorems of welfare economics.

Some previous attempts at extending the first theorem of welfare economics
to encompass bounded rationality can be found in the literature. Sugden (2004)
proved with divisible goods that any collection of opportunity sets that is market
compatible must satisfy his opportunity criterion. Proposition 10 (a) provides an
analogue for housing markets, phrased in terms of allocations instead of opportu-
nity sets. Bernheim and Rangel (2009) prove that any behavioral equilibrium is
BR-efficient. Proposition 10 (a) refines this result for housing markets since BR
efficiency is more permissive than fs.eff .

Individual Rationality and the Core

Pareto efficiency is desirable, but satisfying it is not sufficient for a trading
mechanism such as competitive markets to be judged appealing. For instance,
serial dictatorship selects outcomes that are Pareto efficient, but need not respect
property rights. As illustration, some rational individual may end up consuming
an object that is worse than his endowment. Fortunately, competitive allocations
are not only Pareto efficient, but also individually rational, and even belong to
the strong core: it is impossible to make all the members of a coalition weakly
better off and at least one of them strictly better off by reallocating their initial
endowments.

The following proposition characterizes the largest implementable extension of
the strong core, shows that it is always non-empty, and refines the first funda-
mental theorem of welfare economics from Proposition 10.(a). For each coalition
S, let F(S) be the set of object allocations that can be achieved by its members,
that is, the set of α ∈ HS such that {αi | i ∈ S} = {h∗i | i ∈ S} and αi 6= αj for
i 6= j. Say that an allocation x belongs to fs.core(θ) if there exists a collection
(Wi)i∈I of subsets of objects such that a) xi = γi(Wi, θ), for each i ∈ I, and b)
for each coalition S and each allocation y ∈ F(S) \ {xS} there exists at least one
individual j for which Wj \ {xj} contains yj .

PROPOSITION 11: fs.core is the maximal implementable extension of the strong
core, it contains competitive allocations, and has thus non-empty values.

Condition b) in the definition of fs.core boils down to condition b) in the def-
inition of fs.eff when S = I. Hence fs.core ⊆ fs.eff . Individual rationality
constraints are captured by considering singleton S’s. It is instructive to see
what these conditions become in presence of general choice functions. Condition
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b) for S = {i} amounts to h∗i ∈ Wi. In other words, initial endowments must
belong to the implicit opportunity sets used to justify an allocation, and property
rights translate into the requirement that individuals must have the freedom to
pick their endowment if they wish to.
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Mathematical Appendix

The proofs of Propositions 1 and 2.a are available in the main text.

Proof of Proposition 2.b

Consider a canonical mechanism as in Maskin (1999) or Moore and Repullo
(1990): Mi = X ×Θ× Z+, for each i ∈ I, with the outcome function µ defined
as follows:

(1) If x ∈ f(θ) and mi = (x, θ, 0) for each i, then µ(m) = x.

(2) If there is j ∈ I and x ∈ f(θ) such that mi = (x, θ, 0), for each i ∈ I \ {j},
and mj = (x′, θ′, α) with (x′, θ′, α) 6= (x, θ, 0), then µ(m) = x′ if x′ ∈
Oj(x, θ), and µ(m) = x otherwise.

(3) In all other cases, µ(m) = x, where x is the first component in the report of
the individual with the lowest index among those who submit the highest
integer.

To show that this mechanism implements f , observe that the set of options
that i can generate through unilateral deviations is Oi(x, θ) if mj = (x, θ, 0) with
x ∈ f(θ), for all j 6= i, and is X otherwise. The first condition of consistency of
O with f implies that, for each x ∈ f(θ), the strategy profile mx(θ) = (x, θ, 0)
forms a Nash equilibrium of the game induced by (M, µ) at θ. The equilibrium
outcome is x. Consider now an equilibrium m at θ′′ whose associated outcome is
y. It remains to show that y ∈ f(θ′′). This follows from the second condition of
consistency if m satisfies the requirements in part (1) in the definition of µ, from
the definition of strong consistency if m satisfies the requirements in part (2) in
the definition of µ, and from unanimity if m satisfies the requirements in part (3)
in the definition of µ. �

Proof of Proposition 2.b’

Consider a variant of mechanism from Proposition 2.b: Mi = X ×Θ×Z+×Xi,
for each i ∈ I, with the outcome function defined as follows:

(1) If x ∈ f(θ) and mi = (x, θ, 0, ·) for each i, then µ(m) = x.
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(2) If there is j ∈ I and x ∈ f(θ) such that mi = (x, θ, 0, ·), for each i ∈ I \{j},
and mj = (x′, θ′, α, ·) with (x′, θ′, α) 6= (x, θ, 0), then µ(m) = x′ if x′ ∈
Oj(x, θ), and µ(m) = x otherwise.

(3) In all other cases, µ(m) = xi, where xi is the fourth component in the
report of the individual i with the lowest index among those who submit
the highest integer.

The difference with the mechanism from the proof of Proposition 2.b is thus
that each individual i includes an element of Xi in his message, which becomes
relevant in part (3) of the mechanism. As in the proof of Proposition 2.b, the fact
that O is consistent with f implies that x is a Nash equilibrium outcome at θ, for
each x ∈ f(θ), and that any outcome associated to a Nash equilibrium at θ′ that
satisfies the requirements in part (1) in the definition of the modified mechanism
belongs to f(θ′). Suppose next that m is a Nash equilibrium at θ′′ satisfying the
requirements of parts (2) or (3), resulting in an outcome y. It is easy to check
that there are at least |I| − 2 individuals k such that the set of outcomes they
can generate through unilateral deviations is Xk ∪ {y}, and y ∈ Ci(Xk ∪ {y}, θ′′)
by definition of Nash equilibrium. Hence y ∈ f(θ) and f is implementable, as
desired. �

Proof of Proposition 3

By definition, one can associate to any x ∈ feff (θ) a collection (Yx,θi )i∈I of

subsets of X such that x ∈ Ci(Yx,θi , θ), for each i ∈ I, and X = ∪i∈IYx,θi . Then

the collection O = {Yx,θi | i ∈ I, x ∈ feff (θ), θ ∈ Θ} of opportunity sets is
consistent with feff . Strong consistency of O with feff and the fact that feff

respects unanimity follow from the fact that feff (θ) includes any x such that
x ∈ Ci(X , θ), for some i ∈ I. Hence feff is Nash implementable, by Proposition
2.b.

To show that feff extends the Pareto SCR, suppose that individual choice
correspondences are rational at θ. If x is Pareto efficient, then it is easy to check
that x ∈ feff (θ) by taking Yi as the lower contour set of x for i. Conversely,
suppose that the collection (Yi)i∈I of implicit opportunity sets justify why x ∈
feff (θ). For any element y of X , there exists i such that y ∈ Yi, since X = ∪iYi,
and hence y is in the lower contour set of x for i, since x ∈ Ci(Yi, θ). This proves
that x is Pareto efficient.

I can now show that feff is the maximal implementable extension of the Pareto
SCR. Suppose instead that there exist a Nash implementable extension f of the
Pareto SCR, a state θ, and an option x ∈ f(θ) \ feff (θ). By Proposition 2.a, let
O be a collection of opportunity sets that is consistent with f . Since x 6∈ feff (θ),
there must exist y ∈ X \

⋃
i∈I Oi(x, θ). Consider then any state θ′ where all

individuals maximize a preference that ranks y as the unique top best option,
and x as the unique second best option. Notice that Ci(Oi(x, θ), θ

′) = x, for all
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i, and hence x ∈ f(θ′). This contradicts the fact that f extends the Pareto SCR,
since x is not Pareto efficient at θ′. �

Proof of Proposition 4

The proof that f̂eff is Nash implementable on all domains is similar to that of
Proposition 3, and is left to the reader (remember in particular footnote 14 when
checking unanimity and strong consistency)

I now check that f̂eff extends the Pareto SCR. Suppose that individual choice
correspondences are rational at θ. If x is Pareto efficient, then it is easy to check
that x ∈ f̂eff (θ) by taking Yi = {x} ∪ Y ′i, where Y ′i is the lower contour set of x
for i minus the union over j < i of the lower contour sets of x for j. Conversely,
if x ∈ f̂eff (θ) ⊆ feff (θ), then it is Pareto efficient by Proposition 3.

Finally, let f be a Nash implementable extension of the Pareto SCR. I show that
f̂eff ⊆ f . Let (Yi)i∈I be a collection of implicit opportunity sets that justifies why

x ∈ f̂eff (θ). Let then θ′ be a state where each individual i is rational, ranking x
strictly above all other elements of Yi, and strictly below all elements of X \ Yi.
Since X = ∪i∈IYi, x is Pareto efficient at θ′, and x ∈ f(θ′). By Proposition 2.a,
let O be a collection of opportunity sets that is consistent with f . In particular,
Oi(x, θ

′) ⊆ Yi, for each i. Suppose now that there exist an individual i and an
option z ∈ Yi \ Oi(x, θ′). Since Yi ∩ Yj = {x}, there is no individual j such that
z ∈ Oj(x, θ′). Consider then a state θ′′ that differ from θ′ only in that z is the
unique top-best option for all individuals. We have Cj(Oj(x, θ

′), θ′′) = {x}, for
each j, and hence x ∈ f(θ′′), a contradiction since f coincides with the Pareto
SCR at θ′′ while z Pareto dominates x at θ′′. To avoid this contradiction, it must
be that Oi(x, θ

′) = Yi, for each i. Since x ∈ Ci(Yi, θ), for all i, it follows that
x ∈ f(θ), as desired. �

Proof of Proposition 5

To show that any option x ∈ feff (θ) is BR-efficient at θ, let (Yi)i∈I be a
collection of implicit opportunity sets justifying why x ∈ feff (θ). For each al-
ternative y, there exists i such that y ∈ Yi, since X = ∪i∈IYi. Hence y does
not unambiguously dominates x for i, given that x ∈ Ci(Yi, θ), and x is thus
BR-efficient.

Next I show that BR-efficient options need not belong to feff . Start by
enumerating the elements of X : X = {x1, . . . , xK}. Let C∗ be the rational
choice correspondence that systematically picks the element with smallest in-
dex: C∗(S) = {xmin{k|xk∈S}}, for each S ⊆ X . Consider a state θ at which
Ci(·, θ) = C∗(·), for each i 6= 1, C1({xk, xK}, θ) = {xK}, for each k, and
C1(S, θ) = C∗(S), for all other subsets S of X . Option xK is BR-efficient, since
xK is not unambiguously dominated by any alternative for the first individual
(see pairwise choices). However, xK 6∈ feff (θ). Indeed, implicit opportunity sets
justifying why x might be efficient, must be the singleton {xK} for individuals
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other than 1 (xK is the worst option for them), and must be {xK} or a pair that
contains xK for individual 1 (in order for him to pick xK). Hence, X 6= ∪i∈IYi,
and xK 6∈ feff (θ), as claimed.

Weak implementability of f bre, and the fact that f bre is not Nash implementable
then follows from Proposition 3. �

Proof of Proposition 6

The result holds trivially when X contains only two elements, since individuals
are rational in that case. It is thus assumed throughout the proof that X contains
at least three elements.

For each θ ∈ Θ∗, let f(θ) be the set of options x for which one can find a
collection (Yi)i∈I of subsets of X such that |Yi| ≤ 2, x ∈ Ci(Yi, θ), for all i,

Yi ∩ Yj = {x}, for all i 6= j, and X = ∪i∈IYi. This is simply a selection of f̂eff ,
where each implicit opportunity set used to justify an option contains at most
two elements. To check that f ⊆ fpar, let x ∈ f(θ) and suppose that there exists
y such that y �θi x, for all i. This means that x 6∈ Ci({x, y}, θ), for all i, but this
contradicts the definition of x, since Yj = {x, y} for some j.

If |I| ≥ |X |− 1, then f(θ) 6= ∅, for all θ ∈ Θ∗. To check this, define xi as one of
the �θi -minimal elements in X \{x1, . . . , xi−1}, by induction on i = 1, . . . , |X |−1,
and let x be the remaining element in X \ {x1, . . . , x|X |−1}. Clearly, x ∈ f(θ)
(using Yi = {xi, x}, for all i = 1, . . . , |X | − 1, and Yi = {x}, for all i ≥ |X | − 1).

For each x ∈ f(θ), let (Yx,θi )i∈I be a collection of subsets of X justifying why

x ∈ f(θ). Clearly, the collection O = {Yx,θi | i ∈ I, x ∈ f(θ), θ ∈ Θ} is consistent
with f . Checking the other condition of Proposition 2.b’ will prove that f is
implementable.20 Let x1, . . . , x|X | be an enumeration of X , and Xi = {x(i)mod|X |},
for each i ∈ I. If x, θ are such that |{i ∈ I | x ∈ Ci({x(i)mod|X |, x}, θ)}| ≥ |I| − 2,
then for each y ∈ X there exists i such that x ∈ Ci({x, y}, θ) (since |I| ≥ 3|X |).
Hence x ∈ f(θ) and f is implementable.

I now show, by contradiction, that fpar is not Nash implementable (indepen-
dently of the number of individuals). Otherwise, let O be a collection of oppor-
tunity sets that is consistent with fpar. Consider a state θ ∈ Θ∗ at which the
first individual ranks x strictly above all other options (according to pairwise
choices), while other individuals have the opposite ranking. Suppose in addition
that the first individual does not pick x out of sets that contain three or more
options, while other individuals are rational. The first condition of consistency
implies that Oi(x, θ) = {x}, for all i ≥ 2, while O1(x, θ) contains x and at most
one other element y. Consider then z 6= x, y, and a rational state θ′ ∈ Θ∗ where
all individuals rank z top, and x second-best. By consistency, x must belong to
fpar(θ′), a contradiction.

20Proposition 2.b does not apply, as O is not necessarily strongly consistent with f , and f need not
respect unanimity.
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Suppose now that |I| ≤ |X | − 2. I prove, by contradiciton, that there is no se-
lection of fpar that is Nash implementable. Otherwise, let f be an implementable
selection, and let O be a collection of opportunity sets that is consistent with f .
Consider a state θ ∈ Θ∗ where pairwise choices rank x as the top element for
all individuals, while they do not pick x out of sets that contain three or more
options. Hence f(θ) = x, and Oi(x, θ) contains x plus at most one other option,
for each i, by the first consistency condition. Since |I| ≤ |X |−2, there must exist
y ∈ X \ (

⋃
iOi(x, θ)). Consider then a rational state θ′ ∈ Θ∗ where all individuals

rank y top, and x second-best. By consistency, x must belong to f(θ′), while
f(θ′) = y, a contradiction. �

Proof of Proposition 7

To show that fs.eff extends strong Pareto, suppose that γi(·, θ) is rational at
θ, for each i, and let Zi be the union of {xi} with the (strict) lower contour set
(in H) of xi for i. By definition, x is strongly Pareto efficient at θ if and only
if there is no allocation y ∈ X \ {x} such that for each j, yj = xj or yj belongs
to the (strict) upper contour set of xj for j. This, in turn, is equivalent to: if
y ∈ X \ {x}, then yj ∈ Zj \ {xj}, for some j. This is also equivalent to the

existence of a collection (Ẑi)i∈I of subsets of H justifying why x ∈ fs.eff (θ), as

desired. The necessary condition is trivial - simply take Ẑi = Zi for each i. For
the sufficient condition, simply notice that yj ∈ Zj \ {xj} if yj ∈ Ẑj \ {xj}, since

Ẑj ⊆ Zj (given that xj = γj(Ẑj , θ)).
Next I show that fs.eff is Nash implementable in all housing markets. By

definition, one can associate to any x ∈ f s.eff (θ) a collection (Zx,θi )i∈I of subsets

of H such that γi(Zx,θi , θ) = xi, for each i ∈ I, and for each y ∈ X \ {x} there

exists j such that yj ∈ Zx,θj \{xj}. With Yx,θi = {y ∈ X | yi ∈ Zx,θi }, for each i, it

is easy to check that O = {Yx,θi | i ∈ I, x ∈ fs.eff (θ), θ ∈ Θ} is consistent with
fs.eff . Next, notice that if the allocation x ∈ X is such that xi = γi(H, θ) for all
individuals i except at most one individual j, then the collection of opportunity
sets (Zi)i∈I where Zi = H for all i 6= j and Zj = {xj} justifies why x ∈ fs.eff (θ).21

Hence fs.eff respects unanimity, O is strongly consisent with fs.eff , and fs.eff

is Nash implementable, by Proposition 2.b.

To conclude, I show that fs.eff is the maximal implementable extension of
strong Pareto. Suppose, to the contrary, that there exist an implementable ex-
tension f , and a state θ such that some option x belongs to f(θ), but not to
fs.eff (θ). By Proposition 2.a, let O be a collection of opportunity sets (subsets
of X ) that is consistent with f . Let Zi = {zi ∈ H | z ∈ Oi(x, θ)}, for each i ∈ I.
Since x 6∈ fs.eff (θ), there must exist y ∈ X \ {x} such that yi 6∈ Zi \ {xi}, for
all i ∈ I. Consider then any state θ′ where each individual i is rational, ranking

21To check condition (b) in the definition of fs.eff , notice that if y 6= x, then there are at least two
individuals i and j such that xi 6= yi and xj 6= yj .
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yi top best, and xi second best (when xi 6= yi, which happens for at least two
individuals since y 6= x). Notice that x ∈ Ci(Oi(x, θ), θ

′), for all i, and hence
x ∈ f(θ′), a contradiciton since f extends strong Pareto and x is not strongly
Pareto efficient at θ′. �

Proof of Proposition 8

To show that f̂s.eff is Nash implementable, consider θ, x with x ∈ f̂s.eff (θ).
If x ∈ fπ(θ) for some enumeration π, then define Hi(x, θ) = {xj | π(j) ≥ π(i)}
and Oi(x, θ) = {y ∈ X | yi ∈ Hi(x, θ)}. If x ∈ f̂s.eff (θ) \ fπ(θ), then there exists
j such that xi = γi(H, θ), for all i 6= j. Define Oi(x, θ) = X , for all i 6= j, and
Oj(x, θ) = {x}. It is easy to check that the resulting collection O is consistent

with f̂s.eff . Strong consistency and unanimity follow from the fact that any
allocation y for which there exists j such that yi = γi(H, θ), for all i 6= j, belongs

to f̂s.eff (θ), by definition.

I now check that f̂s.eff coincides with strong Pareto when individuals are ra-
tional. As is well-known, the set of allocations that are strongly Pareto efficient
coincides with the set of outcomes from serial dictatorship in housing markets
with rational individuals. It remains to show that any allocation x for which
there exists j such that xi = γi(H, θ), for all i 6= j, is strongly Pareto efficient.
Suppose instead that there exists a feasible allocation y such that y 6= x and y
weakly Pareto improves upon x. Given that y 6= x and y is feasible, there exists
at least two individuals i and j such that yi 6= xi and yj 6= xj . Hence both i
strictly prefers yi over xi and j strictly prefers yj over xj , which contradicts the
definition of x.

Finally, let f be an implementable extension of strong Pareto. I conclude the
proof by showing that fSD ⊆ f . Let x = fπ(θ) for some state θ and some
enumeration π of I. Consider a state θ′ where individuals are rational with i
strictly preferring object xj over xi, for all j such that π(j) < π(i), and strictly
preferring xi over xk, for all k such that π(k) > π(i). The allocation x is strongly
Pareto efficient at θ′. Suppose on the contrary that there exists a feasible allo-
cation y 6= x that Pareto improves upon x. Let then j be the individuals for
which π(i) is minimal among all i’s who strictly prefers yi over xi at θ′. Notice
that yk = xk for all individual k who precedes j in π. Given j’s preference at
θ′, him preferring yj over xi implies that there exists k with π(k) < π(j) such
that yj = xk. This contradicts the feasibility of y since both k and j consume
the same object. This proves that x is strongly Pareto efficient at θ′, and hence
x ∈ f(θ′), since f extends strong Pareto. Applying Proposition 2.a, let O be
a collection of implicit opportunity sets that is consistent with f . I now prove
that {yi ∈ H | y ∈ Oi(x, θ

′)} = {xj | π(j) ≥ π(i)}, for all i ∈ I. The fact
that the former set is contained in the latter follows at once from the fact that
x ∈ Ci(Oi(x, θ

′), θ′), for all i ∈ I. To show the opposite inclusion, suppose on
the contrary that there exist two individuals i and j such that π(j) < π(i) and
there is no y ∈ Oi(x, θ′) for which yi = xj . Consider then θ′′ where individuals
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are rational, with the same preferences as in θ′, except that i ranks xj top best.
Clearly, x ∈ Ck(Ok(x, θ

′), θ′′), for each k ∈ I, and x ∈ f(θ′′), by Proposition
2.a. Yet x is Pareto dominated by the allocation z derived from x by exchanging
individuals i and j’s objects: zi = xj , zj = xi, and zk = xk for all k 6= i, j.
This contradicts the fact that f extends strong Pareto. We have thus shown that
{yi ∈ H | y ∈ Oi(x, θ′)} = {xj | π(j) ≥ π(i)}, for all i ∈ I. By definition of x,
xi = γi({xj | π(j) ≥ π(i)}, θ), for all i ∈ I. Hence x ∈ Ci(Oi(x, θ′), θ), for all i,
and x ∈ f(θ), by Proposition 2.a. �

Extended Trading Cycle Procedure

Start by identifying a set H1 of objects which coincides with the set of objects
picked by individuals whose endowment belongs to H1 and whose opportunity set
is H. To check that such a set exists, draw an arc from individual i to individual
j if i’s choice from H is j’s endowment. Sets as H1 correspond to cycles of this
graph, hence the reference to ‘trading cycles.’ The existence of a cycle follows
from the fact that I is finite. Given such an H1, look for a set H2 of differ-
ent objects which coincides with the set of objects picked by individuals whose
endowment belongs to H2 and whose opportunity set is H \ H1. By iteration,
the extended trading cycle procedure delivers a partition (Hk)Kk=1 of H such that
Hk = {γi(∪Kl=kHl, θ) | i such that h∗i ∈ Hk}, for each k. Individual i consumes
the object γi(∪Kl=k(i)Hl, θ), where k(i) is the index k such that h∗i ∈ Hk. When

rational, individuals get to consume their most preferred object among those that
remain at the time they exit in the procedure, hence the modifier ‘top’ used by
Shapley and Scarf. If individual choices satisfy IIA, then the outcome of the pro-
cedure does not depend on which cycle is realized at each round of the procedure
when multiple such cycles exist. In the absence of rationality, however, the order
of elimination may matter, and the procedure may deliver multiple allocations.22

LEMMA 1: An allocation is competitive if and only if it is an outcome of the
extended trading cycle procedure.

Proof: Let p be a competitive equilibrium whose associated outcome is x, i.e. xi =
γi(Bi(p), θ). Define H1 as the set of objects that are most expensive, H2 as the set
of objects that are most expensive among remaining objects, etc. If an individual
i’s endowment belongs to Hk, then Bi(p) = ∪Kl=kHl and xi = γi(∪Kl=kHl, θ). For
each h ∈ H1, there exists i such that xi = h. Given that only individuals whose
endowment belongs to H1 can afford objects in H1, it must be that h∗i ∈ H1.
Hence H1 ⊆ {xi | h∗i ∈ H1}. Given that both sets have the same cardinality, the
inclusion must be an equality. Applying this argument inductively, it follows that
Hk = {xi | h∗i ∈ Hk}, for each k, as desired.

22Bade (2008) offers a first analysis of this extended trading cycle procedure. She shows that resulting
allocations (which she does not relate to competitive allocations) are efficient and belong to the core
associated to Bernheim and Rangel’s (2009) extended revealed preferences (which are larger sets than
fs.eff and fs.core respectively).
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I now prove that any allocation x obtained via the extended trading cycle
procedure must be competitive. Let (Hk)Kk=1 be the partition of objects that
emerges from the extended trading cycle procedure. Consider the price vector p,
with p(h) = K + 1 − k(h), where k(h) is the index k such that h ∈ Hk. Hence
Bi(p) = ∪Kl=k(h∗i )Hl, xi = γi(B(p), θ), for each i, and Hk = {xi | i such that h∗i ∈
Hk}, for each k. Hence x is a competitive allocation. �

Proof of Proposition 9

Existence follows from Lemma 1, since the extended trading cycle procedure
delivers at least one allocation in each state.

As for multiplicity, consider the following housing market. Individuals suf-
fer from a status-quo bias when they are overwhelmed by too many options:
γi(S, θ) = h∗i when S contains m alternatives in addition to h∗i (where m is a
positive integer smaller than |H|). Otherwise, they pick a choice by maximizing
preferences. The allocation where all individuals keep their endowments is com-
petitive, e.g. with all prices equal to one. Let now J be any set of at most m
individuals, and let xJ be the unique competitive allocation that prevails when
trade occurs only among members of J . This allocation can be derived by apply-
ing Shapley and Scarf’s top trading cycle procedure since individuals maximize
their preferences when facing opportunity sets with fewer than m objects. The
allocation y that coincides with xJ for members of J , while other individuals
consume their endowmenta, is competitive. Indeed, let pJ be prices supporting
xJ for J , and let p̄ be a price that is larger than the maximal component of pJ .
Then y is supported by the price vector q, where qi = pi, for all i ∈ J , and qi = p̄,
for all i ∈ I \ J . Clearly, xJ 6= h∗J for many preference profiles, and hence it is
possible to have multiple competitive allocations. �

Proof of Proposition 10

(a) To show that competitive allocations at θ belong to fs.eff (θ), let x be such
a competitive allocation, with associated prices p. Observe that p(xi) = p(h∗i ),
for all i. Indeed, p(xi) ≤ p(h∗i ), for all i, since xi ∈ Bi(p), from which the equality
follows, since

∑
i∈I p(xi) =

∑
i∈I p(h

∗
i ) (given that {xi | i ∈ I} = {h∗i | i ∈ I}).

Let then Zi = Bi(p), for each i. Hence xi = γi(Zi, θ), by definition. It remains to
show that for each y ∈ X \ {x} there exists i such that yi ∈ Zi \ {xi}. Otherwise,
there exists y ∈ X \{x} such that for each i, either yi = xi, or yi 6∈ Bi(p). Let J be
the set of individuals i such that xi 6= yi. Notice that J is non-empty since x 6= y.
We get

∑
i∈I p(h

∗
i ) =

∑
i∈I\J p(yi) +

∑
i∈J p(h

∗
i ) <

∑
i∈I p(yi) =

∑
i∈I p(h

∗
i ), a

contradiction. The first equality follows from p(h∗i ) = p(xi), as shown earlier, and
xi = yi for i ∈ I \ J . The inequality follows from p(h∗i ) < p(yi) for i such that
yi 6∈ Bi(p). The last equality follows from {yi | i ∈ I} = {h∗i | i ∈ I}.

I now show that the extension of the first fundamental theorem of welfare
economics does not hold with f̂s.eff instead of fs.eff . Consider a housing market
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with at least four individuals, and a state θ such that γ1(S, θ) = h∗2 if and only if
S = H or {h∗2}, γ2(S, θ) = h∗1 if and only if S = H or {h∗1}, and each individual
i ≥ 3 is rational, ranking object h∗1 top best, h∗2 second best, and h∗i+1 third best
(with the convention I + 1 = 3). By Lemma 1, there exists a unique competitive
allocation x, with x1 = h∗2, x2 = h∗1, and xi = h∗i+1, for each i ≥ 3. Yet x 6∈
f̂s.eff (θ). Suppose, by contradiction, first that x = fπ(θ), for some enumeration
π of I. No individual i with i ≥ 3 can come first or second, as his or her preference
would result in him or her consuming h∗1 or h∗2, which is different from xi. Then
the second individual in the enumeration π (either 1 or 2) picks an object different
than the one he or she is allocated under x. Next, there cannot be an individual
j such that xi = γi(H, θ) for all i 6= j, as at least one such i will be greater or

equal to 3 and that individual picks h∗1 out of H instead of xi. Hence, x 6∈ f̂s.eff ,
as desired.

(b) I start by proving that allocations in f̂ s.eff are competitive for some initial
endowments. Consider a state θ and an allocation x such that x = fπ(θ), for
some enumeration π of I. Suppose then that i’s endowment is object xi. Then,
x constitutes a competitive allocation which is supported by the price vector
p(xi) = I + 1 − π(i), for each i ∈ I. Suppose now that there exists j such that
xi = γi(H, θ), for all i 6= j. Then x constitutes a competitive allocation when
j’s endowment is xj (other endowments can be set arbitrarily). Indeed, it is
supported by the prices p(xj) = 1 and p(xi) = 2, for all i 6= j.

Next I show that there exist θ, x such that x ∈ fs.eff (θ) and yet x is not
competitive for any reallocation of endowments. Consider for instance a state
where individuals i = 1, . . . , I − 1 suffer from a status-quo bias when too many
options are available: γi(H, θ) = h∗i , for all i ≤ I − 1. On the other hand,
individuals’ choices are derived from the maximization of a strict preference when
opportunity sets are smaller, with individual i ranking h∗i+1 top best. To make the
example as simple as possible, assume that any such individual is rational when
facing no more than I − 1 options. Individual I is fully rational, systematically
maximizing a preference ordering that ranks h∗1 top best. The allocation x where
xi = h∗i+1 for each i (with the convention I+1 = 1), belongs to f s.eff (θ). To check
this, take Zi = H \ {h∗1}, for all i < I, and ZI = H. Notice that γi(Zi, θ) = h∗i+1,
for each i. Take any y ∈ X \{x}. There must exist at least two individuals, i and
k, such that yi 6= xi and yk 6= xk. If either i or k equals I, then we have found
an individual j such that yj ∈ Yj \ {xj}, since YI = H. If both i 6= I and k 6= I,
then at least one of them receives an object that is different from h∗1. Again, we
have found an individual j such that yj ∈ Yj \ {xj}, and we have thus proved
that x ∈ fs.eff (θ). On the other hand, there is no allocation of endowments that
make x competitive. Suppose on the contrary that the allocation of endowments
w and the price vector p makes x competitive. Some object(s) must be among
those that are most expensive, and individual(s) owning it (or them) under w can
afford any object. Given that xi 6= h∗i for each i < I, there must be some objects
that i cannot afford, and hence h∗i ’s price is not maximal. Hence p(h∗I) > p(h∗i ),
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for all i < I. This contradicts xI−1 = h∗I , since I − 1 cannot afford this object. �

Proof of Proposition 11

To show that fs.core extends the strong core, suppose that each individual choice
function γi(·, θ) is rational at θ. For each i, let Wi be the union of {xi} with the
(strict) lower contour set (in H) of xi for i. By definition, x belongs to the strong
core at θ if and only if there is no coalition S and no allocation y ∈ F(S) \ {xS}
such that for each j ∈ S, yj = xj or yj belongs to the (strict) upper contour set
of xj for j. This, in turn, is equivalent to: for all coalition S, if y ∈ F(S) \ {xS},
then yj ∈ Wj \ {xj}, for some j. This is also equivalent to the existence of a

collection (Ŵi)i∈I of subsets of H justifying why x ∈ fs.core(θ), as desired. The

necessary condition is trivial - simply take Ŵi =Wi for each i. For the sufficient
condition, observe that yj ∈ Wj \ {xj} if yj ∈ Ŵj \ {xj}, since Ŵj ⊆ Wj (given

that xj = γj(Ŵj , θ)).
Let’s check that fs.core is Nash implementable in all housing markets. By

definition, one can associate to any x ∈ fs.core(θ) a collection (Wx,θ
i )i∈I of subsets

of H such that γi(Wx,θ
i , θ) = xi, for each i ∈ I, and for each S ⊆ I and each

y ∈ F(S) \ {xS}, there exists j ∈ S for which Wx,θ
i \ {xj} contains yj . Define

Oi(x, θ) as {x} union the set of y ∈ X such that yi ∈ Wx,θ
i , yj = h∗i where j is

the individual such that yi = h∗j , and yk = h∗k, for all k 6= i, j. The set Oi(x, θ)
is constructed so that the set of objects that i can get by picking elements of

Oi(x, θ) is precisely Wx,θ
i . In addition, elements y of Oi(x, θ) that are different

from x are constructed so as to minimize the number of trades needed to give yi
to individual i.

By construction, O = {Oi(x, θ) | i ∈ I, x ∈ fs.core(θ), θ ∈ Θ} is consistent with
fs.core. Next, notice that if the allocation x ∈ X is such that xi = γi(H, θ) for all
i, then the collection of opportunity sets (Wi)i∈I where Wi = H for all i justifies
why x ∈ f s.core(θ). Hence fs.core respects unanimity. To show that O is strongly
consistent with fs.core, consider an allocation x ∈ X for which xi = γi(H, θ) for all
individuals i 6= j, and x ∈ Cj(Oj(x′, θ′), θj) for some x′ ∈ fs.core(θ′). I check that
x ∈ fs.core(θ), using the collection (Wi)i∈I of implicit opportunity sets defined by

Wi = H, for i 6= j, and Wj = Wx′,θ′

j . Otherwise, there exist a coalition S and

y ∈ F(S) \ {xS} such that yi 6∈ Wi \ {xi}, for all i ∈ S. This is possible only if

j ∈ S, yi = xi for all i ∈ S \ {j}, yj 6= xj , yj 6∈ Wx′,θ′

j , and x 6= x′. Then xl = h∗j
for the individual l such that xj = h∗l , and xk = h∗k, for all k ∈ S \ {k, l}, since
x ∈ Cj(Oj(x′, θ′), θ). Feasibility of y, which coincides with x for members of S
different from j, implies that yj = h∗l = xj , a contradiction. Hence O is strongly
consisent with fs.core, and it is Nash implementable, by Proposition 2.b.

Finally, I show that fs.core is the maximal implementable extension of the strong
core. Suppose, to the contrary, that there exist an implementable extension f ,
and a state θ such that some option x belongs to f(θ), but not to f s.core(θ).
By Proposition 2.a, let O be a collection of opportunity sets (subsets of X ) that
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is consistent with f . Let Wi = {zi ∈ H | z ∈ Oi(x, θ)}, for each i ∈ I. Since
x 6∈ fs.core(θ), there must exist S ⊆ I and y ∈ F(S)\{xS} such that yi 6∈ Wi\{xi},
for all i ∈ S. Consider then any state θ′ where each individual i is rational, with
an underlying strict preference that ranks xi top if i ∈ I\S, and ranks yi top best,
and xi second best (when xi 6= yi, which happens for at least one individual since
y 6= x) if i ∈ S. Notice that x ∈ Ci(Oi(x, θ), θ′), for all i, and hence x ∈ f(θ′).
Yet x does not belong to the strong core at θ′ (since all the members of S weakly
prefer y over x, some with a strict preference), thereby contradicting the fact that
f extends strong Pareto. �


