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Abstract

We study the empirical content of simple Sender-Receiver games in which dis-

closures are mandatory but may be obfuscated. We focus on the fungibility

between strategic inference and costly perception, developing a stylized theoret-

ical framework that highlights this channel. Our framework yields crisp testable

implications for equilibrium play, and naturally lends itself to an experimental

design. Our laboratory results show that a large majority of Senders strategi-

cally obfuscate; and an aggregate analysis of Receiver’s stochastic-choice data

suggests Receivers adjust their perception in response to strategic inference.
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1 Introduction

Communication is a key component of many interactions. Pharmaceutical compa-

nies advertise medications to consumers; job candidates recount their qualifications

to potential employers; attorneys provide evidence to defend clients against litigants;

researchers describe their studies to potential participants; food manufacturers report

ingredients to shoppers. These examples share three common features. First, the fa-

vorite action of the informed party only sometimes aligns with that of the uninformed

decision-maker. Second, regulations (or the potential for serious repercussions) force

the informed party to truthfully disclose their information. Finally, without resort-

ing to dishonesty, the informed party can try to mitigate detrimental information

by making it harder to understand (e.g., job candidates dress up resumes, attorneys

submit entire hard drives into evidence instead of just the incriminating files). Con-

cerns about strategic obfuscation have been raised in some of these settings, with

the challenge that obfuscation is in the eye of the beholder. The ‘Belmont report’,1

which lays out the ethical principles governing human-subjects research, warns that

“presenting information in a disorganized and rapid fashion, allowing too little time

for consideration or curtailing opportunities for questioning, all may adversely affect

a subject’s ability to make an informed choice.” Similarly, the FDA considers presen-

tational choices such as typesetting when deciding whether an advertisement violates

legal requirements to provide a “fair balance” of risks and benefits.2 And the federal

law mandating the disclosure of genetically-modified ingredients itself spurred contro-

versy with its requirement that food packaging either label GMOs in clear language,

or include a QR code linking to a site where the information can be found (the food

industry backed the latter approach).3

But if obfuscation occurs only when information is detrimental, then witness-

ing obfuscation reveals information by itself, and impacts the effort a rational agent

should exert to sift through the message’s content. In other words, strategic sophisti-

1National Commission for the Protection of Human Subjects of Biomedical and Behavioral Re-
search (1979), downloadable from the Office for Human Research Protections.

2See the FAQ Does the law say anything about the design of ads for prescription drugs?
3See Public Law 114-216. While proponents touted the law for mandating disclosure, some

advocacy groups derided it as the “DARK Act,” for Deny Americans the Right to Know. The
controversy is described, for instance, in the WSJ article Consumer Advocates Wary of Digitally
Coded Food Labels, and the Huffington Post entry Obama Expands Monsanto Doctrine By Signing
DARK Act And Invalidating Vermont GMO Labeling Law.

1

http://www.hhs.gov/ohrp/humansubjects/guidance/belmont.html
https://www.fda.gov/drugs/prescription-drug-advertising/prescription-drug-advertising-questions-and-answers#law
http://www.wsj.com/articles/smartphone-codes-on-food-labels-face-skepticism-1470216600
http://www.wsj.com/articles/smartphone-codes-on-food-labels-face-skepticism-1470216600
https://www.huffpost.com/entry/obama-signs-dark-act-to-invalidate-vermonts-landmark_b_57a644c7e4b0ccb023727b2d
https://www.huffpost.com/entry/obama-signs-dark-act-to-invalidate-vermonts-landmark_b_57a644c7e4b0ccb023727b2d


cation can potentially substitute for costly perception. We are particularly interested

in this question in view of the recent literature on the empirical content of optimal

attention in individual decision-making problems (Caplin and Dean, 2015; Caplin and

Martin, 2015; de Oliveira et al., 2017; Ellis, 2018; Dean and Nelighz, 2019). A goal

of our paper is to illustrate how these ideas might play out in interactive decision-

making, highlighting the interplay between strategic inferences and inattention.

For this, we focus on a highly stylized, easily interpretable model of communi-

cation. There are two possible actions and two equally-likely states of the world,

corresponding to whether or not the Sender’s and Receiver’s preferred actions agree.

The Receiver receives a fixed benefit for taking the action that matches the state;

while the Sender benefits whenever one particular action is taken. There are two

possible types of messages for each state, transparent and obscure, both of which

fully reveal the state. The Receiver immediately understands the state from a trans-

parent message. By contrast, the only thing the Receiver can immediately tell from

an obscure message is that it is not transparent; costly effort is required to under-

stand it. The Sender can condition his preferred message type on the state, but his

communication goal may be imperfectly realized. Consider, for instance, an article

under journal review. The authors may believe their writing is transparent, but the

referees may disagree; and conversely, the referees may easily recognize some issue

despite the authors’ attempts at obfuscation. We encapsulate the potential for such

disagreement in the precision level of communication (p), which is the probability

with which a Sender who aims to send an obfuscated message (or aims to send a

transparent one) in a given state achieves his goal.

Following Caplin and Dean (2015), we model the process that allows the Receiver

to decipher information as a costly task whose cost is unknown to the modeler. Em-

bedded in a game-theoretic framework, a novel feature of our problem is that the

Receiver’s beliefs about the state after receiving an obscure message, but before ex-

erting any effort to decipher it, depend on what the Sender is expected to do. In an

undominated Bayesian-Nash equilibrium, a strategically-sophisticated Sender should

aim to obfuscate when his favored action is worst for the Receiver. Indeed, this is the

only weakly-dominant strategy, and is the unique best reply if there is any chance

at all that the Receiver fails to match the state following an obfuscated message. In

equilibrium, as the precision of communication increases, the Receiver becomes more

convinced that any observed obfuscation is attributable to intention, and thus more
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convinced that the Sender’s favored action is the wrong one to take. These beliefs

inform how much effort to exert in deciphering the message.

The Receiver’s strategic inference and ensuing effort exertion both manifest them-

selves in the probabilities, conditional on each state, that he takes the right action

despite obfuscated information. For instance, if he eschews effort entirely and simply

chooses the Sender’s worst action, then the Receiver takes the right action for sure in

the opposing-interest state, but always fails to do so in the common-interest state. If

he instead makes a decision based on some costly perception strategy, his success in

the common-interest state may increase at the expense of his success in the opposing-

interest state. Elaborating on Caplin and Dean (2015)’s approach, we derive the

testable implications on the Receiver’s state-contingent stochastic choice data for it

to be consistent with a rational Receiver’s decisions in equilibrium. Collecting such

data at the individual level is hard in general, but even harder in our setting when p

is large (as obfuscated messages are then received only rarely in the common-interests

state). It is important then to note that the result on the empirical content of equi-

librium naturally extends into a test on aggregate data in situations where Senders

and Receivers are randomly matched and have potentially heterogenous perceptual

costs, as expected in a laboratory experiment.

Our framework translates directly into an experimental design, which we explore

using three treatments: low, medium and high precision levels, corresponding to val-

ues of p ∈ {51%, 70%, 90%}. To bring obscure and transparent messages to life,

we import the novel ‘colored balls’-design of Dean and Nelighz (2019)4, who exper-

imentally test the rational inattention model through how success rates vary with

incentives. They represent the true state (either Red or Blue) by a square matrix of

100 red and blue balls: though the balls are randomly placed in the matrix, exactly

51 of them color-match the state. We use precisely this construction for obfuscated

messages, and use the same balls ordered neatly by color for transparent messages.

Thus messages do not differ in substance beyond their clarity.

The data analysis in Section 3.2 substantiates the overall strategic sophistication

and rationality of Senders and Receivers. We find that 77% of all Senders strategically

obfuscate: they aim for clarity in the common-interests state, but aim to obfuscate in

the opposing-interests state. Receivers’ success probabilities vary with p, showing that

strategic inferences can impact attention in games. We find evidence that perception

4Also appearing in an earlier working paper which Dean and Nelighz (2019) subsumes.
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is adjusted optimally, as the testable implications on aggregate stochastic choice data

are satisfied (or nearly satisfied, in one instance). Some interesting demographic

differences are discussed.

Given this evidence that average Receivers do adjust their perception with strate-

gic inference, Section 4 concludes by highlighting some (potentially counterintuitive)

implications for welfare. First, we point out that a naive regulator (one who does

not recognize that obfuscated messages carry information beyond their immediate

content) can grossly overestimate or underestimate the Receiver’s welfare gain from

mandating information disclosure. Second, strategic sophistication can be detrimen-

tal for the Receiver. Finally, greater alignment of preferences between the Sender and

Receiver does not guarantee greater success at guessing the state.

Related work on communication

Communication games have traditionally been studied in one of two extreme settings.

In the cheap-talk setting of Crawford and Sobel (1982), information is soft: messages

need not bear any verifiable relation to the truth, but could have meaning in equilib-

rium. At the other extreme is hard information, see Grossman (1981); Milgrom and

Roberts (1986): messages are immediately verifiable, and the absence of a message

could be revealing in equilibrium (leading to information unraveling).

Our work is in the spirit of Dewatripont and Tirole (2005), which introduced infor-

mation whose softness is intermediate and endogenous into communication games.5

They derive equilibria in a stylized model with communication subject to moral haz-

ard in teams: the Sender and Receiver have increasing and convex costs of effort,

and the Receiver assimilates the Sender’s information with probability xy when the

Sender exerts an effort x ∈ [0, 1] and the Receiver exerts an effort y ∈ [0, 1]. Most

of their work presumes simultaneous effort choices, so there is no role for strategic

inference. Inferences do matter though in two variations they discuss: playing two

successive rounds of the above game, and a one-shot interaction where the Receiver

directly observes x before choosing y. Our works share the broad features that there

is a probabilistic nature to whether the Receiver understands her message, and that

5See also Persson (2018) for an extension of Dewatripont and Tirole (2005) to decisions with
multi-dimensional considerations: a capacity-constrained decision maker gets information from an
expert on each of these dimensions, leading to information overload as a manipulation device. Like
in Dewatripont and Tirole (2005), the expert prefers a particular action but does not know the state.
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the Sender’s choice impacts this distribution (whatever it is). However, our work is

interested in testable implications that hold for any cost function, and a framework

for experimentally highlighting the role of strategic sophistication. To focus on that

channel, we abstract from Sender costs and study the extreme setting where the Re-

ceiver can freely distinguish between transparent and non-transparent information.

This is the only means through which our Receiver can draw inferences about the

Sender’s unobservable communication goal.

This paper contributes more generally to the emerging theoretical literature on

attention in games. Some works consider the behavior of firms facing consumers

whose perception is exogenously given, as in Gabaix and Laibson (2006) and Bordalo

et al. (2015); or where consumers can optimally allocate a fixed total effort among

different dimensions, as in Spiegler (2006) and de Clippel et al. (2014). Another

strand of the literature derives equilibria of games with players who can endogenously

choose their perceptual efforts at a cost, often modeled using the Shannon mutual-

information function applied in Sims (2003); see, for instance, Matějka (2015), among

others. Most of these works study settings where there can be no strategic inference

about private information, and therefore no fungibility with optimal attention. An

exception is Martin (2016b), who considers a firm’s strategic pricing when facing a

consumer who is rationally inattentive about its product’s quality. He shows there is

a mixed-strategy equilibrium in which the high-quality seller always sets a high price,

while the low-quality seller randomizes between low and high prices. The buyer’s

attention responds to the seller’s mixed strategy in equilibrium, using Sims’ linear

parametrization of attention costs.

In a companion paper, Martin (2016a) provides experimental data to illustrate

and calibrate the above model. A seller owns a hypothetical product that has low or

high value to the buyer with whom he is randomly matched. Knowing the buyer’s

value, he chooses between a low-price and a high-price offer. Accepting a low-price

offer is always profitable for the buyer, but accepting a high-price offer is profitable

only if the product is of high value to the buyer. Not knowing his value, the buyer

can examine a string of twenty randomly generated numbers (between -100 and 100)

whose sum is the true value. Using time responses and the frequency of purchas-

ing mistakes, Martin provides supporting evidence that the attention buyers pay to

learn the product’s value is impacted by the seller’s price. Focusing on a rationally-

inattentive representative buyer, the best approximation of buyers’ average behavior
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is obtained with a marginal attention cost of 11.9. Interestingly, explaining sellers’

average behavior using the equilibrium described in the previous paragraph leads to a

comparable estimate for the sellers’ belief regarding buyers’ marginal attention cost.

Our paper differs from Martin (2016a,b) on multiple dimensions. First, the Sender

in our game decides whether or not he tries to obfuscate the information, while in

Martin’s framework the seller chooses a price and information is always obfuscated.

Second, we characterize testable implications of our model: that is, properties on ob-

servables which remain valid whatever the participants’ utilities and attention costs.

We do not place restrictions on the form of attention costs. The Receiver is not re-

quired, for instance, to process information as in Sims’ model of rational inattention

(see Dean and Nelighz (2019) for an experimental comparison of the relative perfor-

mance of different cost functions in individual decision-making). Third, the testable

implications are derived while allowing the precision parameter to vary, which leads

to cross-observation tests of consistency with equilibrium play. In our framework,

the Receiver cannot perfectly observe the Sender’s choice, which is the key to our

treatments. In addition to the more stringent testable implications of equilibrium

play, simply witnessing that success rates at guessing the true state vary with the

precision level provides evidence in a clean treatment-control design that Receivers

do adjust their attention level based on the strategic inference they can draw in the

games they play.

The experimental literature has examined many different aspects of communica-

tion. Blume et al. (2020) surveys a large literature on experimental studies of cheap

talk. A smaller literature studies information unraveling when information is hard; see

Jin et al. (2016) and references therein. Fréchette et al. (2019) explores an umbrella

framework nesting cheap talk, hard information, and Bayesian persuasion. They re-

lax the commitment assumption in Bayesian persuasion through a probability the

Sender can revise his choice. They do not, however, consider obfuscated information.

Jin et al. (2019) studies obfuscation, albeit with a different goal. Their Senders know

the state s ∈ {1, 2, . . . , 10} and send a string with c ∈ {1, 2, . . . , 20} numbers whose

sum equals the state. The Receiver has 60 seconds to guess the sum (else a random

guess is made), and is paid for accuracy. The Sender’s payoff increases in the guess.

In theory, information should unravel the same way it does in the case of voluntary

disclosure, as one can draw comparable inferences from witnessing obfuscation or in-

formation withholding. But Jin et al. (2019) shows that unraveling does not occur
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the way it does under voluntary disclosure, and advances possible explanations. By

contrast, unraveling does not occur at equilibrium in our model: quite realistically,

perceiving a message as obfuscated is informative about the Sender’s intention, but

does not reveal for sure that the Sender aimed to obfuscate. This allows us to focus

on our main question of interest, the testable implications for the substitutability

between optimal perception and strategic inference.

2 Theoretical benchmark

We consider a Sender-Receiver game with two possible states of the world, Ω =

{ω1, ω2}, and a prior π(ωi) over the states. The Receiver has two possible actions,

A = {a1, a2}, with action ai being the Receiver’s preferred action in state ωi. The

Sender, on the other hand, strictly prefers the Receiver to choose action a2 no matter

the state, and would like to persuade the Receiver to pick it; hence we refer to their

interaction as a persuasion game. Both Sender and Receiver are expected utility

maximizers, and have strictly increasing utility functions over money. For simplicity,

we assume the Receiver receives $mR whenever he chooses the action that matches the

state, and nothing otherwise; while the Sender receives $mS whenever the Receiver

chooses action a2, and nothing otherwise. Thus ω1 is a state of opposing interests,

because the action the Receiver prefers in that state is worst for the Sender. By

contrast, ω2 is a state of common interests.

The Sender is informed of the true state and must communicate it to the Receiver,

but need not make this information easily understood. Formally, for each state ω,

the Sender can aim to communicate clearly or aim to obfuscate. The precision level

p ∈ (1/2, 1) calibrates how likely the Sender’s communication goal is achieved. Specif-

ically, if the Sender aims to communicate clearly in state ω, then with probability

p the Receiver’s message will be transparent (denoted T (ω)) and with probability

1− p the message will be obscure (denoted O(ω)). Oppositely, if the Sender aims to

obfuscate in state ω, then the Receiver’s message will be obscure with probability p

and transparent with probability 1− p. The precision level p will be a parameter we

vary across treatments in the experiment.

As the Receiver does not know the true state, there are four possible message

types she may receive prior to deciding on an action. With a transparent message

T (ω), the Receiver understands at once that the state is ω, and will take the action
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that matches the state. With an obscure message, however, the Receiver’s only way

to distinguish O(ω1) from O(ω2) is to exert effort to decipher the message. In line

with recent models of optimal attention in decision theory, he chooses a perception

strategy (S, µ), where S is any finite set whose elements s ∈ S are called signals and

µ(s|ω) is the probability of signal s when state is ω. He also chooses a decision rule

which fixes the action to pick following each signal. A decision rule can be described

as a partition of S into two subsets, S1 and S2 = S \ S1, such that the action ai

is taken following signals in the subset Si. The choice of a perception strategy and

decision rule is associated with a cost cR(S1,S, µ), on which we impose no functional

form assumption besides modeling it as being subtracted from the expected utility of

earnings.

2.1 Equilibrium Conditions

Our equilibrium notion is that of undominated Bayesian Nash equilibrium.6 We now

further detail the mutual best-response conditions. Consider the Sender’s optimiza-

tion problem first. The Receiver’s equilibrium perception strategy and decision rule

define a success probability `(ωi) for i = 1, 2, the probability of guessing the state ωi

correctly when receiving an obfuscated message. With τ(ω) denoting the probability

that the Sender aims to communicate clearly in state ω, the Sender’s equilibrium

conditions are
τ(ω1) ∈ arg max

x∈[0,1]
{uS(mS)− ν(x, `(ω1))[uS(mS)− uS(0)]}

τ(ω2) ∈ arg max
x∈[0,1]

{uS(0) + ν(x, `(ω2))[uS(mS)− uS(0)]},
(1)

where ν(x, y) = [x(p+(1−p)y)+(1−x)(py+1−p)] is the unconditional probability that

the Receiver guesses the state correctly, when the Sender aims to communicate clearly

6The game also admits BNEs with weakly dominated strategies when perception costs are high
enough. In those equilibria, an obfuscated message prompts the Receiver to pick a1, the Sender
communicates clearly given ω2, and is indifferent between obfuscating or communicating clearly
given ω1. But if there is any doubt in the Sender’s mind that an obfuscated message results in
a1 for sure, then aiming to obfuscate given ω1 is strictly preferred, which eliminates dominated
equilibria. While incorporating them in the analysis is conceptually easy, we think it is preferable
for expositional clarity to focus on undominated equilibria, a mild refinement. This is especially
reasonable given that the Sender faces a random Receiver in our experiment (more on this in Section
2.4), which means that he’d play a dominated strategy only if he is sure that all subjects in the
room overlook the content of an obfuscated message and pick a1 for sure.
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with probability x, and the Receiver guesses correctly with probability 1 following a

transparent message but only with probability y following an obfuscated message.

Clearly, the Sender’s payoff is decreasing in ν in the opposing-interests state (top

equation), and increasing in ν in the common-interests state (bottom equation).

As for the Receiver’s best response, notice that her beliefs about the state after

receiving an obscure message, but before exerting any effort to decipher it, are given

by:

π̂(ω) =
π(ω) (τ(ω)(1− p) + (1− τ(ω))p)∑

i=1,2 π(ωi) (τ(ωi)(1− p) + (1− τ(ωi))p)
. (2)

Then, her perception strategy and decision rule maximize

uR(0) +
∑
i=1,2

π̂(ωi)µ(Si|ωi)(uR(mR)− uR(0))− cR(S1,S, µ) (3)

under the constraint that, if signal σ belongs to Si, then following that signal the

Receiver prefers ai over aj. This means that the Receiver’s posterior probability

µ̂(ω|σ) =
µ(σ|ω)π̂(ω)∑

ω′∈Ω µ(σ|ω′)π̂(ω′)

for state ω, conditional on getting the signal σ from an obscure message, satisfies

µ̂(ωi|σ) ≥ µ̂(ω−i|σ), (4)

for all σ ∈ Si and for all i = 1, 2.

2.2 Observables and Equilibrium Consistency

Consider repeated observations from several different persuasion games, which differ

only in the precision level p. Of course, perception strategies and decision rules are

not observable. Instead, we provide testable implications on a dataset {(pj; τ j, `j)|j =

1, . . . , J}, where pj is the precision level of the persuasion game j, τ j = (τ j(ω1), τ j(ω2))

specifies the probability the Sender aims to communicate clearly as a function of the

state in game j, and `j = (`j(ω1), `j(ω2)) specifies the probability the Receiver chooses

the correct action as a function of the state in game j.

The dataset is consistent with equilibrium play if there exist utility functions uS,

uR, a perception-cost function cR, and for each j a perception strategy and decision
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rule (Sj
1 ,Sj, µj) that combine with τ j to form an equilibrium of the corresponding

Sender-Receiver game given by pj, such that `j(ωi) = µj(Si|ωi) for i = 1, 2. This

amounts to a revealed-preference exercise in a game with state-dependent stochastic

choice data. In other words, we are interested in finding all predictions of our Sender-

Receiver games that remain valid whatever the utility and perception-cost functions.

While we focused on an equilibrium notion, we will see that the testable implications

we derive also remain valid under alternative assumptions on participants’ expecta-

tions.

Collecting individual success rates is experimentally demanding in general, and

this is especially true in our Sender-Receiver game when p is large (see discussion

in Section 3). By contrast, collecting aggregate success rates is more easily done.

In that case, of course, there may be heterogeneity in utilities and perception costs.

In subsection 2.4, we explain how our testable implications can be adapted to such

situations.

2.3 Testable Implications

We are now ready to state and prove the main theoretical result.

Proposition 1. The dataset is consistent with equilibrium play if, and only if, all the

following conditions hold:

(i) For each persuasion game j, the Sender aims to obfuscate in the opposing-

interests state and aims to communicate clearly in the common-interests state:

τ j(ω1) = 0 and τ j(ω2) = 1;

(ii) The Receiver’s belief upon the receipt of an obfuscated message in game j is:

π̂j(ω1) =
pjπ(ω1)

pjπ(ω1) + (1− pj)π(ω2)
;

(iii) In each persuasion game j, the Receiver’s expected success rate upon the receipt

of an obfuscated message must be at least as high as the expected success rate

from choosing action a1:

π̂j(ω1)`j(ω1) + (1− π̂j(ω1))`j(ω2) ≥ π̂j(ω1);
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(iv) For any pair of persuasion games with π̂j(ω1) > π̂k(ω1) (equivalently pj > pk,

given (ii)) we have `j(ω1)− `j(ω2) ≥ `k(ω1)− `k(ω2).

We now discuss and prove part of the result, while also pointing out that the

testable implications we uncovered remain valid with other assumptions on beliefs.

The Receiver’s strategy pins down success probabilities `(ωi) for i = 1, 2. Whatever

these probabilities are, notice that the Sender’s payoff in (1) is decreasing in x in the

opposing-interests state, increasing in x in the common-interests state, and strictly so

if the Receiver does not always succeed at guessing the state correctly. Thus aiming

to obfuscate given ω1 and to communicate clearly given ω2, is not just a characteristic

of equilibrium play: it is the unique weakly dominant strategy for the Sender, and

the unique best response with success rates strictly below one. Hence property (i) is

robust to alternative specifications of Sender’s expectations about Receivers.

We already described in Equation (2) how Bayes’ rule pins down the probability

that the Receiver attaches to both states upon receipt of an obfuscated message, given

his belief about the Sender’s strategy. This belief is determined in (i) at equilibrium,

which establishes (ii). However, one must recognize the possibility that, in practice,

a Receiver’s updated probability of the state may differ. For instance, he may fail to

update probabilities accurately, fail to recognize that the strategy in (i) is dominant,

or fear that the Sender might not recognize that strategy is dominant. Thus, while

we perform our benchmark analysis of the data using the equilibrium beliefs in (ii),

we will also discuss its robustness to alternative beliefs of the Receiver.

The empirical content of equilibrium play on the Receiver’s side boils down to

the testable implications of optimal perception, but given beliefs updated through

strategic inference. This is reminiscent of the individual decision-making problems

studied by Caplin and Dean (2015). A difference is that they compare behavior as

payoffs change, keeping states’ probabilities unchanged. The very nature of our anal-

ysis entails (endogenous) changes in probabilities instead, while keeping the payoffs

constant across observations. This difference can be dealt with through a mathemat-

ical transformation: probabilities premultiply utilities under expected utility, so one

can reinterpret probability changes as payoff changes (see details in the Appendix).

The special structure of the resulting problems leads to a new feature in the testable

implications: one can restrict attention to pairwise comparisons in (iv), instead of

dealing with a condition analogous to Rockafeller (1970)’s cyclical monotonicity. We

discuss this further below.
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To better understand (iii), note that the Receiver’s expected success rate upon

the receipt of an obfuscated message is π̂j(ω1)`j(ω1) + (1 − π̂j(ω1))`j(ω2). If simply

picking a1 led to a higher success rate, then the Receiver would be better off doing

this and saving on perception costs. The same reasoning also applies to a2, but

the resulting inequality is redundant: upon receipt of an obfuscated message, but

before attempting to decipher it, the opposing-interests state is more likely and so a1

preferable to a2. This remains true for a wide range of beliefs π̂j(ω1) beyond those in

equilibrium. Condition (iii) is the analogue in our framework of Caplin and Dean’s

NIAS condition. If we observe a single precision level (J = 1), then it is the only

testable implication for the Receiver’s choices.

By varying the precision of communication, and thus the Receiver’s beliefs, more

nuanced implications in (iv) obtain from the Receiver’s choices across persuasion

games. This relates to Caplin and Dean’s NIAC condition, which ensures that total

utility cannot increase by reassigning attention across any cycle of decision problems

(of any length). Considering only pairwise comparisons (cycles of size two) is sufficient

in our framework because payoffs are held constant across observations; see the proof

in the Appendix. This leads to the simpler condition (iv) that excess-success rates

weakly increase in the precision of communication. For instance, a Receiver who views

ω1 as more likely in game j than game k upon the receipt of an obfuscated message

(π̂j(ω1) > π̂k(ω1), which amounts to pj > pk under (ii)), may exert less effort in

deciphering it, while using a decision rule that further favors a1. This will increase

success in the opposing-interests state, and decrease success in the common-interests

state, consistent with (iv). The proof in the Appendix shows that (iv) is indeed

necessary, but also sufficient: no stronger condition on success rates can be found.

In examples, one can construct perception costs for which success rates increase in

both states, and others for which success rates decrease in both states. The only

unequivocal prediction is that the spread between the common-interests success rate

and that of the opposing-interests state increases when moving from k to j.

Conditions in (iv) are valid given any beliefs (π̂j)Jj=1, however they arise, and turn

out to be robust against an array of beliefs the Receiver may hold: that is, permitting

violations of (ii). Indeed, when comparing the excess-success rates in two persuasion

games j and k, the direction of inequality to check depends only on which of π̂j(ω1)

and π̂k(ω1) is larger, not on their cardinal values. Of course, one would generally

expect the belief π̂j(ω1) to increase in the precision level pj, since the Sender has no
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incentive to obfuscate in the common-interests state ω2.

2.4 A population of Senders and Receivers

The analysis above presumes there is only one possible Sender and only one possible

Receiver that can be matched. Suppose instead that Senders and Receivers are paired

uniformly at random. All players strictly prefer more money to less, but may differ

in their utility function and perception costs.

This is a setting of practical relevance for at least two reasons. First, a Sender

may expect to face a population of Receivers with different perceptual costs, as would

be the case with a population of consumers. Second, it can be quite time-consuming

for subjects in experiments to generate individual-level, state-dependent stochastic

choice data (in this case, the probability the Receiver chooses the right action follow-

ing obfuscated information, conditional on each state of the world). This is especially

so in our experiment, where obfuscated messages are generated endogenously, and we

would expect to see few of them in the common-interests state under high precision

levels p. Fortunately, Proposition 1 extends to characterize the testable implications

in this setting. Regarding Senders, the argument for (i) immediately extends to show

the same strategy remains weakly dominant, and strictly so if there is any chance

of average success rates strictly below one (i.e., if there is a strictly positive proba-

bility that at least one Receiver imperfectly guess the state following an obfuscated

message). Hence Receivers all share the same belief (ii) as before, upon seeing an

obfuscated message but before attempting to decipher it.

As for the testable implications on success rates, notice that Proposition 1 holds

for each Receiver i. This means each Receiver satisfies (iii) and (iv), which are linear

in individual success rates. Let ¯̀j(ω) be the average success rate of Receivers in

game j and state ω. Notice that, in our between-subject analysis, different sets of

subjects play our communication game with different precisions levels. However, we

can reasonably assume, as is standard, that the different treatments are drawn from

the same population of characteristics. Summing (iii) and (iv) over all Receivers in

each treatment implies:

π̂j(ω1)¯̀j
i (ω1) + (1− π̂j(ω1))¯̀j

i (ω2) ≥ π̂j(ω1), for all j.

¯̀j
i (ω1)− ¯̀j

i (ω2) ≥ ¯̀k
i (ω1)− ¯̀k

i (ω2), when π̂j(ω1) > π̂k(ω1).
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These necessary conditions are the same as (iii) and (iv) in Proposition 1, but using

average success rates. In the other direction, if average success rates satisfy these

conditions, then Proposition 1 implies that the data can be explained by a hypothet-

ical population of Receivers identical in their utility functions and perception costs,

even if the members of the population are in fact heterogenous. Thus Proposition 1,

applied to population averages, remains necessary and sufficient for consistency with

equilibrium play even in this more general setting.

3 Experiment

In our experiment, subjects are matched to play Sender-Receiver games. Before

describing how subjects are matched, we describe the game itself.

There are two possible keywords, Blue and Red, with a fifty percent chance of each.

Given the keyword, the Receiver will receive one of two possible types of messages.

In both types of messages, there are 100 balls of blue and red color arranged in a

10x10 matrix, with exactly 51 balls whose color matches the keyword and exactly 49

balls whose color mismatches it. However, the messages differ in how the balls are

arranged. In one type of message, the balls are arranged by color (see the left panel

of Figure 1). Such a message is transparent, in the sense that it immediately reveals

the majority color, and hence the keyword. In the second type of message, the same

balls are distributed uniformly at random into the 10x10 matrix (see the right panel

of Figure 1). Such a message is obfuscated, in the sense that it takes some effort

to garner information on the majority color, and hence the keyword. Both message

types reveal the truth about the keyword (with differing levels of transparency), as

the keyword is revealed by the majority color. Hence the Sender cannot lie; she can

only obfuscate.

The Receiver’s message will always be one of these two types, but the probability

of the different types is impacted by the Sender. For each of the two possible keywords,

the Sender is asked to choose whether they prefer it to be more likely (with probability

p > 1/2) that the balls will be arranged by color or more likely (with the same

probability p) that the balls will be in random order. Thus the Sender makes a

contingent messaging plan, tailored to each keyword. We consider three treatments,

corresponding to p being 51%, 70%, and 90%. The value of the probability p is held

constant within each session, both to avoid pollution across precision levels and to
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Welcome to this decision-making experiment! 

Please silence and put away electronic devices. Please do not talk with other participants. 

Instructions

You will receive a $10 show-up fee, and will be able to earn more. The exact amount earned 
will depend on chance and choices made during the experiment. 

Throughout this experiment, participants will have the opportunity to play what we call 
`Sender-Receiver games’. We will explain shortly how you’ll be able to input your decisions 
as Senders and Receivers, and how participants will be paired to play these games. First, we 
describe the game itself. 

Sender-Receiver game 

The computer randomly draws one of two possible keywords, either `Red’ or `Blue’, with a 
50% chance of each. The Receiver guesses the keyword after seeing a message with 100 balls 
(of blue and red color). When the keyword is Red, the message contains 51 red balls and 49 
blue balls (i.e., red is the majority color). When the keyword is Blue, the message contains 
51 blue balls and 49 red balls (i.e., blue is the majority color). However, the balls displayed 
in the message can either be arranged by color, or in random order (see the two examples 
below for the keyword Blue).  

Arranged by Color In Random Order

How balls are displayed is impacted by the Sender’s decision in the following way. He or she 
chooses between making it more likely (51% chance) that balls are arranged by color, or 
making it more likely (51% chance) that balls are arranged in random order. The Sender can 
make his or her choice depend on whether the keyword is Red or Blue. 

Payoffs of a particular Sender-Receiver match will be computed as follows. The Sender gets 
$15 if the Receiver guesses that the keyword is Red, and $0 if the Receiver guesses Blue. The 
Receiver gets $15 for guessing the keyword correctly, and $0 otherwise. 

Figure 1: Examples of message types when the keyword is Blue.

ensure sessions are not unreasonably long.

In any Sender-Receiver matchup, the computer draws the keyword (Blue or Red)

uniformly at random. The Sender’s decision for that keyword is implemented accord-

ing to the probability p to determine the Receiver’s message. The Receiver is then

asked to guess the keyword. The Receiver is permitted unlimited time to examine

their message before making this choice. The Sender’s payoff from the matchup is

$15 if the Receiver guesses that the keyword is Red, and $0 otherwise. The Receiver’s

payoff from the matchup is $15 for guessing the keyword correctly, and $0 otherwise.

The timing of decisions and matching process are as follows. Each session is split

into two phases. In the Sending phase, each subject acts as a Sender and selects a

contingent messaging plan. Decisions made during the Sending phase will be used to

determine messages in the Receiving phase of the experiment. In this second phase,

each subject acts as a Receiver, and is matched forty successive times. Each match is

with an independently and uniformly drawn Sender other than themselves. In each of

these forty matches, the computer independently and uniformly draws the keyword

and implements the matched Sender’s decision for the drawn keyword. That is, the

computer uses the relative likelihood the Sender picked for that keyword, to display

a message with balls arranged either by color or randomly. The Receiver has an

unlimited amount of time to examine this message before guessing the keyword.

The experiment is designed so that if Senders make their communication decision

rationally, then the probability a Receiver gets an obfuscated screen in a match is the

15



same across different precision levels p. Namely, it is:

π(Red)(1− p) + π(Blue)p =
1

2
(1− p+ p) =

1

2
.

This means that on average, there is an equal burden for Receivers across treatments.

What does change across treatments is the distribution of keywords conditional on

seeing an obfuscated screen. If Senders act rationally, then conditional on an obfus-

cated screen, the probability of Blue is exactly the treatment’s precision level p.

No feedback is provided in either the Sending or Receiving phases. The experiment

concludes once the Receiving phase is complete. At that point, subjects may complete

an optional exit survey. The computer determines each subject’s payoff by randomly

picking a role (Sender or Receiver) and a match in which the subject played that

role. Each subject is paid, in cash, their payoff from that match in addition to the

$10 show-up fee. Subjects are not told the roles other subjects played, the choices

others made, or the payoffs others received.

3.1 Procedure

There were six experimental sessions, two for each value of p ∈ {51%, 70%, 90%}. In

aggregate, 131 subjects participated, with 42 in the 51% treatment, 44 in the 70%

treatment, and 45 in the 90% treatment. All sessions were conducted at BUSSEL,

the Brown University Social Sciences Experimental Laboratory, in April and May of

2018. The laboratory is equipped with sunken terminals and vertical privacy panels

between desks. Subjects were allowed to participate in at most one session, and were

recruited via the BUSSEL website.7

Sessions lasted approximately one hour. At the start of each session, the supervisor

read aloud the experimental instructions, which were simultaneously available to each

subject in a paper handout. The experimental interface was programmed using z-

Tree (Fischbacher, 2007). Following the reading of instructions, subjects completed

a short quiz via the z-Tree interface to confirm their understanding of how payoffs

7This site, available at bussel.brown.edu, offers an interface to register in the system and sign
up for economic experiments. To do so, the information requested from subjects is their name and
email address and, if applicable, their school and student ID number. The vast majority of subjects
registered through the site are Brown University and RISD graduate and undergraduate students,
but participation is open to all interested individuals of at least 18 years of age without discrimination
regarding gender, race, religious beliefs, sexual orientation or any other personal characteristics.
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from each match are generated. Before the start of the experiment, subjects also had

an opportunity to familiarize themselves with the interface, using practice screens for

the Receiving and Sending phases. Instructions and screenshots of the interface are

available in the Online Appendix.

At the end of each session, subjects were presented with an optional exit survey

via the z-Tree interface. This survey collected basic demographic information and

allowed subjects to describe how they made their choices. Among those reporting

gender, about 37% of subjects were male.8 Subjects reported a wide variety of majors;

among these about 32% reported an economics major or a joint major with economics.

Subjects were paid their earnings in cash before leaving the laboratory.

3.2 Results

We begin by studying subjects’ choices as Senders. There are four possible choice

combinations in our experiment, capturing for which keywords (Blue and/or Red,

where Blue is the opposing-interests state) they would like an obfuscated message

to be more likely than a transparent one. For our purposes here, we may describe

these combinations as follows: Do Not Obscure in Any State (None), Obscure in All

States (All), Obscure Only in the Common-Interests State (Common), and Obscure

Only in the Opposing-Interests State (Opposing). As seen from Proposition 1(i),

a rational and self-interested Sender should choose Obscure Only in the Opposing-

Interests State. The table below details the observed sending choices per treatment.

The vast majority of Senders are in line with Proposition 1(i) for each treatment:

71.4%, 86.4%, and 73.3%, respectively. If Senders made their choices uniformly at

random, we would expect only 25% to be in line with Proposition 1(i). For each

treatment, a binomial test rejects, at all significance levels, the null hypothesis that

the percent of Senders who follow the equilibrium is equal to that random-choice

benchmark.

A minority of Senders aim to communicate clearly in all states, which would be

consistent, for instance, with altruistically easing the Receivers’ perceptual burden.

This is the most common departure we find from equilibrium play. A couple of

Senders per treatment aim to obfuscate in all states, which is patently inconsistent

with altruism. Each treatment has one subject who obfuscates in the common-interest

8According to US News and World Report, 46% of Brown undergraduates are male.
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Treatment None All Common Opposing Total

51% 9 2 1 30 42

70% 4 1 1 38 44

90% 8 3 1 33 45

Total 21 6 3 101 131

Table 1: Senders’ choices, by the states in which they aim to obfuscate.

state only, which could be consistent with intending optimal behavior but confusing

the Blue and Red keywords’ payoffs.

We find no statistically significant differences in the distribution of sending choices

across the treatments (p-value 0.635), nor across sessions within the same treatment

(p-values 0.218 for the 51% treatment, 0.363 for the 70% treatment, and 1.000 for the

90% treatment). Moreover, there are no statistically significant differences in send-

ing choices across gender (p-value 0.807) or across economics- versus non-economics

majors (p-value 0.284). We also do not find a difference, at any of the above levels

of aggregation, in the proportion of Senders who follow the equilibrium prediction

(p-values ranging from 0.195 to 0.627).

We now turn our attention to subjects’ choices as Receivers. Do they play their

part in the equilibrium? In our experimental framework with equally likely states,

Receivers’ beliefs in equilibrium should equal the precision level p in that treatment.

To test conditions (iii) and (iv) of Proposition 1, we must estimate the Receivers’

aggregate success probability `p(ω) following obfuscated messages, for each state ω

and each treatment p. To this end, we pool Receiver’s choices for obfuscated messages

across the sessions of a treatment p. This leads to 2,446 observations of Receivers’

guesses for obfuscated messages, with 805 observations from the 51% treatment, 835

observations from the 70% treatment, and 806 observations from the 90% treatment.

We use logistic regression to estimate the success probabilities, along with their

errors, for testing purposes.9 Define the following dummy variables: Correcti in-

dicates whether the Receiver in observation i guessed the keyword correctly, Redpi
indicates whether the observation is from treatment p and the keyword was Red, and

Bluepi indicates whether the observation is from treatment p and the keyword was

9Logistic regression offers better properties for confidence intervals around probabilities than does
linear regression. One could use a linear model for unbiased estimates of the probabilities themselves.
For our data, with either method, the success rates are the same to at least six decimal places (and
using the errors from linear regression, the qualitative conclusions would be unchanged as well).
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Blue. Let X = (Blue51, Red70, Blue70, Red90, Blue90) be the vector of explanatory

variables. Thereby interacting the treatment with the keyword, we estimate

ln

(
P(Correct = 1|X)

P(Correct = 0|X)

)
= α0+α51

BBlue
51+α70

RRed
70+α70

BBlue
70+α90

RRed
90+α90

BBlue
90,

using Huber-White errors clustered at the session level. Hence our estimates are

robust to both heteroskedasticity and correlation in choices (both within and across

Receivers in a session).

Remember that the opposing-interests state ω1 corresponds to the Blue keyword

and the common-interests state ω2 corresponds to the Red keyword. We estimate:

Precision p `p(ω1) `p(ω2)

51% 0.837 0.783

70% 0.878 0.669

90% 0.927 0.590

Table 2: Estimated state-dependent success probabilities of Receivers per treatment,
rounded to three decimal places.

Of course, these success probabilities pertain only to Receiver’s choices following

obfuscated messages. Our framework assumes that Receivers choose the correct action

following a transparent message. Out of the 2,794 transparent messages that our

Receivers faced over the three treatments, there were only 12 instances of a Receiver

clicking on the wrong keyword, an overall 0.0043 probability of failure.

As for obfuscated messages, are Receivers sophisticated about their meaning?

Note that the only difference between treatments is the precision level associated

with the Sender’s choice (the keyword is always drawn uniformly at random). If

Receivers were strategically unsophisticated, then receiving an obfuscated message

would have no impact on beliefs following an obfuscated message, and success rates

for ω1 and ω2 would each be independent of p. To the contrary, the null hypotheses

that `51(ω1) = `70(ω1) = `90(ω1) and `51(ω2) = `70(ω2) = `90(ω2) are each rejected

(p-values 0.0000 and 0.0002, respectively). This demonstrates Receivers exhibit some

strategic sophistication, but does not yet imply consistency with equilibrium play.

Condition (ii) applied with equally-likely states means π̂p(ω1) = p. Conditions

(iii) and (iv) in Proposition 1 are tested through linear inequalities on the estimated
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success probabilities. Condition (iv) simply requires the excess-success probabilities

to increase in p. As can be computed from Table 2, the estimated excess-success

probabilities are strictly increasing: 0.054 in the 51% treatment, 0.290 in the 70%

treatment, and 0.337 in the 90% treatment. Moreover, these excess-success prob-

abilities are statistically different from each other, with a p-value of 0.0050 when

comparing the 70% and 90% treatments, and p-values of 0.0000 when comparing the

other two pairs of treatments.

Condition (iii) requires `p(ω2) + π̂p(ω1)(`p(ω1)− `p(ω2))− π̂p(ω1) ≥ 0, which rep-

resents how much extra probability of success is attained beyond guessing Blue after

each obfuscated message, for equilibrium beliefs π̂p(ω1) = p. The point estimates

strictly satisfy these inequalities for the 51% and 70% treatments, with slack of 0.300

for the 51% treatment and 0.115 for the 70% treatment (both p-values 0.0000). The

inequality is violated for the 90% treatment by 0.007 probability points, which despite

being very small is statistically significant (p-value 0.0000). There are some demo-

graphic differences here, discussed further below. Of course, for fixed success rates,

the condition (iii) is more demanding as the belief on ω1 increases: for a high enough

belief, it may in fact be optimal to simply pick action a1. The precision p is the equi-

librium belief, but not all subjects obfuscated in the state ω1. In fact, condition (iii)

would hold strictly (and with statistical significance) under the rational-expectations

beliefs, and condition (iv) would be the same as before, since the rational-expectations

beliefs also increase in p.10

We also consider the testable implications for Receiver’s choices when restricting

to subpopulations for whom equilibrium beliefs may be most natural. First, subjects

who themselves followed Proposition 1(i) may have realized that strategic obfusca-

tion is the only undominated sending strategy, and expect others to realize the same.

Second, our exit survey asked subjects to verbally describe how they thought other

Senders chose. We categorized these responses as either expecting Senders to follow

Proposition 1(i), expecting some other behavior, or not clearly describing any behav-

ior.11 Among the respondents to the survey question, 84.4% of those who followed

10Isolating p, condition (iv) is tantamount to requiring that the probability on ω1 be less than
or equal to `p(ω2)/(1 + `p(ω2) − `p(ω2)). The 95% confidence interval for this ratio in the 90%
treatment is (0.884, 0.894). The point estimates strictly satisfy the condition for any belief below
0.889, and one moreover rejects the null that the condition holds with equality for beliefs below
0.884. For our data, π90

RE(ω) = 0.8122 (for the other treatments, the rational-expectations beliefs
are π51

RE(ω) = 0.5069 and π70
RE(ω) = 0.6729).

11The survey was presented at the end of the experiment, to avoid contaminating behavior in the
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Proposition 1(i) themselves expected others to follow it, while only 23.1% of those who

violated Proposition 1(i) expected others to follow it. We then estimated the success

rates and tested conditions (iii) and (iv) for subjects who followed Proposition 1(i)

themselves, and for subjects whose survey response expresses that Senders followed

Proposition 1(i). The conditions cannot be rejected for each of these populations of

Receivers (including (iii) in the 90% treatment); see the Online Appendix.

3.2.1 Demographic differences

We summarize here some demographic differences across men, women, economics

majors and non-economics majors (see the Online Appendix for details). As noted

earlier, we do not find differences in sending choices across these groups. Conditions

(iii) and (iv) all hold strictly (and with statistical significance) for non-economics

majors. The same is true for women, with the exception of the inequality (iii) for

the 90% treatment, which is violated by 0.019 probability points. Men, on the other

hand, satisfy condition (iii). The point estimates of both economics majors and men

violate one of the three required monotonicity conditions associated to (iv): in both

cases, the excess-success probability is strictly higher in the 70% treatment than the

90% treatment, though the difference is not statistically significant.12

At the same time, economics and non-economics majors act similarly in the 51%

and 90% treatments. The main statistically significant differences appear in the

intermediate, 70% treatment. In this intermediate-precision treatment, economics

majors have less success than non-economics majors when the keyword is Red but

better success when the keyword is Blue, suggesting relatively less perceptual effort

and a greater reliance on strategic inference.

For women, success in Red clearly decreases in the precision level. For men, this

stays fairly constant. The success probabilities of men and women are remarkably sim-

experiment itself. It was also un-incentivized, and did not specifically ask for the subject’s level of
certainty regarding their answer. Responses were examined and categorized by hand. A response is
categorized as a “1” if the subject clearly describes the behavior in Proposition 1(i), or they followed
Proposition 1(i) themselves and say that others acted just as they did. A response is categorized as
a “0” if the subject describes some other sending strategy, or the subject did not follow Proposition
1(i) themselves and says that others acted just as they did. To be conservative, we did not count
towards the above two categories responses that don’t describe a sending strategy, such as “try to
confuse the Receiver” or “try to make the most money,” even though such responses are suggestive
of Proposition 1(i).

12Women and men are approximately equally represented among economics majors, though the
majority of other majors are women.
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ilar in the 70%, intermediate-precision treatment, but differ in the extreme-precision

treatments. In the 51% treatment, women’s success probabilities are uniformly higher

than men’s, and their excess-success probability is smaller. These features are re-

versed in the 90% treatment. This suggests that men and women might differ in their

perception costs. This may be interesting to investigate further in view of gender

differences noted in Croson and Gneezy (2009).

4 Discussion

We established in this paper that when Senders have the option to obfuscate, Re-

ceivers do use strategic inferences to adjust their perceptual choices. In this conclud-

ing section, we point to some implications this has.

Suppose the Sender has no incentive to disclose information without being required

to do so. This would be the case, for instance, if π(ω2) = 51% > 1/2 (in which case

the Receiver chooses the Sender’s preferred action in the absence of communication).

What are the welfare implications of mandating information disclosure when the

regulator cannot prevent obfuscation as in our framework? To answer this question,

a naive regulator might only think about the immediate informational content of

obfuscated messages. For instance, he may assess that presented with a complex

product label, a consumer has a 90% chance of correctly guessing whether the product

is worth buying, which entails a small perception cost c.13 According to the naive

regulator, mandating disclosure results in the following ex-ante gain for the Receiver

(assuming mR = 1 without loss):

[π(ω1)(0.9p+ (1− p)) + π(ω2)(p+ 0.9(1− p))− c]− π(ω2), (5)

where the last term, π(ω2), represents the success probability in the absence of dis-

closure (i.e., from taking action a2 given that ω2 is more likely in this example). But,

as our analysis highlights, obfuscated messages reveal information beyond their im-

mediate content, and average Receivers factor this in. To fix ideas, say that p = 80%.

13In the context of our experiment, this would amount to guessing or eliciting success probabilities
and the perception cost in an experiment à la Caplin and Dean (2014), without a Sender.
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Then the rational Receiver’s updated belief is

π̂(ω1) =
pπ(ω1)

pπ(ω1) + (1− p)π(ω2)
u 79.35%.

For simplicity, suppose that the Receiver’s only alternative perception strategy is to

overlook obfuscated messages and pick the action that matches the most-likely state

(that is, all other strategies are assumed to be prohibitively costly). As easily checked,

the rational Receiver does opt to overlook an obfuscated message when her belief is

π̂, because

π̂(ω1) + pπ̂(ω2) > π̂(ω1)(0.9p+ (1− p)) + π̂(ω2)(p+ 0.9(1− p))− c,

for any c ≥ 0. To be consistent with the above discussion about the naive regulator,

it must be that 0.9 − c > π(ω2), or c < 0.39, for the Receiver to prefer the costly

perception strategy should her belief be π instead. The Receiver’s true ex-ante welfare

gain from mandated disclosure is

[π(ω1) + π(ω2)p]− π(ω2). (6)

Subtracting (6) from (5), we get:

0.9π(ω2)(1− p)− 0.1π(ω1)p− c = 0.0526− c,

which can be positive or negative depending on the value of c, which is only re-

quired to be smaller than 0.39. This simple example illustrates how a naive regulator

may overestimate in some circumstances, and underestimate in others, the Receiver’s

welfare gain from mandating information disclosure.14

Notice that (5) minus (6) also captures the difference of utility between that of a

naive Receiver who does not use strategic inferences to update her beliefs, and that of a

14Mandating disclosure is always welfare improving for the Receiver. Indeed, she keeps the option
of picking ω2 without paying attention to obfuscated messages, and she’ll pick a different perception
strategy only if it is welfare improving. As can be checked easily, the naive regulator also views
mandating disclosure as welfare improving for the Receiver. But she can grossly missestimate the
magnitude of the benefit, leading to misguided policy decisions when weighing those benefits against
the welfare implications for the Sender and the cost of mandating disclosure. As c gets close to 0.39,
for instance, the naive regulator thinks that the Receiver’s ex-ante benefit from mandating disclosure
is close to zero, while in fact it is close to 0.388.
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Payoff Structure State ω1 State ω2

Opposed (1− p) + p`(ω1) (1− p) + p`(ω2)

Persuasion (1− p) + pˆ̀(ω1) p+ (1− p)ˆ̀(ω2)
Common p+ (1− p)`(ω1) p+ (1− p)`(ω2)

Table 3: Receiver’s success probabilities as a function of state and payoff structure

rational Receiver. The above example thus also illustrate how strategic sophistication

may be detrimental for the Receiver in terms of her actual ex-ante payoff.

Our analysis focused on a persuasion payoff structure. While keeping the Re-

ceiver’s payoffs unchanged, we could vary how aligned the Sender’s interests are with

the Receiver’s. Interests are opposed (common) if the Sender’s payoff in state ω2

(resp., ω1) had instead been mS if the Receiver chooses a1 and 0 otherwise. It is

a dominant strategy for the Sender to try to obfuscate (clarify) when interests are

opposed (resp., common). Hence, under each of those payoff structures, the rational

Receiver’s updated belief conditional on receiving an obfuscated message coincides

with her prior π. Because the Receiver’s choice of perception strategy for an ob-

fuscated message depends only on her beliefs, the Receiver will choose the same

perception strategy, with success probabilities denoted `, under the opposed- and

common-interests payoff structures. The Receiver’s success probabilities under the

persuasion-payoff structure are denoted ˆ̀. With these notations in mind, Table 3 in-

dicates the ex ante probability the Receiver chooses the correct action as a function of

the state and payoff structure. Our paper highlights that ˆ̀ is typically different from

`: a rational Receiver can adjust her optimal persuasion strategy based on strategic

inference. Not recognizing this, one might suspect that success probabilities increase

as the Sender and Receiver’s preferences get more aligned (from opposed interests to

persuasion, and from persuasion to common interests). That intuition turns out to

be wrong: greater alignment of preferences does not guarantee greater success for the

Receiver.

To see this, remember that in the above example, the Receiver overlooks an obfus-

cated message under π̂ but pays a small cost c upon receiving an obfuscated message

to guess the state correctly 90% of the time under π. In that case, the success proba-

bility (before getting a message, as in Table 3) is 92% (98%) for both ω1 and ω2 when

interests are opposed (resp. common). But for the persuasion-payoff structure, the

success probability is 1 in ω1 and 80% in ω2. Hence actual success can decrease in
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ω2 (resp., ω1) when moving from opposed interests to persuasion (resp., persuasion

to common interests). In fact, even the expected success probability can decrease:

0.51∗0.8+0.49 for the persuasion case is strictly inferior to 0.92 in the case of opposed

interests.

Appendix

Proof of Proposition 1. It remains to show that (iii) and (iv) capture the empirical

content of the Receiver’s problem given his belief defined in (i). As explained in the

text, the argument builds on Caplin and Dean (2015), but accounts for the facts that

(a) probabilities vary across problems in our framework, and (b) pairwise comparisons

in (iv) in our framework while Caplin and Dean must consider consider cycles of any

size in their NIAC condition. We note that it is straightforward to generalize the proof

below to allow the Receiver’s benefit in state ωi from guessing correctly to be mS,i,

showing that our result on pairwise comparisons relies only on the payoff structure

being identical across observations, but not necessarily across states.15 We proceed

in three steps.

Step 1: The Receiver’s choices are consistent with costly information acquisition

under rational-expectations beliefs if, and only if, they are consistent with costly

information acquisition in a transformed individual decision-making problem with

uniform beliefs about the state and state-dependent payoffs. To see this, define

∆uji = 2π̂j(ωi)(uR(mS)− uR(0)). With this notation, the objective function (3) for a

persuasion game j is:

uR(0) +
1

2
µ(S1|ω1)∆uj1 +

1

2
µ(S2|ω2)∆uj2 − cR(S1,S, µ),

and the constraint that the Receiver prefers action ai following signal σ ∈ Si can be

written µ(σ|ωi)∆u
j
i ≥ µ(σ|ω−i)∆uj−i, ∀σ ∈ Si, ∀i = 1, 2. Thus, the problem in game

j is equivalent to one with uniform beliefs over states, after rescaling the payoff gain

in state i from choosing correctly to ∆uji .

Step 2: Using Caplin and Dean (2015, Theorem 1), consistency in the transformed

15The proof follows the same steps, but must instead define ∆uji = 2π̂j(ωi)(uR(mS,i) − uR(0))
and ∆`j = `j(ω1)(uR(mS,1)− uR(0))− `j(ω2)(uR(mS,2)− uR(0)).
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problem is equivalent to the Receiver’s data satisfying their NIAC and NIAS con-

ditions. Translated to our setting and notation, and using the fact that p > 1/2,

NIAS corresponds to condition (iii) in Proposition 1, while NIAC corresponds to the

condition that for any integer J ≥ 2 and any J-length cycle (p1, p2, . . . , pJ , p1) of

persuasion games,

J∑
j=1

(
`j(ω1)− `j+1(ω1)

)
∆uj1 ≥

J∑
j=1

(
`j(ω2)− `j+1(ω2)

)
∆uj2, (7)

where `J+1 = `1 by convention.

Step 3: We now show that in our setting, (7) reduces to the pairwise condition

stated in Proposition 1(iv). We begin by developing (7) into the condition

J∑
j=1

(
`j(ω1)− `j+1(ω1)− `j(ω2) + `j+1(ω2)

)
π̂j(ω1) ≥

J∑
j=1

(
`j(ω2)− `j+1(ω2)

)
= 0,

by using π̂j(ω2) = 1 − π̂j(ω1) and cancelling the common factor 2(uR(mS) − uR(0))

in the ∆uji ’s. Letting ∆`j = `j(ω1)− `j(ω2), (7) is then equivalent to:

J∑
j=1

(
∆`j −∆`j+1

)
π̂j(ω1) ≥ 0. (8)

For J = 2 (that is, a cycle (pj, pk, pj)), condition (8) reduces to condition (iv):

(π̂j(ω1)− π̂k(ω1))(∆`j −∆`k) ≥ 0. (9)

We now prove by induction that if (9) holds for all pairs of persuasion games, then

(8) must be satisfied for any cycle length J > 2. Suppose (8) holds for all cycles

of length J − 1, and consider a cycle of length J . For notational convenience we

may translate the elements of the cycle so that the J-th element corresponds to the

highest level of π̂j (the sum in (8) is invariant to where the cycle begins). Notice that

26



∑J
j=1 (∆`j −∆`j+1) π̂j(ω1) can be decomposed into:

J−1∑
j=1

(
∆`j −∆`j(mod(J−1))+1

)
π̂j(ω1)−

(
∆`J−1 −∆`1

)
π̂J−1(ω1) (10)

+
(
∆`J−1 −∆`J

)
π̂J−1(ω1) +

(
∆`J −∆`1

)
π̂J(ω1).

The first term in (10) corresponds to the sum in (8) for the (J − 1)-length cycle

(p1, p2, . . . , pJ−1, p1) that omits pJ ; this is nonnegative by the inductive hypothesis.

To get back to the sum in (8) for the original cycle, the second term removes the link

from pJ−1 to pJ , and the next two terms add back the links from pJ−1 to pJ , and from

pJ to p1. These final three terms in (10) sum to
(
π̂J(ω1)− π̂J−1(ω1)

) (
∆`J −∆`1

)
.

By our choice of numbering scheme, π̂J(ω1) is maximal among all π̂j(ω1), so the first

factor in this product is nonnegative. Similarly, the pairwise condition (9) applied

to (1, J) ensures ∆`J ≥ ∆`1, so the second factor is nonnegative too. Thus (10) is

nonnegative, implying (8) holds for the J-length cycle.
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Online Appendix
Communication, Perception and Strategic Communication

Geoffroy de Clippel and Kareen Rozen

We provide below some additional analysis mentioned in the main paper. We also

provide the paper instructions that were handed out for the experiment, as well as

screenshots of the z-Tree experimental interface. Both are for the 70% treatment.

The other treatments only change the value 70% to either 51% or 90%, as applicable.

A Receivers who expect Proposition 1(i)

We now estimate success rates among only subjects who follow Proposition 1(i) when

acting as Senders, as well as among only subjects whose survey response (describing

what they thought other Senders did) was placed in the Proposition 1(i)-category.

We use the same logistic regression model with robust standard errors, clustered by

session. We estimate:

Based on Sending choice Based on survey response

Precision p `p(ω1) `p(ω2) `p(ω1)− `p(ω2) `p(ω1) `p(ω2) `p(ω1)− `p(ω2)

51% 0.889 0.775 0.114 0.849 0.759 0.090

70% 0.878 0.635 0.243 0.879 0.626 0.252

90% 0.942 0.510 0.432 0.971 0.583 0.387

Table 4: The estimated state-dependent success probabilities of Receivers per treat-
ment, and excess-success probabilities, estimated only among the subpopulation of
subjects who followed Proposition 1(i) as Senders, and among the subpopulation of
subjects who anticipated Proposition 1(i) according to the exit survey.

Consider first subjects who followed Proposition 1(i) themselves. Among these

subjects, we have 1,896 observations of choices in obfuscated messages, with 581

in the 51% treatment, 731 in the 70% treatment and 584 in the 90% treatment.

For each pair of treatments, among this subset of subjects the null hypotheses that

`51(ω1) = `70(ω1) = `90(ω1) and `51(ω2) = `70(ω2) = `90(ω2) are rejected (p-values

0.0148 and 0.0000, respectively). We use π̂p(ω1) = p, following condition (ii). As seen

from Table 3, the excess-success probabilities indeed increase with the precision level
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p, verifying condition (iv). For each of the three pairwise comparisons of treatments,

the excess success probabilities are significantly different from each other (all p-values

0.0000). As for condition (iii), the left-hand side is strictly larger than the right-hand

side by 0.323 for the 51% treatment (p = 0.0000) and 0.105 for the 70% treatment

(p = 0.0001), and is smaller by 0.0015 for the 90% treatment, which is not statistically

different from zero (p = 0.8801).

Now consider subjects whose survey response indicates they think other Senders

followed Proposition 1(i). Among these subjects, we have 1,629 observations of

choices in obfuscated messages, with 478 in the 51% treatment, 657 in the 70%

treatment and 494 in the 90% treatment. For each pair of treatments, among

this subset of subjects the null hypotheses that `51(ω1) = `70(ω1) = `90(ω1) and

`51(ω2) = `70(ω2) = `90(ω2) are rejected (p-values 0.0001 and 0.0208, respectively).

We use π̂p(ω1) = p, following condition (ii). As seen from Table 3, the excess-

success probabilities indeed increase with the precision level p, verifying condition

(iv). These excess-success probabilities are statistically different when comparing the

51% treatment with either the 70% or 90% treatments (p-values 0.0020 and 0.0003,

respectively), and not statistically different when comparing the 70% and 90% treat-

ments (p-value 0.1627). As for condition (iii), the left-hand side is strictly larger

than the right-hand side by 0.295 for the 51% treatment (p-value 0.0000) and 0.104

for the 70% treatment (p-value 0.0004), and by 0.032 for the 90% treatment (p-value

0.0006).

B Demographic analysis of Receiver behavior

B.1 By major

We estimate success probabilities for subjects who report an economics major (E)

and those who do not (N), using a logistic regression that interacts the keyword,

the treatment, and an indicator for an economics major. We use robust, Huber-

White standard errors, clustered by session. The breakdown of reported majors was

32N/7E in the 51% treatment, 30N/13E in the 70% treatment, and 22N/19E in the

90% treatment. We observe 718 obfuscated messages for economics majors and 1589

for non-economics majors.

For non-economics majors, each of the null hypotheses `51(ω1) = `70(ω1) = `90(ω1)
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Economics majors Non-economics majors

Precision p `p(ω1) `p(ω2) `p(ω1)− `p(ω2) `p(ω1) `p(ω2) `p(ω1)− `p(ω2)

51% 0.857 0.707 0.150 0.822 0.817 0.005

70% 0.964 0.529 0.435 0.841 0.730 0.112

90% 0.933 0.589 0.344 0.928 0.649 0.280

Table 5: The estimated state-dependent success probabilities of Receivers per treat-
ment, and excess-success probabilities, for economics and other majors.

and `51(ω2) = `70(ω2) = `90(ω2) is rejected (p-values 0.0001 and 0.0000, respectively),

and the data clearly support conditions (iii) and (iv). For (iv), the point estimates

of the excess-success probabilities strictly increase with p, and the differences are

statistically significant, with p-values of 0.0000 for each pairwise comparison involving

90% and a p-value of 0.0001 for the 51% to 70% comparison. For (iii), the slack in

the inequality is 0.3099 for the 51% treatment (p-value 0.0000), 0.1080 for the 70%

treatment (p-value 0.0000), and 0.0002 for the 90% treatment (p-value 0.9904).

For economics majors, the null hypotheses that `51(ω1) = `70(ω1) = `90(ω1) and

`51(ω2) = `70(ω2) = `90(ω2) cannot be rejected (p-values 0.1901 and 0.2383, respec-

tively). As for condition (iv), the point estimates for the excess-success probabilities

violate monotonicity in going from the 70% treatment to the 90% treatment. None

of the pairwise differences is statistically significant, with p-values of 0.0907 when

comparing the 51% and 70% treatments, 0.2612 when comparing the 51% and 90%

treatments, and 0.3922 when comparing the 70% and 90% treatments. As for the

optimality requirement (iii), the left-hand side exceeds the right-hand side by 0.2737

for the 51% treatment (p-value 0.0000) and by 0.1340 for the 70% treatment (p-value

0.0000), and is smaller than the right-hand side by 0.0011 for the 90% treatment

(p-value 0.9563).

We now contrast the estimates for economics and other majors. In the 90%

treatment, neither `90(ω1) nor `90(ω2) is statistically different across majors (p-values

0.9089 and p = 0.2413, respectively); and similarly for the 51% treatment, though

the p-value for `51(ω2) is marginal at 0.0511 (the other p-value is 0.7566). The main

difference is in the 70% treatment, where the differences in each of `70(ω1) and `70(ω2)

across majors are statistically significant (both p-values are 0.0000). Without con-

ditioning on the realized state, non-economics majors have slightly higher estimated
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expected success rates than economics majors, in all but the 70% treatment: the dif-

ference in the expected probability of success for an obfuscated message is 0.0362 in

the 51% treatment (p-value 0.2217), -0.0260 in the 70% treatment (p-value 0.0671),

and 0.0013 in the 90% treatment (p-value 0.9718).

B.2 By gender

We estimate success probabilities for subjects who self-report as women (W) and those

who self-report as men (M), using a logistic regression that interacts the keyword, the

treatment, and an indicator for gender. We use robust, Huber-White standard errors,

clustered by session. The breakdown of reported genders per treatment is 19W/18M

in the 51% treatment, 29W/14M in the 70% treatment, and 28W/13M in the 90%

treatment. We observe 1429 obfuscated messages for women and 844 for men.

Men Women

Precision p `p(ω1) `p(ω2) `p(ω1)− `p(ω2) `p(ω1) `p(ω2) `p(ω1)− `p(ω2)

51% 0.767 0.689 0.078 0.889 0.867 0.021

70% 0.896 0.656 0.240 0.871 0.669 0.202

90% 0.965 0.750 0.215 0.913 0.588 0.325

Table 6: The estimated state-dependent success probabilities of Receivers per treat-
ment, and excess-success probabilities, for economics and other majors.

For women, the estimated excess-success probabilities strictly increase, as required

by condition (iv); and for each pair of treatments, these estimates are statistically

different from each other at all significance levels (p-values 0.0000). For the 51%

and 70% treatments, the basic optimality condition (iii) holds with slack, which

is statistically different from zero (p-values 0.0000). For the 90% treatment, the

inequality is reversed with the probability loss equal to 0.019, which is small but

statistically significant (p-value 0.0294). For men, the point estimates strictly satisfy

the basic optimality conditions (iii), with the slack statistically different from zero at

all significance levels (p-values 0.0000) for the 51% and 70% treatments, and the slack

of 0.0435 probability points not statistically different from zero for the 90% treatment

(p-value 0.0727). We also see non-monotonicity in the excess-success probabilities

going from the 70% to the 90% treatments, though the difference is not statistically
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significant (p-value 0.7135); the differences are statistically significant between the

51% and 70% treatments (p-value 0.0198) and between the 51% and 90% treatments

(p-value 0.0000). For men, the null that success rates are the same for ω2 across the

treatments cannot be rejected at the 5% level (p-value 0.0871) but the corresponding

null is rejected for ω1 (p-value 0.0000). For women, we cannot reject that the success

rates in ω1 are all the same (p-value 0.1069) but we can reject at all significance levels

that the success rates in ω2 are the same (p-value 0.0000).

We next compare, for each treatment p and state ωi, the estimates `p(ωi) by gen-

der. For the 70% treatment, neither `70(ω1) nor `70(ω2) is statistically different across

gender at any conventional significance levels, with p-values of 0.5739 and 0.6638,

respectively. For the 51% treatment, there are statistically significant differences for

both `51(ω1) and `51(ω2) across genders, with p-values of 0.0000 in both cases. In the

90% treatment, the estimates of `90(ω1) are not statistically different across genders

(p-value 0.1059) but the estimates of `90(ω2) are (p-value 0.0002).

We next consider differences in expected payoffs across genders, given equilibrium

beliefs. In the 51% treatment, where females have higher conditional success rates in

each state, the women’s expected success rate is higher by 0.149 probability points,

which is significant at all levels (p-value of 0.0000). In the 70% treatment, where

the conditional success rates are not different, the 0.014 difference in expected suc-

cess probability of men over women is indeed not statistically significant in (p-value

0.5391). In the 90% treatment, the men’s expected success rate is higher by 0.063,

which is marginally insignificant (p-value 0.0578).
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Welcome to this decision-making experiment! 

Please silence and put away electronic devices. Please do not talk with other participants. 

Instructions 

You will receive a $10 show-up fee, and will be able to earn more. The exact amount earned 
will depend on chance and choices made during the experiment. 

Throughout this experiment, participants will have the opportunity to play what we call 
`Sender-Receiver games’. We will explain shortly how you’ll be able to input your decisions 
as Senders and Receivers, and how participants will be paired to play these games. First, we 
describe the game itself. 

Sender-Receiver game 

The computer randomly draws one of two possible keywords, either `Red’ or `Blue’, with a 
50% chance of each. The Receiver guesses the keyword after seeing a message with 100 balls 
(of blue and red color). When the keyword is Red, the message contains 51 red balls and 49 
blue balls (i.e., red is the majority color). When the keyword is Blue, the message contains 
51 blue balls and 49 red balls (i.e., blue is the majority color). However, the balls displayed 
in the message can either be arranged by color, or in random order (see the two examples 
below for the keyword Blue).  

Arranged by Color In Random Order

How balls are displayed is impacted by the Sender’s decision in the following way. He or she 
chooses between making it more likely (70% chance) that balls are arranged by color, or 
making it more likely (70% chance) that balls are arranged in random order. The Sender can 
make his or her choice depend on whether the keyword is Red or Blue. 

Payoffs of a particular Sender-Receiver match will be computed as follows. The Sender gets 
$15 if the Receiver guesses that the keyword is Red, and $0 if the Receiver guesses Blue. The 
Receiver gets $15 for guessing the keyword correctly, and $0 otherwise. 



How will the Sender-Receiver games be played? 

To allow everyone to have a chance to play as a Sender and a chance to play as a Receiver, 
the session is split into two phases: a Sending phase and a Receiving phase. Decisions made 
during the Sending phase will be used to determine messages in the Receiving phase of the 
experiment. 

(a) Sending Phase: 

In this phase, each participant acts as a Sender, and decides whether balls in the Receiver’s 
message are more likely (70% chance) to be arranged by color, or more likely (70%) to be 
displayed randomly. You’ll be asked to make this decision twice, first for the keyword Blue, 
and second for the keyword Red. 

(b)Receiving Phase: 

In this phase, each participant acts as a Receiver. You will be matched 40 times, each time 
with a randomly drawn Sender other than yourself.  

In each match, the computer randomly draws the keyword (with a 50% chance of Blue and a 
50% chance of Red), and implements the Sender’s decision for the drawn keyword. That is, 
the computer uses the relative likelihood the Sender picked for that keyword, to display a 
message with balls arranged either by color, or randomly. You’ll be asked to guess the key-
word in each match. 

What happens at the end of the experiment? 

Once the Receiving Phase is complete, there will be a short and optional exit survey. Your 
participation is voluntary and does not affect your payoff.  

At the end of the experiment, the computer randomly picks a role for you (Sender or Re-
ceiver) and randomly chooses one match in which you played that role. You will receive your 
payoff from that match in addition to the $10 show-up fee. All identities remain anonymous. 
No one will learn what role you played or what payoff you earned. 

We are almost ready to start the experiment. Before doing so, there will be a short quiz to 
check your understanding of some key features of the experiment, as well as a chance to 
familiarize yourself with the interface.
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