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1 Introduction

In many economic settings, including trading and joint production, the surplus

to be shared is created through collaboration. Complementarity and substi-

tutability among agents determine how much there is to share when they all

cooperate, and what surplus would be created should smaller groups form.

Consider, for instance, three musicians who can play together as a duo or a

trio for an event (but not as soloists). They will collect $900 for performing as

a trio. Should they instead perform as a smaller ensemble, they would be paid

less: Musicians 1 and 2 could collect $800, Musicians 1 and 3 could collect

$600, and Musicians 2 and 3 could collect $400. If you could decide, as a

neutral outside party, how to split the $900 earnings of the trio between them,

what would you do?

Understanding people’s views when allocating money in such settings is

important, both for its own sake, and to shed light on the right reference point

to use when assessing intentions and reciprocity. Intuitively, an agent’s role

in creating surplus may be judged as less important in the presence of other

similar agents, which in turn may impact her reward for collaborating. By con-

trast, an agent judged as playing a more critical role might be rewarded more.

To illustrate, some might allocate more to Musician 1 in the above example,

since substituting her with another musician always reduces the surplus. On

the other hand, amounts allocated to Musicians 2 and 3 might increase if the

worth of their duo increases. For another thought exercise, contrast the two

following situations: (a) a positive surplus (of $900) is generated if and only if

at least Musicians 1 and 2 participate, versus (b) a positive surplus (of $900)

is generated if and only if Musician 1 collaborates with at least one other mu-

sician. In (b), Musician 2 loses the critical role she had in (a), as she becomes

substituable by Musician 3. Would Musician 2’s allocated payoff in (b) be

smaller than in (a)?

The long economic literature on other-regarding preferences overlooks such

complementarity and substitutability among agents.1 If one were to apply

1See Fehr and Schmidt (1999), Bolton and Ockenfels (2000), Andreoni and Miller (2002),
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this literature to our problem, then choices for others would be independent

of the worths of subcoalitions (and in many cases, would be an equal split).

Through a series of experimental treatments, we provide robust evidence that

coalition worths do matter when choosing for others, and that principles from

cooperative game theory have strong explanatory power in such situations.

Many of the solution concepts and axioms also have a normative interpretation,

capturing different ways of rewarding people in settings with complementarity

and substitutability.2 We test whether basic axioms are satisfied, use that

information to focus on a meaningful class of solution concepts, and sharply

organize the data through these theoretical tools.

Our initial treatment has three subjects designated at the start of each ses-

sion as Recipients, and the remaining subjects designated as Decision Makers.

In each of seven rounds, the Decision Makers are provided the set of coalition

worths for the three Recipients (a characteristic function, in the terminology

of cooperative game theory). These worths correspond to the value of dif-

ferent combinations of the Recipients’ ‘electronic baskets’, whose composition

is decided by the performance of each Recipient on an earlier quiz. Decision

Makers play the main role in our experiment, as only they provide our choice

data. For each characteristic function, we ask Decision Makers to decide how

to split the worth of the grand coalition between the three Recipients. At the

end of the session, the three Recipients are paid according to one randomly

selected decision of one randomly selected Decision Maker. Our experimental

design ensures that Decision Makers are ‘impartial observers’, in the sense that

their monetary payoffs are independent of their recommendation (in contrast

to dictator and ultimatum games). Moreover, the design eliminates strategic

channels that might affect recommendations (in contrast to ultimatum games,

or settings where reciprocity may be a concern).

Our data in this initial treatment, which comprises six sessions (per a Latin

Square design), shows that a large fraction of Decision Makers take the worths

Charness and Rabin (2002), Karni and Safra (2002), and Fisman, Kariv and Markovits
(2007), among others. Discussions of this literature can be found, for instance, in the book
by Camerer (2003) and the survey by Sobel (2005).

2See Moulin (2003) for a textbook introduction from this normative perspective.
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of subcoalitions into account when allocating money. While nearly all Decision

Makers choose equal split when the characteristic function is symmetric (and

all the solution concepts we study agree on this), these same Decision Makers

often choose unequal splits when the characteristic function is asymmetric.

Analyzing average payoff allocations as a start, we find evidence in support of

the axioms of Symmetry, Desirability, Monotonicity, and Additivity. However,

the Dummy Player axiom, whereby a Recipient who adds no value to any

coalition should get a zero payoff, is clearly violated.

From the perspective of theory, we prove that satisfying Symmetry and

Additivity (along with Efficiency, which must be satisfied in our experiment)

means that Decision Makers’ choices must be a linear combination of the equal

split solution and Shapley value, with the weights summing to one.3 This

theoretical result suggests a one-parameter model – the ESS model – which

we fit to the data by linear regression. Despite its simplicity, it does a nice job

at explaining average choices. The estimated weight on the Shapley value is

around 37% (p-value < 0.001).

We then take a closer look at the individual-level data to examine po-

tential heterogeneity. For each characteristic function, a significant fraction of

observed payoff allocations fall on, or near, the line joining the Shapley value to

equal split; but differ in how far along the line they go. A fraction of Decision

Makers abide by the equal split solution, but a majority take sub-coalition

worths into account. We find elucidating evidence of behavioral regularity

using the empirical CDF’s of money allocated to Recipients, and perform sta-

tistical tests of axioms using these distributions. The evidence corroborates

that found in the analysis of averages. We estimate the ESS model at the

aggregate level, both with and without the sub-population of Decision Makers

we call D-equal splitters (who opt for equal split whenever the total is divis-

ible by three). In aggregate, D-equal splitters may slightly reward marginal

contributions when the total isn’t divisible, but to a far lesser extent than

non D-equal splitters. Delving more deeply into individual behavior, we run

a horse-race based on MSE between the ESS model, the nucleolus, and the

3This result holds for the set of 3-player characteristic functions studied here.
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strong constrained egalitarian allocation (Dutta and Ray, 1991), which seem

to have some adherents in the scatterplots of data. Regardless of whether

we allow a continuum of weights in the ESS model, or only four (allowing

equal split, Shapley value, and two strict mixtures with weights 1/3 and 2/3,

respectively, on Shapley), the analysis finds that the same 93% of subjects

are best described by the ESS model. Intermediate weights matter beyond

equal split and Shapley: for instance, in the discrete version of the analysis,

38%/27%/24%/5% of subjects are classified as placing a weight of 0/1
3
/2

3
/1 on

the Shapley value.

Throughout this first stage of the project, we presumed Decision Makers

would overlook the worth of sub-coalitions, and simply pick equal splits, if

those worths were purely determined by luck. Thus we designed the treatment

discussed above to convey a sense of earned worths, while also reflecting a

type of real-life uncertainty, whereby we often observe outcomes but not the

process by which they were achieved (e.g., we may know little about whether

someone’s position in life is the outcome of hard work, lucky connections,

or initial inheritance; or the relative role of training versus innate talent in

someone’s demonstrated skill). In this treatment, Decision Makers are told

the values of basket combinations and know they were generated based on

a quiz, but aren’t given information about Recipients’ performance or the

mapping between performance and basket values.

While the Decision Makers in this treatment could not precisely gauge the

level of meritocracy in coalition worths, our guess was that such uncertainty

would be inconsequential as far as our qualitative results go. That is, the

overall assessment of the axioms and the usefulness of the ESS model should

remain valid, though it is plausible that payoff allocations and thus parameter

estimates might vary with the context in which the characteristic functions

arose.4 Under the ESS model, all that is needed for accurate predictions

4Similarly, expected utility theory can be helpful to explain choices in various contexts of
choice under risk, though risk attitude may be context-dependent (see Barseghyan, Prince
and Teitelbaum (2011) and Einav, Finkelstein, Pascu and Cullen (2012)). In a similar vein,
in his survey of positive analyses of distributive justice, Konow (2003) argues that justice
is “context dependent, but not context specific”: general principles hold widely (qualitative
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in a given context is to test choices in just a few (or even as little as one)

characteristic functions, within that same context, to assess the weight on the

Shapley value.

The Editor and referees rightly pushed us to understand whether conveying

a sense of earned worth was even necessary: that is, would Decision Makers

really just split equally if coalition worths were randomly assigned? As an

analogy, some may want to more greatly reward a band member who plays an

important role in drawing audiences, even if that ability is mostly attributable

to luck (e.g. appearance, innate vocal talent, etc.). Also, as suggested by the

Editor, how to split the pie as an impartial observer may be informed by what

would/should happen if the Recipients were actually bargaining, in which case

coalition worths matter independently of their origin.

To address this question, we tested a ‘No-Quiz’ treatment (an additional

six sessions per the Latin square design), whose structure differs from our

original treatment in only one respect: the same electronic baskets that were

earned in the Quiz treatment are now simply assigned randomly, and basket

combinations are worth the same as before. Hence the treatments test the

same characteristic functions, and are directly comparable. As we anticipated,

our earlier qualitative results regarding the axioms and the usefulness of the

ESS model are replicated to a large degree by the No-Quiz treatment. To our

surprise, the quantitative results are remarkably similar too. Theoretically it

could mean that estimated parameters are context independent. Alternatively,

not knowing how challenging the quiz was, nor the precise mapping between

earned fictitious objects and coalition worths, it could be that many Decision

Makers treated characteristic functions as if they were randomly assigned.

To further test our conjecture that qualitative results should be portable

across a wide variety of contexts, we designed a third, more radically dif-

ferent treatment. Both the Quiz and No-Quiz treatments generate coalition

worths somewhat abstractly through baskets combinations of fictitious objects.

results in our context), while “context is the indispensable element that supplies the people,
variables, time framework and weighting of principles that result in justice preferences” (as
in the determination of parameter estimates in our context).
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Would we still find that the ESS model, and its underlying axioms, help or-

ganize choices if coalition worths arise in a context more relatable to real-life

situations? And if so, would the pull towards the Shapley value be quanti-

tatively different? To study these questions, we turn to the quite different

technique of vignettes, which have a long tradition in a strand of the exper-

imental literature on distributive justice: see, for instance, the classic papers

of Yaari and Bar-Hillel (1984), Kahneman, Knetsch and Thaler (1986), Levine

(1993), or many other papers reviewed in Konow (2003)’s survey, which also

discusses benefits and drawbacks of the method.5 A vignette provides subjects

with contextual information on a realistic problem, and asks them to make a

decision for that circumstance. They are intended to help participants under-

stand, relate and think through a problem. In our setting, the hope is to make

the characteristic function come to life in a practical problem. The particular

vignette we test is based on the three musicians in our introductory paragraph.

We use the ‘same’ characteristic functions as in the first two treatments, but

multiply all coalition worths by 10 for the vignette to be plausible. In our ‘Vi-

gnettes’ treatment (an additional six sessions per the Latin square design), all

subjects are Decision Makers and are paid per decision made, as before. The

three musicians in each vignette are the hypothetical Recipients. Contrary to

the first two treatments, Decision Makers’ choices are never implemented.

Since their choice matters to no one but themselves, and they are paid a

fixed amount regardless of the allocation selected, some might expect Deci-

sion Makers to avoid thinking costs: for instance, simply allocating the entire

amount to one musician, or always splitting equally. However, it is well doc-

umented that subjects take vignettes seriously (Konow, 2003). Indeed, we

again find that subjects take coalition worths into account, and that coopera-

tive game theory provides a useful way to organize the data. In particular, we

find extremely similar qualitative results, but uncover quantitative differences,

with a greater pull towards the Shapley value, away from equal split. In the

5This treatment thus contributes to that literature, which also employs an impartial
observer approach (often using the terminology ‘benevolent dictator’). Unlike our work, this
experimental literature does not consider sub-coalition worths, and thus overlooks potential
complementary or substitutability of agents.
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aggregate, the estimated weight on the Shapley value in the Vignettes treat-

ment is about 50% larger than in the Quiz and No-Quiz treatments. This is

reflected in a comparison across treatments of the CDFs of money allocated

to each Recipient. For each characteristic function and Recipient whose Shap-

ley value is greater than (smaller than) the amount they would receive from

equal split, the CDF of money allocated to them in the vignettes treatment

nearly first-order stochastically dominates (is dominated by) the correspond-

ing CDFs from the first two treatments. Most of these FOSD rankings are

highly statistically significant.

Our three treatments provide robust evidence that coalition worths do mat-

ter in settings where agents can vary in how substitutable or complementary

they are, and that the ESS model and its underlying axioms are important

tools for organizing the data. The Vignettes treatment also provides some

evidence that parameter estimates may vary across contexts. This opens a

few promising directions for future research. First, one may want to better

understand how parameter estimates might vary across contexts, by draw-

ing connections to theories of desert in the distributive-justice literature. For

instance, Buchanan (1986) contrasts luck, choice, effort, and birth as four

distinct categories that impact one’s claim to wealth; see also Konow (2003,

Section 4.2). Second, one should test and calibrate the ESS model with dif-

ferent subject pools. Interestingly, while Croson and Gneezy (2009)’s survey

highlights robust gender differences in risk, other-regarding and competitive

preferences, we find no statistically significant differences in the parameter es-

timates across men and women. In addition to exploring this further, testing

for cultural differences would be of interest.

Further related literature

We now discuss related literatures that have not already been noted above.

One interpretation of the Shapley value is that it rewards people for their

role in creating the surplus, which according to Shapley, should be measured

by their marginal contributions. Konow (2000) and Cappelen, Hole, Sørensen,
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and Tungodden (2007) also touch upon the theme of rewarding contributions,

but in a two-player dictator game where the pie to split is the sum of the two

subjects’ ‘contributions’ in an earlier production phase. To understand how

the dictator’s choice depends on factors within versus beyond their control,

a subject’s contribution is the product of a chosen investment level and an

exogenous rate of return. Among other questions, Konow studies whether lib-

eral egalitarianism can explain observed allocations when entitlement follows

an accountability principle. Cappelen et al. studies the relative prevalence

of fairness ideals beyond liberal egalitarianism, including strict egalitarianism

and libertarianism. We study a wide range of scenarios that differ on multiple

dimensions, as explained below.

First, instead of being specified as the sum of individual contributions, the

amount to split arises from complementarity and substitutability across agents.

A main question is then how Decision Makers assess individual contributions

in such settings. Do they use marginal contributions, as suggested by the

Shapley value? Many other measures are conceivable as well. As another

point of departure, we provide no quantifiable information that would express

coalition worths as a precise function of effort and luck parameters. In addition

to keeping the analysis focused on our main point of interest – whether and

how Decision Makers reward people for their role in creating the surplus – we

see it as a realistic feature of some applications. Going back to the musicians,

the opportunities available to them are quantifiable in terms of profit, but we

would not expect even the musicians themselves, and a fortiori the impartial

observers, to understand or agree on the differential impacts of talent and hard

work in generating them.

Our work may also be contrasted with the small experimental literature on

cooperative games, which allows multiple subjects to bargain with each other

given a characteristic function. Kalisch, Milnor, Nash and Nering (1954),

one of the earliest papers in the field of experimental economics, inform sub-

jects of their role in a characteristic function and let them interact informally.

Other experimental papers impose a formal bargaining protocol, in addition

to specifying a characteristic function, to concentrate on a particular question
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of interest. For instance, Murnighan and Roth (1977) consider the effect of

messages during negotiation, and the announcement of payoff decisions, on

the resulting allocations; while Bolton, Chatterjee, and McGinn (2003) study

the impact of communication constraints in a three-person bargaining game

in characteristic-function form.

Another paper in that vein is Nash, Nagel, Ockenfels and Selten (2012),

who compare outcomes in a 40-times repeated bargaining game to cooperative

solutions. Their stage game starts with a coalition formation phase with ex-

ogenous breakdown probability, where following their ‘agencies’ protocol, one

of the three players is appointed to allocate the coalition’s profit (including

to himself). With the grand coalition forming in 91.5% of stage games, they

show that their bargaining protocol can successfully yield efficient outcomes

when repeated: long-term incentives to maintain cooperation outweigh greedy

short-term incentives. They study who is appointed to split the pie (e.g., is it

the ‘strongest’ player in the characteristic function), and how he or she divides

it. Their stage game admits multiple equilibria, and the finitely repeated game

admits even more. A potential relation to our work is through the notion that

a fair allocation can serve as a focal or reference point to select equilibria. If

so, then observed outcomes might reflect, at least to some extent, which allo-

cations are viewed as fair. The relation is tenuous, though, as little is known

about focal points in complex strategic games, and many conflicting aspects

play a role: players’ choice may reflect, among other things, negative reci-

procity,6 reputation building, strategic experimentation (e.g., what will others

tolerate), or end-game effects (e.g., will the last appointee take everything).

They show splits vary widely as a function of the appointee, and in all rounds,

the appointee either favors himself or splits equally. Thus, splits depart from

all cooperative solutions whenever the appointee is not the ‘strongest’ player.

Considering each characteristic function separately, they compare the mean-

squared errors of the average split over 40 rounds (and the average split from

the stronger player) to the Shapley value, nucleolus, and equal split solution.

6Consistent with this, they find: “the more aggressive the demand of one player is, the
more aggressive are those of the others.”
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By contrast to these bargaining experiments, our study has no strategic

considerations at play. We focus on one question that is posed to benevolent

Decision Makers for each characteristic function: how would you split the pie

for the three recipients? The answers allow us to test axioms, narrow down to a

meaningful class of solutions, and study behavior as the characteristic function

varies. Though it has not been formalized there, our question is thus closer in

spirit to the aforementioned experimental literature on distributional justice,

while our design and analysis borrow tools from cooperative game theory.

2 Theoretical Benchmark

Before detailing our treatments and results, we provide a quick primer on the

theory which is in the background of our design and analysis.

2.1 Solution Concepts

Let I be a set of n individuals. A coalition is any subset of I. Following

von Neumann and Morgenstern (1944), a characteristic function v associates

to each coalition S a worth v(S).7 The amount v(S) represents how much

members of S can share should they cooperate. That is, an allocation x is

feasible for S if
∑

i xi ≤ v(S). Assuming that the grand coalition forms (that

is, all players cooperate), how should v(I) be split among individuals? This is

the central question of cooperative game theory.

The equal-split solution simply divides v(I) equally among all individuals.

By contrast, cooperative game theory provides a variety of solution concepts

that account for the worths of sub-coalitions, each capturing a distinct notion

of fairness. Prominent solution concepts are the Shapley value (Shapley, 1953),

the core (Gillies, 1959), the nucleolus (Schmeidler, 1969), and the weak- and

strong-constrained egalitarian allocations (Dutta and Ray, 1989 and 1991).

7With the convention that v(∅) = 0.
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The Shapley value. Consider building up the grand coalition by adding

individuals one at a time, giving each their marginal contribution v(S ∪{i})−
v(S) to the set S of individuals preceding i. The Shapley value achieves a

notion of fairness by averaging these payoffs over all possible ways to build up

the grand coalition. That is, the Shapley value is computed as

Shi(v) =
∑

S⊆∈I\{i}

pi(S)[v(S ∪ {i})− v(S)],

where pi(S) = |S|!(n−|S|−1)!
n!

is the fraction of possible orderings where the set

of individuals preceding i is exactly S. This formula also has an axiomatic

foundation. The Shapley value is the only single-valued solution that satisfies

Efficiency, Symmetric, Additivity and the Dummy Player axiom. Many alter-

native axiomatic characterizations have been proposed since then. Axioms are

defined formally and discussed below, as we explain the rationale behind our

selection of characteristic functions for the experiment. We will also test their

validity experimentally.

The core. The core looks for payoff vectors x ∈ RI with the feature that

there is no coalition whose members would be better off by cooperating on

their own; that is, the core requires that
∑

i∈S xi ≥ v(S) for each coalition

S, with
∑

i∈I xi = v(I) for the grand coalition. While often interpreted from

a positive standpoint, the core is also normatively appealing as it respects

property rights for individuals and groups: picking a payoff vector outside the

core means robbing some individuals from what they deserve.

The nucleolus. Like the Shapley value, the nucleolus prescribes a unique

solution in all cases. Given a payoff vector x, the excess surplus of a coalition

S is the amount it receives net of what it could obtain on its own, that is,∑
i∈S xi − v(S). The nucleolus interprets excess surplus as a welfare criterion

for a coalition, and chooses among all feasible payoff vectors the one that

lexicographically maximizes all coalitions’ excess surpluses, starting from the

coalition with the lowest excess surplus and moving up. By contrast, the
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core simply requires each coalition’s excess surplus to be nonnegative. Hence,

whenever the core is nonempty, it must contain the nucleolus.

Constrained egalitarian allocations. The constrained egalitarian alloca-

tion marries egalitarianism with the protection of individual interests. The

notion of egalitarianism is based on the Lorenz ordering, which is a partial

ordering over allocations such that x Lorenz-dominates y if, loosely speaking,

x can be derived from y through a sequence of transfers from ‘rich’ to ‘poor.’

The Lorenz core of the grand coalition is recursively defined. The Lorenz core

of a singleton coalition {i} is simply {v(i)}. The Lorenz core of a coalition S

is then the set of feasible allocations for S such that there does not exist any

y ∈ T ⊂ S such that y is Lorenz-undominated within T and the members of T

‘all prefer’ y to x. The solution concept then picks those allocations that are

Lorenz-undominated within the Lorenz core of the grand coalition. The idea

in this recursive definition is that objections must be egalitarian themselves.

The solution concept has two versions, Strong and Weak, which differ in what

‘all prefer’ means: in the Strong version (S-CEA), everyone must be strictly

better off, while in the Weak version (W-CEA), all must be weakly better off,

with at least one strict improvement. This seemingly small difference can yield

very different predictions. Note that the S-CEA may be multi-valued and is

always nonempty; but the W-CEA, when it exists, selects a unique allocation.

2.2 Normative Principles

We now turn our attention to some normative properties (or axioms) which

may guide Decision Makers’ choices, even if they do not follow one of the above

solution concepts. A significant part of cooperative game theory precisely aims

at defining such principles, and understanding which combinations character-

ize solution concepts. Some properties are satisfied by multiple reasonable

solution concepts, and may thus appear, at least on a theoretical level, to be

more universal and fundamental. Others are satisfied by a narrower class of

solution concepts, and thus sharply capture the essence of what distinguishes

some solutions from others. Testing the axioms, in addition to examining
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the explanatory power and the relative prevalence of a handful of solution

concepts, offers a fuller picture of what people view as fair.

Individual i is a dummy player if v(S) = v(S \ {i}), for any coalition

S containing i. In order to test this property, we included in our study a

characteristic function with a dummy player (as will be seen, this is Recipient

3 in CF1). The Dummy Player axiom requires that such individuals receive a

zero payoff. It is satisfied by the Shapley value, the core, and thus any selection

of it as well (such as the nucleolus for instance). The equal split solution, on the

other hand, violates the Dummy Player axiom. Hence characteristic functions

with a dummy player offer a stark test of the difference between equal split

and most standard solutions from cooperative game theory.

Suppose that for any (non-singleton) coalition containing individual j but

not i, replacing j with i strictly increases profit. In this case, we say that indi-

vidual i is more desirable than j. If replacing j with i never makes a difference,

we say that i and j are symmetric. A payoff vector respects Symmetry if it

allocates the same amount to symmetric individuals. It respects Desirability

if it allocates a strictly larger amount to i than to j when i is more desirable

than j.8 The Shapley value respects both Symmetry and Desirability. The

core always contains payoff vectors that respect both Symmetry and Desir-

ability, but may contain additional payoff vectors. The equal split solution

respects Symmetry, but systematically violates Desirability. The constrained

egalitarian allocations may violate both Symmetry and Desirability.

The properties above apply pointwise: i.e., for given characteristic func-

tions. The next properties relate payoff vectors across characteristic functions.

Suppose that one selects a payoff vector x for a characteristic function v,

and a payoff vector x̂ for a characteristic function v̂. Suppose further that the

only difference between v and v̂ is that the worth of coalition S has increased.

Then the payoff vectors x and x̂ respect Monotonicity if the payoff of each

member of S increases, that is, x̂i > xi for all i ∈ S. The Shapley value

selects payoff vectors that systematically respect this property. Young (1985)

8Comparisons of payoffs in terms of the individuals’ relative desirability were first sug-
gested by Maschler and Peleg (1966).
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provides an example of two characteristic functions with singleton cores that

violate Monotonicity. However, one can show that the core does admit a single-

valued selection (e.g. the nucleolus) that respects Monotonicity for games with

only three individuals, as in our experiment. The equal split solution violates

Monotonicity since it overlooks the worths of sub-coalitions.

A cornerstone of Shapley’s (1953) characterization of his value is the Ad-

ditivity axiom. Given two characteristic functions v and v̂, the sum v + v̂ is

the characteristic function where the worth of each coalition is the sum of its

worth in v and in v̂. Suppose that a single-valued solution concept ϕ selects

the payoff vector x for characteristic function v, and the payoff vector x̂ for

characteristic function v̂. For ϕ to respect Additivity, the allocation selected

for the characteristic function v + v̂ must be the payoff vector x+ x̂. That is,

ϕ(v + v̂) = ϕ(v) + ϕ(v̂). As is well known, Additivity is equivalent to linear-

ity with respect to rational coefficients: ϕ(αv + βv̂) = αϕ(v) + βϕ(v̂), where

α, β ∈ Q+. The case α = β = 1/2 will be particularly useful for us, and it is

easy to see why Additivity implies it. Indeed, since ϕ(2v) = 2ϕ(v), we have

ϕ(
1

2
v +

1

2
v̂) = ϕ(

1

2
v) + ϕ(

1

2
v̂) =

1

2
ϕ(v) +

1

2
ϕ(v̂).

3 Design of Treatments and Procedure

Our three treatments test what monetary payments individuals (henceforth

called Decision Makers) deem appropriate for three Recipients, in view of

how much different coalitions of Recipients would be worth. We describe

the treatments below, starting with the initial treatment undertaken (Section

3.1), and then explain how the ensuing two treatments differ (Sections 3.2-

3.3). In Section 3.4, we discuss theoretical motivations and implications of

the characteristic functions tested. In Section 3.5, we discuss experimental

procedures. In Section 3.6, we provide summary information on the subject

pool per treatment.
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3.1 The ‘Quiz’ Treatment

At the start of each session in this treatment, three subjects are chosen through

uniform randomization and designated Recipients 1, 2 and 3, respectively.

Recipients stay in that role for the duration of the session. All other subjects

are designated Decision Makers. A session has seven rounds.

At the start of each round, each Recipient receives an empty ‘electronic

basket.’ By answering trivia questions correctly, a Recipient earns some ficti-

tious objects (e.g., two left shoes, a bicycle frame, one bicycle wheel) for his

or her basket. Combinations of objects that form a “match” have monetary

value. For instance, in a given round a complete pair of shoes – left and right

– may be worth $15, while a bicycle frame with two wheels may be worth

$40. The objects available to each Recipient in a round have been selected

so that only combinations of two or three Recipients’ baskets may have posi-

tive worth. We momentarily defer discussion of our control over the possible

worths of different basket combinations, in order to describe the key role of

Decision Makers.

For each round, once the content of the Recipients’ baskets has been de-

termined, Decision Makers are informed of the value of different basket com-

binations. The Decision Maker is permitted to allocate, as he or she deems fit,

the monetary proceeds of the three-basket combination among the Recipients.

We require monetary allocations to be efficient and nonnegative, and allow the

Decision Maker to opt out of any given round without making a decision.

At minimum, all subjects receive a five-dollar show up fee. Decision Makers

receive one additional dollar for each round in which they participate. At the

end of the session, one round and one Decision Maker (who participated in

that round) are randomly chosen. Recipients receive the monetary payoffs

determined by the chosen Decision Maker in the chosen round (in addition to

their show up fee). Subjects are informed only of their own payoff, and do not

learn which roles other subjects played during the experiment.

The treatment was designed with the following considerations in mind.

First, the coalitions’ worths are “earned” by Recipients, by letting Recipients
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earn objects by answering quiz questions correctly.

Second, to permit specific tests of solution concepts and axioms, we nonethe-

less want to maintain some control over the set of characteristic functions faced

by Decision Makers. Subjects were told that Recipients would be earning ob-

jects in each round, but were not given information regarding how those ob-

jects and their values would be selected. For each round, we pre-selected the

available objects and values of object combinations with the following goal in

mind: if Recipients earn all the objects available to them in a round, then one

of the seven characteristic functions in Table 1 would be generated.9,10 Section

R1+R2 R1+R3 R2+R3 R1+R2+R3

CF1 60 0 0 60
CF2 40 40 0 40
CF3 40 40 20 50
CF4 80 60 40 90
CF5 30 15 15 30
CF6 40 40 0 70
CF7 40 40 40 60

Table 1: The seven characteristic functions (CF) studied are described in the rows.
The numerical values in the last four columns are the dollar amounts generated by
combining the baskets of the Recipients listed, where Recipient i is denoted Ri.

3.4 below details the motivations for, and theoretical implications of, CF1-7.

Third, we run six different sessions of this treatment to be able to test

for potential effects from the order in which the characteristic functions are

presented, and if needed, help wash these out in the aggregate.11 We use a

Latin square design for characteristic functions one through six. Table 2 details

the session-dependent mapping between rounds and characteristic functions.

The seventh characteristic function is fully symmetric and all standard solution

9We explain below the session-dependent map from rounds to characteristic functions.
10Precisely to reduce the probability that some other characteristic functions would be

generated, Recipients were afforded multiple opportunities to earn available objects. Inci-
dentally, any superadditive characteristic function can be generated through this process.

11As seen in Appendix D, we do not find such order effects.
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concepts prescribe an equal split. Consequently, this characteristic function is

left as a consistency check in the final round of all sessions, where it cannot

affect subsequent behavior.

Round
1 2 3 4 5 6 7

Session 1 1 6 2 5 3 4 7
Session 2 2 1 3 6 4 5 7
Session 3 3 2 4 1 5 6 7
Session 4 4 3 5 2 6 1 7
Session 5 5 4 6 3 1 2 7
Session 6 6 5 1 4 2 3 7

Table 2: The ordering of characteristic functions in the six sessions. Round entries
identify the characteristic function using the scheme from Table 1. The Latin square
design means each possible pair from CF1-CF6 is adjacent in some session.

Fourth, Decision Makers are informed that the Recipient numbers they

see on their screen in each round are randomly generated aliases for the true

Recipients.12 That is, the Recipient whose alias is Ri (i = 1, 2, 3) on the

Decision Maker’s screen in a given round is equally likely to be given the alias

R1, R2 or R3 in the next round. These random aliases rule out the possibility

that a Decision Maker’s payoff allocation for a given Recipient is influenced

by his or her choice for that Recipient in a previous round.

Finally, related to the point above, we generally tried to mitigate the pos-

sibility that information extraneous to the monetary values of basket combi-

nations affects Decision Makers’ choices. For this reason, subjects remain in

separate roles throughout the experiment, so that Decision Makers cannot dif-

ferentially consider their personal experience as a Recipient when determining

payoff allocations. Moreover, a Decision Maker’s chosen payoff allocation need

not reflect strategic concerns, both because it cannot influence his or her own

payoff, and because Recipients play no further strategic role. Decision Makers

are presented only with the computed values of different basket combinations.

12The characteristic function the Decision Maker sees is permuted accordingly.
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They do not learn which objects are in the Recipients’ baskets or the values of

different object combinations. Similarly, Decision Makers do not see the quiz

questions Recipients faced, or how well the Recipients performed.13 Finally,

they do not learn the outcomes of other Decision Makers’ choices, and cannot

communicate with other subjects. This keeps our setting as close as possible

to standard split-the-pie problems. The above features have the added benefit

of simplifying the Decision Maker’s problem from a computational standpoint.

3.2 The ‘No-Quiz’ Treatment

Our second treatment, comprising another six experimental sessions following

the same Latin square design, differs from the Quiz treatment in only one

respect. Instead of having a quiz phase where the objects are earned, the

Recipients are randomly assigned seven baskets of objects. These baskets are

identical to those that were generated in the main treatment, and we use

the same monetary values of object combinations. Thus for each round, the

same characteristic functions as in the Quiz treatment are generated. The

only difference from the Quiz treatment is thus that Recipients play no role

in generating these baskets. Recipient aliases are again permuted in each

question, as in the Quiz Treatment, and the interface for inputting choices is

identical. Payments to subjects are determined just as before.

3.3 The ‘Vignettes’ Treatment

Our third and final treatment, also comprising six experimental sessions fol-

lowing the same Latin square design, has all subjects in a session serving as

Decision Makers. In each session, we present Decision Makers with a sequence

of seven vignettes regarding hypothetical musicians, each differing only in the

characteristic function it encapsulates.

Each vignette states that “Three musicians can play together as a duo or

13Notice in passing that keeping such background information from Decision Makers is
not unrealistic outside of the lab, in the sense that one does not necessarily know precisely
whether other peoples’ successes are due to luck, hard work, nepotism, etc.
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trio for an event (but not as soloists).” The vignette specifies the amounts the

different duos and the trio would earn. The Decision Maker is then asked, “The

musicians will perform as a trio for the event, and ask you to decide on their

behalf how to share the $[dollar amount] earned. Which split do you choose?”

In each question, the worths of the ensembles correspond to one of CF1-CF7,

but with all worths scaled by ten dollars to reflect market values. Musician

identifiers (i = 1, 2, 3) are randomly permuted in each question, analogously

to the prior two treatments, since otherwise Musician 1 (3) would consistently

appear strongest (weakest). The interface for inputting choices is identical

to the prior treatments. Decision Makers are aware their choices will not be

implemented, and their own payments are determined as before.

3.4 CF1-7: Motivations and Theoretical Implications

To ensure that subjects acting as Decision Makers are not overwhelmed by

numbers, we tested only characteristic functions for which the monetary payoff

of singleton coalitions is zero. We introduce CF1-CF6 to distinguish between

some different solution concepts. All solution concepts agree on equal split for

CF7; it is useful nonetheless to identify subjects who believe in equal splits

for symmetric settings, as our analysis focuses on what these subjects will

do in asymmetric ones. We introduce CF1-CF6 to distinguish between some

different solution concepts. Table 3 details the payoff allocations selected in

those characteristic functions.

Since the Shapley value need not belong to the core, we can test the relative

prevalence of these competing norms. To make this comparison most mean-

ingful, we include some characteristic functions whose core is single-valued

(CF2-CF5). With three individuals and singleton coalitions that generate zero

profit, the core is single-valued if and only if v({1, 2})+v({1, 3})+v({2, 3}) =

2v({1, 2, 3}). Under this condition, the Shapley value is exactly halfway be-

tween the equal-split solution and the single payoff vector in the core (since

the core is single-valued, it also coincides with the nucleolus).

We also include two characteristic functions with multi-valued cores (CF1,
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CF1 CF2 CF3 CF4 CF5 CF6

Shapley (30, 30, 0) ( 80
3 ,

40
6 ,

40
6 ) ( 70

3 ,
40
3 ,

40
3 ) (40, 30, 20) (25

2 ,
25
2 , 5) (110

3 , 503 ,
50
3 )

Core P1 {(40, 0, 0)} {(30, 10, 10)} {(50, 30, 10)} {(15, 15, 0)} P2

Nucleolus (30, 30, 0) (40, 0, 0) (30, 10, 10) (50, 30, 10) (15, 15, 0) (40, 15, 15)

W-CEA (30, 30, 0) - - (40, 40, 10) (15, 15, 0) ( 70
3 ,

70
3 ,

70
3 )

S-CEA P3 {(20, 10, 10)} {(20, 15, 15)} {(40, 25, 25)} {(15, 7.5, 7.5)} {( 70
3 ,

70
3 ,

70
3 )}

Table 3: What the different solution concepts prescribe for CF1-CF6, where P1 =
{(x, 60 − x, 0) | x ∈ [0, 60]}, P2 = {(70 − x − y, x, y) | x, y ∈ [0, 30]}, and P3 =
{(30, 15, 15), (15, 30, 15)}. All the solution concepts prescribe equal split in CF7.
W-CEA does not exist in CF2-CF3.

CF6). The Dummy Player axiom can be tested in CF1 (where Recipient 3

plays the dummy role). The worth of the grand coalition in CF1 is the same

as in the fully symmetric CF7, since it interesting to see whether the choices

in these two cases differ. The Monotonicity axiom can be tested by comparing

the choices in CF2 with those in CF3 and CF6. Indeed, Monotonicity requires

that the payoffs of Recipients 2 and 3 are greater in CF3 than in CF2; and

that the payoffs of all three Recipients are greater in CF6 than in CF2.

We have two ways of testing Additivity, even though no two of our char-

acteristic functions directly add up to a third. First, under the reasonable

assumption that Decision Makers would choose an equal split in a hypothet-

ical characteristic function where only the grand coalition has positive worth

(equal to $30), the Additivity axiom can be examined using Decision Makers’

choices in both CF2 and CF6. Second, as noted earlier, Additivity is equiva-

lent to linearity with rational coefficients, which can be tested directly using

the fact that CF3 is the average of CF2 and CF7.

In each of CF1-7, every pair of Recipients can be ranked in terms of ei-

ther symmetry or desirability. In particular, Recipient i is more desirable

than (symmetric to) Recipient j if and only if v({i, k}) > v({j, k}) (resp.,

v({i, k}) = v({j, k})). Table 4 shows the ranking of Recipients in each of our

seven characteristic functions. Symmetry and Desirability have implications

within each characteristic function, with the exceptions of CF4 (only Desir-

ability applies, as it is fully asymmetric) and CF7 (only Symmetry applies,
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as it is fully symmetric). Notice that Recipient 1 is always more desirable

than, or symmetric to, Recipient 2; and in turn, Recipient 2 is always more

desirable than, or symmetric to, Recipient 3. This was only for the purpose

of normalization when designing the characteristic functions. As discussed

in Section 3.1, Recipients’ true identities (as R1, R2 or R3) are masked by

a randomly generated alias in each round (with the characteristic function

permuted accordingly), so Decision Makers cannot identify a pattern.

CF 1 and 5 CF 2, 3 and 6 CF4 CF7

Rankings R1∼R2�R3 R1�R2∼R3 R1�R2�R3 R1∼R2∼R3

Table 4: The ranking of Recipients in each of the seven characteristic functions,
where Ri�Rj (Ri∼Rj) means that Ri is more desirable than (symmetric to) Rj.

The imputation triangles representing our data in Figures 1, 3 and 4 in-

clude, as a reference, the payoff allocations corresponding to the different so-

lution concepts in CF1-7. Since R1 is either symmetric to, or more desirable

than R2, most solution concepts would require that R1’s payoff is at least as

high as that of R2. In those figures, this corresponds to a payoff allocation in

the “left” half of each triangle (that is, left of the vertical line which bisects

the bottom edge). Similarly, since R2 is either symmetric to, or more desir-

able than R3, this corresponds to a payoff allocation in the “bottom” half of

each triangle (that is, below the diagonal line which bisects the right edge).

Given our normalization of Recipient rankings, nearly all the solution concepts

in our setting prescribe choosing an allocation in the “bottom-left” subtrian-

gle. Although these imputation triangles represent different total monetary

amounts, allocations can be compared even across triangles as describing the

percentages allotted to different Recipients. We picked CF1-CF6 to make sure

there was enough variation in the solution concepts.
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3.5 Experimental Procedure

Subjects were allowed to participate in at most one session, across all treat-

ments. The treatments thus comprise disjoint sets of subjects. Subjects were

recruited via the BUSSEL (Brown University Social Science Experimental Lab-

oratory) website.14 The six sessions of the Quiz treatment were conducted in

April and May 2013. The six sessions of the No-Quiz treatment were con-

ducted in April, May and November of 2017. The six sessions of the Vignettes

treatment were conducted in December 2018. All sessions were held at Brown

University.15 The interface for the experiment was programmed by Possible

Worlds Ltd. to run through a web browser.16

Sessions lasted approximately thirty to forty minutes. At the start of each

session, the supervisor read aloud the experimental instructions, which were

simultaneously available on each subject’s computer screen. The onscreen

instructions for each treatment, available in Appendix E, contained a practice

screen for inputting Recipients’ payoffs, to get accustomed to the interface.

For the Quiz and No-Quiz treatments, the session supervisor then summarized

how subjects are selected into roles and how baskets values are constructed

using a presentation projected onto a screen (see Appendix F). In those two

treatments, subjects learned their role as Decision Maker or Recipient only

after going through all of the instructions. In all three treatments, each subject

14This site, available at bussel.brown.edu, offers an interface to register in the system
and sign up for economic experiments. To do so, the information requested from subjects
is their name and email address and, if applicable, their school and student ID number.
The vast majority of subjects registered through the site are Brown University and RISD
graduate and undergraduate students, but participation is open to all interested individuals
of at least 18 years of age without discrimination regarding gender, race, religious beliefs,
sexual orientation or any other personal characteristics.

15The Quiz treatment was held at a Brown University computer laboratory, which was
used by BUSSEL for economic experiments in that time period. The more recent two treat-
ments were held at the new laboratory space designated for BUSSEL, which is comparable
to the previous laboratory in size and location on campus.

16In the first couple of sessions of the Quiz treatment, after all but one or two Decision
Makers had completed all seven rounds, a connectivity issue with the server prevented the
remaining Decision Makers from entering their choice in the final one or two rounds. Of
course, the last round was always CF7. Since it was through no fault of their own, those
few subjects were paid $1 for each of those missing decisions. This did not affect any of the
remaining payment process. The connectivity problem was then identified and corrected.
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received payment in cash at the end of the session, including a $5 show-up fee.

After completing all seven rounds, subjects in each session were presented

with an optional exit survey via the computer interface. This survey collected

basic demographic information (major, gender, age and number of siblings)

and allowed subjects to describe how they made their choices as Decision

Makers, if applicable.

3.6 Our subject pool

A total of 107 subjects (and thus 89 Decision Makers, given the three Re-

cipients per session) participated in the Quiz treatment; 130 subjects (and

112 Decision Makers) participated in the No-Quiz treatment; and 85 subjects

(and thus 85 Decision Makers) participated in the Vignettes treatment. De-

mographic details are provided in Appendix D.

Almost all Decision Makers chose to actively participate in each round

(see Table 5 for the number of observations per characteristic function).17 In

all sessions of the Quiz treatment, recipients answered sufficiently many quiz

questions per round to generate the desired characteristic functions, CF1-

7. Across all treatments, only 12 out of the 286 Decision Makers opted for

an unequal split in the fully symmetric CF7 (5 in the Quiz treatment, and

7 in the No-Quiz Treatment).18 CF7, which is always the last characteristic

function, serves a purpose as a screening device: our study aims to understand

what individuals who believe in an equal split for symmetric settings do in

asymmetric settings. As such, we drop these 12 subjects from all ensuing

analysis, leaving 274 Decision Makers.

17In the No-Quiz treatment, all but 4 of the 112 Decision Makers opted to answer all
characteristic functions; one Decision Maker answered 5 out of the 7, and 3 Decision Makers
answered 6 out of the 7. In the Vignettes treatment, one of the 85 Decision Makers answered
6 out of the 7 characteristic functions, with the others answering all of them. For the Quiz
treatment, two Decision Makers in the Quiz treatment chose to opt out of one characteristic
function, and one chose to opt out of three.

18Some of their survey responses suggest a lack of understanding of basket worths or of
the setting, or that they were intentionally allocating payoffs in an arbitrary manner; e.g.,
in describing how they made their choices in the exit survey, one of these five outliers wrote
“Pretty arbitrary”, and another explained that “i gave one person all of the money because
i thought it would increase the recipients average earnings” (sic).
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4 Analysis of Population Averages

For a first look at the data, we analyze (for each treatment) the average payoff

allocations to the three recipients in each characteristic functions. These are

provided in Table 5, and depicted in the ‘imputation triangles’ of Figure 1.

It will prove helpful to look at those payoff allocations in terms of per-

centage departures from equal split. These numbers are provided in Table

6; underset ‘fitted’ values will be explained further below.19 Percentages are

easier to compare across characteristic functions, as the worth of the grand

coalition may vary. The table reveals that Recipient 1 systematically gets a

positive transfer compared to equal split, while Recipient 3 always suffers a

net loss. Whether Recipient 2 benefits or loses against the equal-split bench-

mark depends on the characteristic function being tested. The analysis below

culminates in a simple, theoretically founded model that can explain not only

the sign of those transfers, but also, to a remarkable degree, their magnitude.

Standard theories of other-regarding preferences would overlook the worth

of pairwise coalitions. If so, then average payoff allocations should also be

insensitive to such worths, which is not the case.

Result 1. Average payoff allocations vary with the worth of sub-coalitions.

Support: If not, then percentage departures from equal split should be in-

dependent for each treatment across characteristic functions. Table 6 clearly

shows that, on the contrary, there are sizable variations. For Recipient 2, for

instance, those percentage departures vary from−14.3% to +21.8% in the Quiz

treatment, from −16.4% to +20.3% in the No-Quiz treatment, and from −33%

to +28.1% in the Vignettes treatment. From a statistical standpoint, a test of

means based on Hotelling’s T -squared statistic strongly rejects, for each recip-

ient and each treatment, the joint equality (across characteristic functions) of

the percentage by which the average allocation departs from equal split (with

19To understand how these percentages are derived, consider for instance Recipient 1’s
average payoff in CF1 in the Quiz treatment: $24.30, as reported in Table 5. In that
characteristic function, there are $60 to share. Thus the equal split solution gives $20 to
each recipient. Recipient 1’s percentage departure from equal split is thus equal in that case
to 24.30−20

20 = +21.5% as reported in Table 6.
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Quiz Treatment CF1 CF2 CF3 CF4 CF5 CF6 CF7

Recipient 1 $24.30
(0.73)

$17.70
(0.73)

$19.07
(0.52)

$34.02
(0.70)

$10.50
(0.23)

$27.71
(0.70)

$20
(0)

Recipient 2 $24.36
(0.75)

$11.42
(0.51)

$15.22
(0.33)

$29.04
(0.52)

$11.08
(0.26)

$21.57
(0.57)

$20
(0)

Recipient 3 $11.34
(1.05)

$10.88
(0.45)

$15.70
(0.47)

$26.94
(0.54)

$8.41
(0.33)

$20.72
(0.53)

$20
(0)

Observations 83 84 83 83 81 82 79

No-Quiz Treatment CF1 CF2 CF3 CF4 CF5 CF6 CF7

Recipient 1 $22.94
(0.78)

$18.33
(0.88)

$19.64
(0.58)

$33.84
(0.97)

$10.73
(0.22)

$28.81
(1.02)

$20
(0)

Recipient 2 $24.06
(0.84)

$11.15
(0.53)

$15.05
(0.45)

$29.96
(0.87)

$11.09
(0.24)

$19.78
(0.57)

$20
(0)

Recipient 3 $13.00
(1.00)

$10.53
(0.50)

$15.31
(0.42)

$26.20
(0.92)

$8.18
(0.38)

$21.41
(0.61)

$20
(0)

Observations 105 104 104 104 104 105 104

Vignettes Treatment CF1 CF2 CF3 CF4 CF5 CF6 CF7

Recipient 1 $248.46
(6.38)

$216.87
(8.84)

$222.32
(5.90)

$373.53
(8.19)

$114.89
(2.70)

$330.58
(11.92)

$200
(0)

Recipient 2 $256.11
(7.15)

$89.33
(4.87)

$141.07
(3.86)

$295.88
(5.04)

$116.18
(2.64)

$182.32
(6.26)

$200
(0)

Recipient 3 $95.44
(8.32)

$93.80
(5.47)

$136.61
(3.26)

$230.59
(7.87)

$68.93
(3.71)

$187.10
(7.04)

$200
(0)

Observations 85 85 85 85 85 84 85

Table 5: Average amounts allocated to Recipients per characteristic function, in
each treatment (after dropping the 5/7/0 outliers in the Quiz/No-Quiz/Vignettes
treatments), with standard errors in parentheses.

eight out of the nine p-values below 0.001, and a p-value of 0.019 for Recipient

1 in the No-Quiz treatment). The additional p-values for tests in this section

appear in Appendix B. �

Figure 1 also depicts the standard solution concepts presented in Section

2. Clearly, none of them provide a good description of average choices. Yet

some striking regularity can be found. A first, obvious feature is that average

payoff allocations systematically fall very near the line passing through the

equal split solution and the Shapley value. Next, notice that both average

payoff allocations and the Shapley value are sometimes closer to equal split and
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Figure 1: Averages choices per treatment, and solution concepts. R3’s payoff is
read from the vertical axis, R2’s payoff is read from the diagonal isoprofit lines, and
R1’s payoff is what remains from the total. The top (bottom right, bottom left)
corner of the simplex corresponds to giving everything to R3 (R2, R1). The dashed
line connects Shapley and equal split in the region satisfying Desirability

sometimes further out (for each of the three treatments, compare for instance

where the corresponding dot falls in CF2 versus CF4). Taking a closer look

at the graphs, the two payoff allocations (average choices and Shapley) move

inward or outward in a covariant way. In fact, as we will see, the relation is

essentially linear: the distance from equal split to the average payoff allocation

divided by the distance from equal split to the Shapley value is nearly constant

across characteristic functions.
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Quiz CF1 CF2 CF3 CF4 CF5 CF6

Recipient 1 21.5%
18.4%

32.8%
36.8%

14.4%
14.7%

13.4%
12.3%

5.1%
9.2%

18.8%
21.0%

Recipient 2 21.8%
18.4%

−14.3%
−18.4%

−8.7%
−7.4%

−3.2%
0%

10.9%
9.2%

−7.6%
−10.5%

Recipient 3 −43.3%
−36.8%

−18.4%
−18.4%

−5.8%
−7.4%

−10.2%
−12.3%

−15.9%
−18.4%

−11.2%
−10.5%

No Quiz CF1 CF2 CF3 CF4 CF5 CF6

Recipient 1 14.7%
18.4%

37.4%
36.9%

17.8%
14.7%

12.8%
12.3%

7.3%
9.2%

23.5%
21.1%

Recipient 2 20.3%
18.4%

−16.4%
−18.4%

−9.7%
−7.4%

−0.1%
0%

10.9%
9.2%

−15.2%
−10.5%

Recipient 3 −35.0%
−36.9%

−21.0%
−18.4%

−8.1%
−7.4%

−12.7%
12.3%

−18.2%
−18.4%

−8.2%
−10.5%

Vignettes CF1 CF2 CF3 CF4 CF5 CF6

Recipient 1 24.2%
30.6%

63.7%
61.3%

33.4%
24.5%

24.5%
20.4%

14.9%
15.3%

41.7%
35.1%

Recipient 2 28.1%
30.6%

−33.0%
−30.6%

−15.4%
−12.3%

−1.4%
0%

16.2%
15.3%

−21.9%
−17.5%

Recipient 3 −52.3%
−61.3%

−29.6%
−30.6%

−18.0%
−12.3%

−23.1%
−20.4%

−31.1%
−30.6%

−19.8%
−17.5%

Table 6: Percent departures from equal split, rounded to one decimal point. En-
tries show actual values, with fitted values underset.

To understand average payoff allocations, we start by checking the empir-

ical validity of the axioms presented in Section 2.

Result 2. Overall, there is strong evidence for Additivity, Desirability, Mono-

tonicity, and Symmetry for average payoff allocations. On the other hand,

Dummy Player is clearly rejected.

Support: A casual look at Table 5 suggests that average payoff allocations

respect Symmetry and Desirability comparisons listed in Table 4, with sym-

metric Recipients allocated approximately equal average payoffs, and more

desirable Recipients allocated seemingly higher average payoffs. For each char-

acteristic function and each applicable symmetry comparison Ri∼Rj, the null

hypothesis that the average payoffs of Ri and Rj are equal cannot be rejected by

a paired t-test. Moreover, for each applicable desirability comparison Ri�Rj,

the null hypothesis that the payoffs of Ri and Rj are equal is rejected by a
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paired t-test at all conventional levels of significance (p ≤ .001), with the

exception of a p-value of 0.0138 for the payoffs of R2 and R3 in CF4.

In the characteristic functions tested here, Monotonicity has implications

when moving from CF2 to either CF3 or CF6. In the former case, Recipient 2

and 3’s payoffs should increase because the worths of both the grand coalition

and {2, 3} increase. In the latter case, all three recipients’ payoffs should in-

crease because the worth of the grand coalition increases. The average payoffss

in Table 5 appear to confirm these comparisons. For each applicable Recipient

and each characteristic function, a paired t-test rejects the null hypothesis that

the Recipient’s average payoffs are the same (all p-values are 0.0000).

Recall that Additivity has two testable implications for our characteristic

functions. We discuss each of these testable implications in turn. Note that

the following statements pertain to all three treatments, with the understand-

ing that numbers should be multiplied by 10 when discussing the Vignettes

treatment. First, remember that CF6 can be written as the sum of CF2 and

the characteristic function given by v({1, 2, 3}) = 30 and v(S) = 0 for all

other coalitions S. Under the relatively safe assumption that Decision Makers

would allocate $10 to each Recipient in v, Additivity can be tested by checking

whether each Recipient is allocated an extra $10 when moving from CF2 to

CF6. With three treatments and three recipients per treatment, there are thus

nine equations to check. Average payoff allocations in Table 5 suggest that

Additivity holds. All but one paired t-test cannot reject the null hypothesis

that Ri’s payoff in CF6 is exactly ten dollars larger than that in CF2, for any

i = 1, 2, 3. The only rejection concerns Recipient 2 in the No-Quiz treatment

($11.15 in CF2 and $19.78 in CF6, with a p-value of 0.0189).

As a second test of Additivity, notice that CF3 is the average of CF2 and

CF7. Additivity implies that the solution for CF3 should be the average of

solutions for CF2 and CF7. Again, there are nine equations to check, and

average payoff allocations in Table 5 suggest that Decision Makers’ decisions

respect linearity. To confirm this, we test the null hypotheses that each Recip-

ient’s average payoff in CF3 is exactly the average of those in CF2 and CF7.

The null for all but two comparisons cannot be rejected using a paired t-test.
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The two cases where the hypothesis is rejected concern Recipients 1 and 3

in the Vignettes treatment (who get $222.32 and $136.61 in CF3, versus an

average over CF2 and CF7 of $208.44 and $146.90, with p-values of 0.0107 and

0.0016 respectively). As we take a closer look at the data in the next section,

we will identify a possible cause for this specific violation of Additivity.

Finally, CF1 is the only characteristic function among those we tested

which has a dummy player (Recipient 3). It is clear at once from Table 5 that

the dummy player is getting an average payoff that is strictly positive (p-value

of 0.0000 in each treatment). Beyond statistical relevance, the magnitude of

Recipient 3’s average payoff is also noteworthy. �

The classic characterization of the Shapley value is based on the axioms

of Additivity, Efficiency, Symmetry, and Dummy Player. Having to allocate

all the money means Efficiency is automatically satisfied in our setting. In

view of Result 2, it is natural to ask which class of solution concepts emerges

if we drop the Dummy Player axiom from the above characterization. A

clean, theoretical characterization emerges for the domain V of three-player

characteristic functions for which the worth of each coalition is a rational

number, and singleton coalitions are worth nothing. Naturally, V contains all

seven characteristic functions we tested. The following proposition is proved

in Appendix A.

Proposition 1. A single-valued solution concept σ : V → R3 is Additive,

Symmetric, and Efficient if and only if σ is a linear combination of the Shapley

value and the equal split solution, that is, σ = δSh+ (1− δ)ES. Moreover, δ

is positive if and only if σ satisfies either Monotonicity or Desirability.

Thus the axioms, which our averaged data seems to corroborate, singles

out a simple, one-parameter solution concept. Under this model, payoffs for all

recipients are determined in all characteristic functions by a fixed affine com-

bination (i.e., independent of Recipients and characteristic functions) of equal

split and the Shapley value. We will call this the ESS model. Recipients start

on equal footing, and then gain (lose) δ dollars for each dollar by which the
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Figure 2: The ESS model fitted to the average payoffs in the three treatments.

Shapley value is larger (smaller) than equal split: δ = σi(v)−ESi(v)
Shi(v)−ESi(v)

, for each

characteristic function v and each Recipient i such that Shi(v) 6= ESi(v).

Equivalently, the percentage departure of the solution from equal split coin-

cides with δ times the percentage departure of the Shapley value from equal

split for all recipients in all characteristic functions:

σi(v)− ESi(v)

ESi(v)
= δ

(
Shi(v)− ESi(v)

ESi(v)

)
,

for each Recipient i and each characteristic function v.

The tests of axioms performed earlier check whether the data is consistent

with particular instances of these axioms, as they apply to the characteristic

functions studied here. On the other hand, the ESS model in Proposition 1

relies on the axioms being satisfied universally by the average choices, which

is not directly testable. For this purpose, we fit the model to the data and

see that it provides a close match. The next result also provides an empirical

estimate of the parameter δ in each of the three treatments.

Result 3. The ESS model successfully captures average payoff allocations. The

estimated weight on the Shapley value is 0.368 for the Quiz treatment, 0.369

for the No-Quiz treatment, and 0.613 for the Vignettes treatment.

Support: Accounting for noisy departures, the ESS model lends itself to at

least two possible methods of estimation through linear regression. In one

possibility, the average amount m̄i(v)−ESi(v) a Recipient receives net of equal

split is proportional, by δ, to the amount Shi(v) − ESi(v) that the Shapley
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Quiz Treatment No-Quiz Treatment Vignettes Treatment
m̄−ES
ES

m̄−ES
ES

m̄−ES
ES

Sh−ES
ES 0.368∗∗∗

(0.021)
0.369∗∗∗

(0.010)
0.613∗∗∗

(0.029)

constant −0.005
(0.007)

0.001
(0.005)

0.009
(0.013)

num. obs. 14 14 14
R2 0.9799 0.9901 0.9786

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 7: Per treatment, regression of the average percentage departure from equal split
of the allocations for R1 and R3, against percentage departure of the Shapley value from
equal split. Robust standard errors in parentheses. Estimates rounded to 3 decimal places.

value offers him, net of equal split. This would lead to a regression in levels,

potentially allowing characteristic functions with larger monetary amounts

to unduly influence our estimates. To account for this, we follow a natural

alternative instead, which is to divide both sides of the solution in Proposition

1 by the equal split solution. Note that this does not change the solution

concept: like all the other solution concepts, it is invariant to normalization.

The resulting interpretation of variables is then in terms of percent departure

from equal split, just as in Table 6.20 That is, under this model, the percentage

by which a Recipient’s allocation departs from equal split is proportional, by

δ, to the percentage by which the Shapley value departs from equal split.

Because the ESS model has the same δ applying to each Recipient, we can

pool the data across Recipients to estimate δ. However, since the payoff of a

Recipient can be inferred from the payoffs of the other two Recipients (the sum

of all three payoffs is fixed per characteristic function). Thus we only take into

consideration the average choices for Recipients 1 and 3 in each characteristic

function (we drop Recipient 2 since the Shapley value for R2 coincides with

equal split in CF4, leading to less variation that we can exploit).

Table 7 shows the regression results for each treatment, using robust stan-

dard errors. As can be seen there, the estimate of δ, which is the coefficient

20This normalization is mathematically equivalent to normalizing by the total amount
v({1, 2, 3}) available, which would instead be interpreted as the departure from equal split
as a percentage of the total pie.
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of the variable (Sh − ES)/ES, is highly significant in each treatment, and

the smallest R2 value across treatments is 0.9786. There is indeed a striking

linear relationship apparent in Figure 2, where we plot for each treatment the

averaged data together with the fitted regression line. Table 6 specifies these

estimated values beneath the observed ones, making it easy to quantify the

close fit. �

Results 1-4 show that our qualitative findings replicate to a large extent

across the three treatments. As noted in the Introduction, an implication is

that sub-coalition worths matter for average payoff allocations even when there

is no sense conveyed that they were earned (as in the No-Quiz treatment).

As for quantitative comparisons, the average payoffs in the Quiz and No-

Quiz treatments are strikingly similar, and nearly overlay each other in the

imputation triangles of Figure 1. By contrast, average payoffs in the Vignettes

treatment, where Recipient values are generated in the context of professional

service, suggest that marginal contributions there are weighted more heavily

than in the prior treatments. The next result confirms these statements.

Result 4. Average payoff allocations are not significantly different in the Quiz

and No-Quiz treatments. By contrast, average payoff allocations are signifi-

cantly different, moving further away from Equal Split, in the Vignettes treat-

ment than in both the Quiz and No-Quiz treatments.

Support: Going back to the estimations in Table 2, we cannot reject the null

hypothesis that the estimated weights δ = 0.368 and δ = 0.369 for the Quiz

and No-Quiz treatments, respectively, are the same (p-value 0.9878). However,

the null hypothesis that the estimated δ = 0.613 for the Vignettes treatment

is the same as for the Quiz Treatment, or the No-Quiz treatment, is rejected

at all conventional significance levels (both p-values are 0.0000). �

Average payoffs provide an elucidating, birds-eye view of the data, which

is the primary purpose of this section. Beyond this, the simple average is a

quite natural means of aggregating opinions,21 and in this case average payoff

21Applying Rubinstein and Fishburn (1986)’s result to our setting, it is the only aggregator
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allocations could also reflect a societal view of how to split the money available.

Of course, taking averages is purely an ex-post exercise: recipients were not

paid according to such averages, nor were they mentioned to subjects.

5 A Closer Look at the Data

Average payoffs have the advantage of partially canceling noise, which makes

the analysis more transparent; but they miss additional information and nu-

ance found in the data. In this section, we revisit Results 1-4 at a deeper level,

by examining Decision Makers’ choices from different perspectives. How many

Decision Makers overlook the worths of sub-coalitions, and actually choose

equal splits? Are axioms like Additivity and Symmetry valid on average due

to the presence of some equal splitters, or do they still hold among non-equal

splits? Do the δ’s identified in Result 3 reflect a homogenous population or

the average of a heterogenous one? Could it be that other models are useful

for explaining some individuals’ choices, but are not prevalent enough to sur-

vive (or cancel each other out) when averaging? How do the distributions of

choices compare across treatments?

5.1 Description of the Data

By depicting a Decision Maker’s allocation for the three Recipients in impu-

tation triangles (as standard in the cooperative games literature), Figures 3-4

provide a visualization of all Decision Makers’ choices for each characteristic

function in each treatment.22 Within each simplex, a ball’s radius is propor-

tional to the fraction of Decision Makers who picked its center.

Table 8 shows the percentage of equal splits in CF1-CF6. Observe that

in CF2, CF3 and CF6, the worth of the grand coalition is not divisible by

that picks the common opinion when all Decision Makers agree, that is efficient, and for
which a Recipient’s payoff depends only on the amounts Decision Makers’ allocated to him.
For example, the aggregation method giving each Recipient the median payoff chosen for
him would satisfy the first and last properties, but violate the second.

22We include in these scatterplots the 5 subjects in the Quiz treatment and the 7 subjects
in the No-Quiz treatment who select an unequal split in CF7.
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CF1 CF2 CF3 CF4 CF5 CF6 CF7

Quiz 40.96% 23.81% 18.07% 57.83% 65.43% 20.73% 100%

No Quiz 51.43% 38.46% 35.58% 50.96% 60.58% 39.05% 100%

Vignettes 25.88% 12.94% 11.76% 31.76% 35.29% 20.24% 100%

Table 8: Percent of payoff allocations that are ‘equal splits’.

three. Decision Makers can input numbers with decimal places, but may find

payments in whole dollars to be simpler. Throughout the paper, we will thus

count a Decision Maker’s chosen allocation in the Quiz and No-Quiz treatments

as an equal split if payoffs across Recipients differ by at most one dollar. For the

Vignettes treatment, where all values are scaled by ten, we count an allocation

as an equal split if payoffs across Recipients differ by at most ten dollars.

Since the imputation triangles are all the same size (only tick marks differ),

they are comparable in terms of percentages of the total allocated to each

recipient. Reinforcing Result 1, the movement of the clouds of points across

characteristic functions suggests that splits do vary with sub-coalition worths.

CF1 and CF7 provide a particularly salient contrast, as they share the same

total amount available but differ in the sub-coalition worths.

5.2 Testing Axioms

Result 2 established that average payoff allocations satisfy all the axioms listed

in Section 2.2, except Dummy Player. We now take a closer look at the data,

to gauge the extent to which individual choices satisfy them.

A good understanding of individual choices is more informative than an

understanding of average choices. However, since averaging may help cancel

noise, individual choices can be more difficult to understand. Satisfying Addi-

tivity, for instance, requires verifying a knife-edge equality. Even if all Decision

Makers abide by the axiom, most will appear to fail it individually, if noise is

added to their choices.

Thus we also explore axioms at an intermediate level of aggregation, by
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performing tests on the distributions of money allocated to recipients. Cer-

tain axioms are trivially satisfied for Decision Makers who split equally in the

relevant characteristic functions. In those cases, we focus on testing the ax-

iom among the subpopulation that chose otherwise. Additional figures and

p-values for tests in this section appear in Appendix C.

Quiz Treatment No-Quiz Treatment Vignettes Treatment
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Figure 3: Frequency-weighted scatterplots of all choices in CF1-CF3.
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Figure 4: Frequency-weighted scatterplots of choices in CF4-CF7. There is no
frequency-weighting for CF7 of the Vignettes treatment, as all split equally.
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Dummy player. CF1 is the only characteristic function tested which has

a dummy player (Recipient 3). A substantial fraction of subjects satisfy the

Dummy Player (34.9%/29.5%/27.1%),23 and a substantial fraction violate it,

either by choosing an equal split (41%/51.4%/25.9%) or by picking an allo-

cation that is a strict convex combination of the equal split solution and the

Shapley value (15.7%/12.4%/41.2%). Many in the last category gave $10 to

Recipient 3 (or $100 in the Vignettes treatment). There are many reasons why

one may see few norms here; for instance, the Shapley value is an element of

the core, and coincides with the nucleolus. A more complex picture arises in

other characteristic functions.

Symmetry and Desirability. By its nature, the equal split solution re-

spects Symmetry but violates Desirability. As we will show, Symmetry ap-

pears to be respected even among non-equal splits, and as we have already

established, Desirability appears to be respected even when including them.

We quickly revisit our analysis of average payoffs, among non-equal splits.

For Symmetry, the null hypothesis that average payoffs of Ri and Rj are equal

cannot be rejected by a paired t-test for any treatment or applicable symmetry

comparison, with only one exception: in CF6 of the No-Quiz Treatment, the

p-value for symmetry of average payoffs of R2 and R3 is 0.0091. For Desirabil-

ity, our earlier conclusion that it is generally satisfied was reached even when

including equal splits. The evidence is yet stronger when dropping them. For

each applicable desirability comparison, the null hypothesis that the average

payoffs are equal is rejected by a paired t-test at all conventional levels of sig-

nificance (p ≤ .001), with the exception of three comparisons involving CF4,

which are rejected only at the 5% significance level.24

A panoramic view of Symmetry and Desirability at the aggregate level is

provided by the empirical CDFs of money allocated per Recipient in each char-

acteristic function. Theoretically, average payoffs of symmetric agents could be

near each other, even while the CDFs differ widely. For each treatment, Fig-

23The three figures refer to percentages in the Quiz/No-Quiz/Vignettes treatments.
24The p-values are 0.0167 for R1�R2 in No-Quiz, 0.0109 for R2�R3 in Quiz, and 0.0138

for R2�R3 in No-Quiz.

37



0
.2

.4
.6

.8
1

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

0 10 20 30 40
Money Allocated

Recipient 1 Recipient 2
Recipient 3

Empirical CDFs of Money Allocated per Recipient in CF2, Quiz

0
.2

.4
.6

.8
1

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

0 10 20 30 40
Money Allocated

Recipient 1 Recipient 2
Recipient 3

Empirical CDFs of Money Allocated per Recipient in CF2, No Quiz

0
.2

.4
.6

.8
1

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

0 100 200 300 400
Money Allocated

Recipient 1 Recipient 2
Recipient 3

Empirical CDFs of Money Allocated per Recipient in CF2, Vignettes

Quiz treatment No-Quiz treatment Vignettes treatment

Figure 5: Symmetry and Desirability. Empirical CDFs per Recipient in CF2.

ure 5 superimposes the empirical CDF’s of money allocated to the recipients

in CF2; see Figure 12 in the Appendix for the other characteristic functions.

These figures paint a suggestive picture of Symmetry and Desirability.

Indeed, even among non-equal splits, the Wilcoxon25 signed-ranks test can-

not reject any of the null hypotheses that the money allocated to symmetric

Recipients come from the same distribution (although the p-value of 0.0540

for R2 ∼ R3 in CF6 of the No-Quiz Treatment is marginal). Moreover, even

when including equal splits, the Wilcoxon signed-ranks test rejects all the null

hypotheses that the money allocated to two Recipients ranked by desirability

in a characteristic function come from the same distribution. These null hy-

potheses are rejected at all conventional levels of significance (p ≤ .001), with

the exception of the desirability comparison R2�R3 in CF4, which is rejected

at a 5% significance level in the Quiz treatment (p-value 0.0387) and at the

1% level in the No-Quiz treatment (p-value 0.0029).

25Note that the Kolmogorov-Smirnov test, which we will use later for comparing distri-
butions across treatments, is not the most appropriate test for the current null hypotheses,
which are within treatments: unlike the Wilcoxon test, it does not take into account that
these are matched samples (i.e., from the same Decision Makers). However, it may be worth
noting that the Kolmogorov-Smirnov test makes nearly identical conclusions here.
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Quiz CF1 CF2 CF3 CF4 CF5 CF6

Symmetry 81.6% 57.8 % 67.6% n/a 57.1% 56.9%

Desirability 85.7% 56.3% 63.2% 31.4% 67.9% 55.4%

Both 79.6% 53.1% 58.8% 31.4% 57.1% 50.8%

No-Quiz CF1 CF2 CF3 CF4 CF5 CF6

Symmetry 74.5% 64.1 % 68.7% n/a 78.0% 62.5%

Desirability 84.3% 62.5% 71.6% 35.3% 85.4% 65.6%

Both 76.5% 59.4% 65.7% 35.3% 75.6% 59.4%

Vignettes CF1 CF2 CF3 CF4 CF5 CF6

Symmetry 87.3% 83.8% 74.7% n/a 72.7% 89.6%

Desirability 90.5% 85.1% 82.7% 96.6% 78.2% 88.1%

Both 87.3% 82.4% 74.7% 96.6% 63.6% 86.6%

Table 9: Symmetry and Desirability in each treatments. For each CF, the per-
centage of chosen allocations (among non-equal splits) respecting these axioms.

Finally, we examine Symmetry and Desirability at the individual level.

Decision Makers opting for equal splits clearly respect all symmetry compar-

isons, but violate all desirability comparisons. Among Decision Makers who

split unequally in a given characteristic function, Table 9 shows that a sub-

stantial portion respect all applicable symmetry and desirability comparisons.

One should keep in mind that it is nontrivial to assess symmetry and desirabil-

ity in each characteristic function; and due to our randomly generated aliases

for recipients, Decision Makers cannot detect or rely on any patterns. The

table allows for differences of at most one dollar in payoffs in assessing sym-

metry (ten for Vignettes). Note that in CF4, no two players are symmetric.

As also seen at the aggregate level, this feature may have complicated the

problem in Quiz and No-Quiz (though, interestingly, not in Vignettes, which

might suggest that the presence of a relatable story in the vignette did help

subjects think through the problem at hand), adding some noise. However,

94.3%/84.3%/96.6% of subjects respect at least two out of the three rankings.
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Figure 6: Monotonicity. Empirical CDFs for Recipient 2 in CF2, CF3 and CF6.

Monotonicity Among those characteristic functions tested here, Monotonic-

ity has implications only when moving from CF2 to either CF3 or CF6. In the

former case, Recipient 2 and 3’s payoffs should increase because the worths of

both the grand coalition and {2, 3} increase. In the latter case, all Recipients’

payoffs should increase because the worth of the grand coalition increases.

Figure 6 superimposes, for each treatment, the relevant empirical CDFs

for Recipient 2. As seen there, his payoff in both CF3 and CF6 first-order

stochastically dominates (or nearly does) his payoff from CF2. The analo-

gous graphs for the other recipients, shown in Figure 13, similarly corroborate

Monotonicity. Because the value of the grand coalition happens to also in-

crease relative to CF2, the equal split solution also satisfies these instances of

Monotonicity. Even among those who split unequally in at least one of the

applicable characteristic functions, t-tests of the average payoffs of a recipient,

and Wilcoxon signed-ranks tests of the distributions of payoffs to a recipient,

all soundly reject the null hypotheses of equality when moving from CF2 to

CF3/CF6 (all the p-values are 0.0000, for all recipients and treatments).

At the individual level, any Decision Maker splitting equally in both charac-

teristic functions would be consistent with these particular instances of Mono-

tonicity. Among all other Decision Makers, 75.8%/68.6%/74.3% allocated

strictly more money to all three Recipients when moving from CF2 to CF6,

and 57.4%/66.7%/71.1% allocated strictly more money to Recipients 2 and 3

when moving from CF2 to CF3.
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Figure 7: 1st instance of Additivity. The relevant empirical CDFs for Recipient 1.

Additivity Recall that Additivity has two testable implications for our char-

acteristic functions. We discuss each of these testable implications in turn.

First, remember CF6 can be written as the sum of CF2 and the character-

istic function given by v({1, 2, 3}) = 30 and v(S) = 0 for all other coalitions S

(all amounts should be multiplied by 10 for the Vignettes treatment). Under

the relatively safe assumption that Decision Makers would allocate $10 to each

Recipient in v, Additivity can be tested by checking whether each recipient is

allocated an extra $10 when moving from CF2 to CF6. Additivity was first

discussed in Result 2, but when including equal splits. The averages remain

strongly suggestive of Additivity even when dropping those Decision Makers

who split equally in both CF2 and CF6: paired t-tests cannot reject the null

hypothesis that Ri’s payoff in CF6 is exactly ten dollars larger than that in

CF2, for any i = 1, 2, 3, with the only exception of R2 in No-Quiz (the payoff

difference is statistically significant with a p-value of 0.0180, though amounts

to a discrepancy of only $1.37).

For a broader picture, we consider again the empirical CDFs. As seen

in Figure 7, after translating the CDF of money allocated to R1 in CF2 by

$10, the resulting CDF is close to the empirical CDF of money allocated to

R1 in CF6. Corresponding graphs for R2 and R3 appear in Figure 14 of the

Appendix, and overall suggest a strong support for Additivity. Even among

only those Decision Makers who choose an unequal split in at least one of

CF2 or CF6, the Wilcoxon signed-rank test cannot reject the null hypothesis

that the data in each case comes from the same distribution, with the only
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Figure 8: 2nd instance of Additivity. Empirical CDFs in Vignettes treatment.

exception of R2 in the No-Quiz treatment (p-value 0.0325).

At the individual level, even among those choosing an unequal split in

at least one of CF2 or CF6, we find 17/14/24 Decision Makers satisfy this

instance of Additivity with exact equality for all three Recipients.

As a second test of Additivity, remember that CF3 is the average of CF2

and CF7. Additivity implies that the solution for CF3 should be the average

of solutions for CF2 and CF7. For the Quiz and No-Quiz treatments, none

of the null hypotheses corresponding to this second instance of Additivity

can be rejected, whether we examine equality of average allocations among

non equal-splitters using paired t-tests, or equality of underlying distributions

using Wilcoxon signed-rank tests. For the Vignettes Treatment, however, these

null hypotheses are rejected for both R1 and R3 (which reflects the fact that

Additivity was not satisfied for average payoffs in that case either, see the

analysis in support of Result 2). The empirical CDFs in Figure 8 show the

regions where these (translated) empirical CDFs in the Vignettes treatment

depart, and shed light on a likely cause. Namely, in CF3, there are 21 Decision

Makers who allocate ($300, $100, $100), which is precisely the singleton core in

that characteristic function, and thus also the nucleolus. To satisfy Additivity,

those same Decision Makers would need to allocate $0 to both Recipients 2

and 3 in CF2, since they allocate $200 to all Recipients in CF7. Interestingly,

all these subjects do treat Recipients 2 and 3 symmetrically in CF2, but only

5 subjects out of these 21 give them $0.26 Repeating the paired t-tests and

26Among the other 16 subjects, 1 subject gives them $1; 1 subject gives them $25; 6
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Wilcoxon signed-rank tests after dropping the above 21 (even dropping the 5

among them who do satisfy Additivity), we find that Additivity is satisfied by

the remaining 55 subjects : none of the null hypotheses corresponding to this

second instance of Additivity can be rejected.

At the individual level, even among those choosing an unequal split in at

least one of CF2 or CF3, we find 7/15/19 Decision Makers satisfy this instance

of Additivity with exact equality for all three Recipients.

5.3 ESS and Other Models

We now turn our attention to Result 3. Recall that average payoff allocations

are successfully explained by the ESS model with δ = 0.368/0.369/0.613 for

the Quiz/No Quiz/Vignettes treatment. What does this mean at the individ-

ual level? Does the ESS model provide a better fit to individual choices com-

pared to alternatives like the nucleolus or the strong-CEA solution? Moreover,

should the ESS model prove dominant, is the δ identified for each treatment

in Result 3 a reflection of mostly homogenous opinions, or is it the average of

heterogenous ideals?

Section 5.1 revealed that for each characteristic function, there is a fraction

of Decision Makers who select an equal split. As we now consider choices across

characteristic functions, we will define a Decision Maker as an equal splitter if

she picks equal splits in all characteristic functions. There are 10/22/6 such

Decision Makers in the Quiz/No-Quiz/Vignettes treatment. By definition, the

δ of these individuals under the ESS model will be close to zero, providing a

first sense of heterogeneity in the population.

We can single out a larger class of Decision Makers. Say that a Decision

Maker is a D-equal splitter if she splits the money exactly equally in all four

characteristic functions where the total worth is divisible by three. Through

their choices, D-equal splitters reveal themselves as having a strong tendency

subjects give them $50; 2 subjects give them $75; and 6 subjects give them $100. This
can either be noise or a disinclination to give Recipient 1 all the money in CF2, which is
theoretically different than violating the Dummy Player axiom. In fact, half of these 16
subjects do give $0 to the dummy player in CF1.
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towards equal splits. In our data, equal splitters are a subset of D-equal

splitters (they do divide the money exactly equally, not just within $1, in CF1,

CF4, CF5 and CF7), but there are many more D-equal splitters (28/42/15 in

Quiz/No-Quiz/Vignettes). Looking at the data, some of these subjects seem

to round payments by multiples of $5 instead of $1 when the worth of the

grand coalition is not divisible by three.27 Those Decision Makers, too, would

be well-captured by the ESS model with δ close to zero. Interestingly, a few

other D-equal splitters seem to follow a more intricate model of choice: they

sometimes select reasonable payoff allocations that are far from equal splits

when the worth of the grand coalition is not divisible by three.28 The ESS

model is not a good description of such choices. We find it interesting to

document these behaviors, though they are rather unusual and have limited

impact on our analysis.

As D-equal splitters comprise a sizable fraction of subjects and most are

well described by the ESS model with δ’s near zero, it must be that other

Decision Makers use much larger δ’s to obtain the average δ uncovered in

Result 3. Addressing this question, Table 10 provides the results of linear

regressions of the same normalized form as in Result 3. Unlike Result 3, the

choices are not averaged. This allows us to keep track of each Decision Maker’s

identity, and we use a generalization of the Huber-White sandwich estimator

of errors that is not only robust to heteroscedasticity, but also clustered at the

level of the Decision Maker to permit for correlation across his or her choices

(Rogers, 1993). The regressions in the leftmost column consider all Decision

27It would be inadequate, though, to redefine the notion of equal split in a given charac-
teristic function by allowing differences of up to $5. For instance, 53 subjects in the Quiz
treatment would pass the $5 test in CF3, but only 23 of them are D-equal splitters. Instead,
the large majority (73.7%) of those who are within $5 but not within $1 select the allocation
($20, $15, $15), which is consistent with rewarding R1, who is most desirable, while giving
equal payoffs to the symmetric R2 and R3.

28One such D-equal splitter in the Quiz treatment is within $5 in all other characteris-
tic functions, with one exception: they choose ($40, $0, $0) in CF2, following the nucleolus
in respecting the extreme competition between R2 and R3 for cooperation with R1. An-
other interesting D-equal splitter, this time in the Vignettes treatment, chooses exactly the
allocations prescribed by the nucleolus in CF3 and CF6, and exactly that prescribed by
the strong-CEA in CF2; hence they split equally when the total is divisible by three, and
otherwise choose allocations with differences ranging from $100 to $250.
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Quiz Treatment (all) (no D-equal splitters) (D-equal splitters)
m−ES
ES

m−ES
ES

m−ES
ES

Sh−ES
ES 0.368∗∗∗

(0.039)
0.521∗∗∗
(0.044)

0.065∗
(0.028)

constant −0.005
(0.005)

−0.012
(0.007)

0.008∗
(0.003)

No. subjects 84 56 28
Observations 1150 766 384

R2 0.3003 0.4297 0.0450

No-Quiz Treatment (all) (no D-equal splitters) (D-equal splitters)
m−ES
ES

m−ES
ES

m−ES
ES

Sh−ES
ES 0.368∗∗∗

(0.047)
0.595∗∗∗
(0.064)

0.027∗
(0.011)

constant 0.001
(0.006)

−0.002
(0.009)

0.005∗∗
(0.001)

No. subjects 105 63 42
Observations 1460 874 586

R2 0.2085 0.3305 0.0384

Vignettes Treatment (all) (no D-equal splitters) (D-equal splitters)
m−ES
ES

m−ES
ES

m−ES
ES

Sh−ES
ES 0.613∗∗∗

(0.049)
0.733∗∗∗
(0.048)

0.054
(0.036)

constant 0.009∗
(0.004)

0.008
(0.005)

0.014
(0.007)

No. subjects 85 70 15
Observations 1188 978 210

R2 0.4774 0.5752 0.0285
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 10: Regressions of the percentage departure from equal split of allocations to R1
and R3, against percentage departure of the Shapley value from equal split. Robust standard
errors in parentheses, clustered by Decision Maker. Estimates rounded to 3 decimal places.

Makers. We get about the same estimates for δ in each treatment as we did in

Result 3, but naturally with lower R2’s as the noise from the variety of choices

hasn’t been canceled out by averaging. The middle column estimates the

same regression model, but among those who are not D-equal splitters. The

estimates of δ significantly increase for each treatment (p-values all less than

0.0001). The rightmost column estimates the model among D-equal splitters,

who are captured by a very small, positive δ. We will discuss comparisons of

δ’s across treatments in Section 5.4.

In Appendix D we consider some possible sources (or correlates) of hetero-

geneity in δ: interaction effects with a Decision Maker’s major, age, gender,

45



and number of siblings, or session effects (e.g., arising from the ordering of

characteristic functions in the Latin square design). We find that a Decision

Maker’s gender has no statistically significant impact on δ; nor does their num-

ber of siblings. Being an economics-related major may have some impact: an

increase in δ of about 0.2, significant only at the 5% level. Further interaction

with age reveals that the effect is significant only for subjects who are at least

20 years old, and presumably more advanced in their studies. We thus suspect

that the effect has more to do with economics education than personal traits,

but cannot draw any definitive conclusions using the sparse education data we

collected. We find no session effects.

Next, we delve more deeply into Decision-Maker behavior, considering

individual-level regressions to estimate each Decision Maker’s δ under the ESS

model. For these individual regressions only, we focus on the 79/101/84 sub-

jects in the Quiz/No-Quiz/Vignettes treatments who made choices for all seven

characteristic functions, so that each regression has 14 observations. As we

find a few individuals with δ > 1 (which violates individual rationality in CF1)

or with δ < 0 (which violates Desirability and Monotonicity), we perform the

regression while constraining δ ∈ [0, 1]. While δ’s outside this range could be

attributed to noise, they may simply be the result of model misspecification.

We precisely intend to account for the possibility that individuals apply dif-

ferent models. To do this, we consider ‘three’ possible solution concepts for

each subject: the nucleolus, the strong solution, and their ‘best’ linear com-

bination of the Shapley value and equal split solution, as estimated from the

normalized, individual-level regression just discussed. We classify a Decision

Maker according to which of these solution concepts minimizes the sum (over

CF1-CF6) of the squared error between their chosen normalized allocation for

the three recipients and the predicted normalized allocation.29

By its nature, the linear model estimated nests both the equal split solution

and the Shapley value, as well as combinations thereof. We consider the single-

29Again, we normalize all allocation by the total amount available to prevent conclusions
being unduly influenced by characteristic functions with large amounts available. However,
the results are nearly identical to those without normalization.
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valued nucleolus rather than the core, which is very permissive in some of our

characteristic functions. Since the strong-CEA selects two possible allocations

for CF1, we consider the minimum error among these two. We do not consider

the weak solution in this analysis, as it is undefined for CF2-CF3. Table 11

displays the classification results.

ESS Nucleolus Strong-CEA

Quiz 93.7% 3.8% 2.5%

No-Quiz 92.1% 5.9% 2.0%

Vignettes 88.1% 8.3% 3.6%

Table 11: Percentage of subjects each model best explains.

Some subjects in each treatment are indeed best explained by the nucleolus

or strong-CEA. One might think the continuum of possible values for δ in the

ESS model stacks the deck against these other models; however, each subject

would be classified under exactly the same solution concept (ESS, nucleolus or

strong-CEA) if instead of estimating δ in the ESS model through regression,

we were to allow only δ ∈ {0, 1/3, 2/3, 1}, that is, only two intermediate values

of δ along with the equal split solution and Shapley value. In that simple

setting, about 38%/51%/20% of subjects are classified as equal splitters (δ =

0) in the Quiz/No-Quiz/Vignettes treatments, with 56%/42%/67% classified

as some δ ∈ {1/3, 2/3, 1}.30 Consistent with our earlier discussion of D-equal

splitters, those individuals are almost entirely classified under the equal split

solution, with just a couple of exceptions per treatment; and they constitute

67%/76%/76% of those assigned to that category.

A benefit of estimating δ through individual regressions is confidence in-

tervals. Figure 9 graphs the individual δ’s estimated through regression, along

with their 95% confidence interval using robust standard errors when the

δ ∈ [0, 1] constraint is slack. Each individual regression, of course, has only

14 observations per Decision Maker, which are likely to be noisy; hence some

30In particular: 27%/16%/21% are classified as δ = 1/3, 24%/15%/26% as δ = 2/3, and
5%/11%/20% as Shapley, for Quiz/No-Quiz/Vignettes, respectively.
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Figure 9: Estimated weight on Shapley and its 95% robust CI for each individual
best explained by the ESS model, per treatment.

confidence intervals are quite large. The distribution of δ’s in the population,

seen in Figure 10, may provide a more informative picture of heterogeneity

and comparisons across treatments, which we discuss next.

5.4 Comparing Treatments

Expanding upon Result 4, our estimates of the ESS model in each treat-

ment suggest that, at least at the aggregate level, the estimated weight on

the Shapley value is similar across the Quiz and No-Quiz treatment, and sig-

nificantly smaller than in the Vignettes treatment. This is confirmed statisti-

cally. Among the population of non D-equal splitters, these differences are less

pronounced: while the estimates for the Quiz and Vignettes treatments are

statistically significant, the estimate for the No-Quiz treatment (which falls in

better) is only marginally different from that of Vignettes (p-value of 0.0824).

An interesting explanation is suggested by the empirical CDF’s of esti-

mated individual δ’s in Figure 10. The distributed of estimated δ’s in the

Vignettes treatment FOSD the distributions of both the Quiz and No-Quiz

treatments, and the Kolmogorov-Smirnov test indeed rejects that they are the

same (p-values 0.003 and 0.000, respectively). The Kolmogorov-Smirnov test

cannot reject that the distributions from the Quiz and No-Quiz treatments

are the same (p-value 0.307). In fact, the distribution of δ’s from No-Quiz

treatment has some features of a mean-preserving spread of the distribution

of δ’s from the Quiz treatment, placing greater weight on extreme values.
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Figure 10: CDFs of estimated weights on Shapley, per treatment.

More basically, we may directly compare the distribution of money allo-

cated across treatments, for each characteristic function and each Recipient.

With 3 Recipients and 6 characteristic functions where choices vary, there are

18 possible CDFs. For comparison purposes, we divide amounts in the Vi-

gnettes Treatment by 10. In principle, these 18 CDFs could differ in arbitrary

ways across treatments. It is instructive, however, to first consider what one

would expect to see under the ESS model. If different treatments are asso-

ciated with different δs, then we should observe differences across treatments

in the distributions of choices for each characteristic function and each Recip-

ient, with only one exception. The CDFs for Recipient 2 in CF4 should be

the same regardless of δ, because what the Shapley value allocates to R2 in

CF4 coincides with what equal split allocates to R2 in CF4.31 Moreover, if δs

tend to be higher in one treatment than another, one would indeed expect to

see more (less) allocated to a given Recipient in the treatment with higher δs,

whenever the Recipient’s Shapley value is above (below) equal split.

We now examine our data from this perspective. Figure 11 superimpose

the empirical CDFs of the different treatments in 3 different panels, one for

each Recipient in CF4. Figure 16 in the Appendix contains the corresponding

panels for all other characteristic functions. Consistent with the theoretical

observation above, it appears from Figure 11 that the empirical CDF’s of

money allocated to R2 in CF4 are nearly identical across treatments. Indeed,

for each pair of treatments, the Kolmogorov-Smirnov test cannot reject the null

31The nucleolus also prescribes that for R2, increasing the focality of that selection.
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Figure 11: Empirical CDFs across treatments, for CF4.

hypothesis that the allocations to R2 in CF4 come from the same distribution.

Beyond this, Figures 11 and 16 reveal that the empirical CDFs of money

allocated in the Quiz and No-Quiz Treatments are quite similar in every panel,

In each case, the Kolmogorov-Smirnov test cannot reject the null that the two

distributions are the same. They also reveal that in every panel except that of

R2 in CF4, the empirical CDFs from the Quiz and No-Quiz Treatments are

ranked, or nearly ranked, by FOSD to the empirical CDF from the Vignettes

Treatment. The direction of dominance reflects whether the given Recipi-

ent’s Shapley value is superior or inferior to equal split in that characteristic

function. Notice that R1’s Shapley value is always above equal split, while

R3’s Shapley value is always below it. Many of these differences are highly

statistically significant according to the Kolmogorov-Smirnov test, with the

differences most significant across the No-Quiz and Vignettes Treatments.32

32When comparing the Quiz and Vignettes treatments, the null hypothesis that the mon-
etary allocations come from the same distribution is rejected at the 5% level for 14 of the
17 panels, at the 1% level for 9 of the 17 panels, and at the 0.1% level for 2 of the 17
panels. When comparing the No-Quiz and Vignettes treatments, the same null hypothesis
is rejected at the 5% level for 16 of the 17 panels, at the 1% level for 12 of the 17 panels,
and at the 0.1% level for 5 of the 17 panels.
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Moulin, Hervé, 2003. Fair Division and Collective Welfare. MIT Press.

Nash, John F., Rosemarie Nagel, Axel Ockenfels, and Reinhard Sel-

ten, 2012. The Agencies Method for Coalition Formation in Experimental

Games. PNAS 109, 20358-20363.

Murnighan, J. Keith, and Alvin E. Roth, 1977. The Effects of Com-

munication and Information Availablity in an Experimental Study of a

Three-Person Game. Management Science 23, 1336-1348.

Rogers, W. H., 1993. sg17: Regression Standard Errors in Clustered Sam-

ples. Stata Technical Bulletin 13, 1923.

Rubinstein, Ariel, and Peter C. Fishburn, 1986. Algebraic Aggregation

52



Theory. Journal of Economic Theory 38, 63-77.

Schmeidler, David, 1969. The Nucleolus of a Characteristic Function Game.

SIAM Journal of Applied Mathematics 17(6), 1163-1170.

Shapley, Lloyd S., 1953. A Value for n-Person Games. In: Contributions

to the Theory of Games (Vol. II), ed. by A. W. Tucker and R. D. Luce,

307-317. Princeton University Press.

Sobel, Joel, 2005. Interdependent Preferences and Reciprocity. Journal of

Economic Literature 43, 392-436.

Yaari, Menahem E., and Maya Bar-Hillel, 1984. On Dividing Justly.

Social Choice and Welfare 1, 1-24.

Young, H. Peyton, 1985. Monotonic solutions of cooperative games. Inter-

national Journal of Game Theory 14, 65-72.

53


	Introduction
	Theoretical Benchmark
	Solution Concepts
	Normative Principles

	Design of Treatments and Procedure
	The `Quiz' Treatment
	The `No-Quiz' Treatment
	The `Vignettes' Treatment
	CF1-7: Motivations and Theoretical Implications
	Experimental Procedure
	Our subject pool

	Analysis of Population Averages
	A Closer Look at the Data
	Description of the Data
	Testing Axioms
	ESS and Other Models
	Comparing Treatments

	Proof of Proposition 1
	Statistical Tests for Section 4
	Statistical tests and figures for Section 5
	Testing for demographic and order effects
	Instructions via computer interface
	Quiz treatment
	No-Quiz treatment
	Vignettes treatment

	Instructions projected on screen
	Quiz treatment
	No-Quiz treatment




