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Abstract

A decision maker may not perfectly maximize her preference over the

feasible set. She may feel it is good enough to maximize her preference

over a su�ciently large consideration set; or just require that her choice

is su�ciently well-ranked (e.g., in the top quintile of options); or even

endogenously determine a threshold for what is good enough, based on

an initial sampling of the options. We introduce and investigate a class

of theories, Order-k Rationality, encompassing heuristics such as these.
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1. Introduction

In its classic expression, an individual is rational if she chooses the best

available alternative according to a preference ordering. A growing literature

has arisen proposing a variety of departures from this simple model, in light

of the evidence against its behavioral implications. In the spirit of Simon

(1955)'s satis�cing, we investigate the behavioral implications of a decision

maker (henceforth DM) who picks alternatives that are good enough, but not

necessarily best. Alternatively, one can think of a preference-maximizing DM

with limited attention, who feels that the number of options she has identi�ed

and evaluated is good enough.

As is well known, the empirical content of Rationality is captured by the

Strong Axiom of Revealed Preference (SARP), namely that Samuelson's re-

vealed preference is acyclic (Samuelson 1938, Houthakker 1950). Suppose in-

stead, as in our theory of Order-k Rationality, that the DM picks from any

choice problem S an option that falls in the top k(S) elements according to

her preference ordering. Samuelson's revealed preference does not apply when

k(S) > 1. Even so, witnessing the DM choose x from S does restrict the DM's

possible preference: there must be at least |S|−k(S) options in S in the strict

lower contour set of x. Observing the DM pick options from di�erent choice

problems induces multiple restrictions of this form, and consistency with the

theory implies the existence of an acyclic relation that jointly satis�es all these

restrictions. As we will see in Section 3, this extension of SARP � which we

name k-SARP � is not only necessary for consistency, but also su�cient.

The restrictions the data imposes on the DM's putative preference are

more complex than the direct comparisons arising from Samuelson's revealed

preference. Hence k-SARPmay at �rst seem hard to check. Section 3, however,

provides a simple iterative procedure to test k-SARP, making it comparable to

testing SARP (namely, doable in polynomial time). This is perhaps surprising,

since we also show that testing a theory as simple as picking the second best

for a preference ordering (as suggested in Sen (1993)) is NP-hard.

As is also true for Rationality, multiple preference orderings can explain
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the same observed choices under Order-k Rationality.1 An option x is unam-

biguously preferred to an alternative y under a theory if x is ranked above y

for all preference orderings that are consistent with observed choices. Also, an

option x is a valid forecast for an out-of-sample problem S if the augmented

dataset, where x is picked out of S on top of observed choices, remains consis-

tent with the theory. Under Rationality, the unambiguous preference relation

is simply the transitive closure of Samuelson's revealed preference, and x is

a valid forecast for S if and only if no feasible alternative is unambiguously

preferred to it. Things get more complicated when relaxing the assumption of

preference maximization, as the revealed preference restrictions will typically

be more complex than direct comparisons between alternatives. Even so, we

explain in Section 4 how our testing procedure can be adapted to tractably

tackle the questions of identi�cation and out-of-sample forecasting.

Recent papers have studied limited attention as a culprit for bounded ra-

tionality. That literature has considered various restrictions on how attention

sets vary with the feasible set; see Manzini and Mariotti (2007, 2012), Masatli-

oglu et al. (2012), Cherepanov et al. (2013), and Lleras et al. (2017). For

instance, Lleras et al. (2017) captures choice overload by assuming that if

the DM pays attention to a feasible option in a large set, then she also pays

attention to it in smaller sets. A potential issue is that some choice functions

are consistent with a theory only because the DM pays attention to very few

options in some choice problems � in some case just the choice itself. On the

other hand, a possible reason for Order-k Rationality is a DM's insistence on

considering a su�cient number of options. We suggest that it might be fruitful

to enhance theories of attention by adding a lower bound on the cardinality

of the consideration set in di�erent choice problems. In Section 5, we charac-

terize the empirical content of such an enrichment of Lleras et al. (2017), and

discuss the tractability of testing.

In Section 6, we suggest and investigate a class of theories that use limited

1Of course, multiplicity is more prevalent for more permissive theories. For instance,
choices pin down a unique preference ordering under Rationality with full data, but not
necessarily when the DM picks options that are good enough instead of optimal.
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attention to endogenously de�ne what good enough means. Formally, the DM

makes choices from a list, as in Rubinstein and Salant (2006). She starts by

reviewing a predetermined number of options in the list (e.g. a fraction of its

length), and then picks the �rst ensuing option that is better than those she

reviewed. We characterize the empirical content of this theory when lists are

observable, and show that testing is tractable once again.

As in a majority of papers on bounded rationality, we focused so far on

single-valued choice functions. Relaxing the assumption of preference maxi-

mization opens the possibility of a multi-valued choice correspondence even

when the DM has a preference ordering (which is, by de�nition, a strict rela-

tion). Quite naturally, when choosing an option that is good enough, the DM

may sometimes pick di�erent options from the same choice problem. It may

be, for instance, that the DM entertains the di�erent options sequentially and

settles on the �rst one that is good enough according to this order. Facing op-

tions in a di�erent sequence may impact choices. Having more time to search

may bring her closer to preference maximization. Choosing in the presence of

others, she may settle for the second best, but pick her most-preferred option

when choosing alone. These are all examples of framing e�ects or ancillary

conditions (Salant and Rubinstein 2008, Bernheim and Rangel 2009). In many

cases, the modeler does not have access to contextual information (e.g. order

in which options are presented or considered, the DM's time constraint, or the

presence of third parties), and observes only the feasible set and �nal choices.

We extend our analysis to such circumstances in Section 7.

Our approach in this paper is ordinal, in that choices are based on com-

parisons given a preference order. Intensities play no role: if represented by

utilities, choices are invariant to increasing utility transformations. Alterna-

tively, it would be possible to model the notion of `good enough' in a cardinal

way. In Section 8, we consider a DM who is happy to settle on an option,

so long as its utility is at least as large as her expected utility from drawing

(and consuming) a new feasible option. This theory is cardinal in nature: an

increasing transformation of a given Bernoulli utility function can modify re-

sulting choices. When it comes to the testable implications of such a theory,
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however, the modeler does not know what the utility function is; instead, the

modeler must check whether choices are consistent with the theory for some

utility function. As it turns out, the empirical content of this cardinal theory

coincides with the empirical content of Order k-Rationality, with k(S) = |S|−1

for all S. While a thorough study of cardinal theories would be the subject of

a di�erent paper, this suggests that incorporating cardinal comparisons does

not necessarily create a theory whose empirically content is distinguishable

from an ordinal one.

Additional Related Literature

Simon (1955) introduced the idea of satis�cing behavior as a simpler, perhaps

more realistic alternative to rationality. Instead of identifying and evaluating

all feasible options in order to pick the best one, DMs may be happy to pick

the �rst acceptable option they encounter.

There are di�erent ways, however, to formalize what is acceptable to a

DM. Most relatedly, Aleskerov et al. (2007) assumes that there is a utility

function u : X → R and a utility threshold τ(S) such that the DM picks

the entire set of elements whose utility is superior to τ(S). While written

in terms of utility, this is tantamount to requiring that there exist an index

function k and a preference ordering such that the DM chooses all the top

k(S) elements of S. As a special case, Eliaz et al. (2011) study the method

of selecting two �nalists, while Chambers and Yenmez (2017) analyze a DM

who picks all the top q options according to an ordering. Testing amounts

to checking the acyclicity of the revealed preference where chosen elements

are revealed preferred to unchosen alternatives. Contrary to these papers, we

don't assume that the DM necessarily deems unacceptable an option that we

haven't yet seen her choose. In that case, Aleskerov et al.'s model has no

testable implications.2 In light of this, it is important to emphasize that we

envision the index function k as �xing a theory; it is something the modeler

chooses a priori when selecting a theory to test. Testing gets subtler than

2Indeed, any observed choice function is consistent in that sense with the theory, simply
using k(S) = |S| for each choice problem S.
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checking for acyclicity of a revealed preference, but remains tractable.

The results in Section 3 are similar to those in Barberà and Neme (2014),

which is superseded by this current paper, and also appeared in a supplement

to de Clippel and Rozen (2012), as one of the applications of the general

methodology there. The testing methodology we follow is in line with de

Clippel and Rozen (2012) for all the theories analyzed in the present paper

(see Sections 3, 5, 6, and 7). We start by identifying restrictions that observed

choices place on the DM's preferences should she comply with the theory,

and then show that all relevant restrictions have been unearthed by proving

that the existence of an acyclic relation satisfying them guarantees consistency.

Though more complex than direct comparisons between pairs of options, these

restrictions oftentimes pertain to the lower contour set of an option, or of a

set of options. In that case, testing can be done tractably using de Clippel

and Rozen's enumeration procedure. Tests in this paper are instances of this

procedure. In the presence of more complex restrictions, testing is often NP-

hard, as suggested by Proposition 3 of de Clippel and Rozen (2018). That

result is used here to establish the NP-hardness of testing Sen (1993)'s theory

of choosing the second best.

2. Order-k Rationality

Denote by X the �nite set of all conceivable alternatives. A choice problem is

any nonempty subset of X. A choice function singles out an element of each

choice problem. An index function is a mapping k that associates to each

choice problem S a strictly positive index k(S) that is smaller than or equal to

the number of elements in S. Under Order-k Rationality, the decision maker

(DM) has a strict preference ordering � and picks an option that is either the

1st-best, the 2nd-best, . . . , or the k(S)th-best option in S according to �.
We have thus de�ned a class of choice theories, one for each index function

k. The special case where k(S) = 1 for each choice problem S corresponds to

the theory of rationality. There are various circumstances where it makes sense

to consider larger k's, so as to capture bounded rationality.3 It is up to the

3Notice that any choice function that is consistent with Order-k Rationality is also con-
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modeler to conjecture which index function is appropriate for the situation at

hand (that is, the modeler must decide on a theory). The modeler must then

check whether observed choices are consistent with the theory, for instance by

using the e�cient testing method we provide in Section 3.

`Good-enough' decision making, leading to Order-k Rationality, arises nat-

urally in di�erent circumstances. As seen in the heuristics below, the notion

of `good enough' may apply to the preference or the consideration set (or even

both, as considered in Section 6).

Relative satis�cing. The �rst type of decision making captures a relative form

of satis�cing:4 the DM considers an option `good enough' if it is among her

top k(S) alternatives in the choice problem S. For instance, the DM may be

willing to settle for second best, but no less. Modeling k(S) as a �xed percent-

age of S corresponds to meeting quantile criteria, such as being ranked above

the median, or in the top quintile. To illustrate, suppose the DM is a new car

shopper with a preference ranking over possible vehicle speci�cations (model

trims and color combinations). She knows what speci�cations she can a�ord,

but not in which dealerships they can be found; and she may choose to stop

visiting dealerships once she �nds a car that she ranks highly enough. Beyond

sequential search, there may be di�erent reasons for choosing something that

is only `good enough,' and di�erent procedures for reaching that preference

threshold. Order-k Rationality is meaningful whatever the procedure and mo-

tivations the DM follows to identify the good-enough option.

Minimal consideration. Another `good-enough' heuristic applies to the consid-

sistent with Order-k′ Rationality if k′(S) ≥ k(S) for all choice problems S.
4We use the term relative because the simplest incarnation of satis�cing uses a single

aspiration level, which �xes one benchmark alternative. However, Simon's discussion of
satis�cing is more nuanced, noting that the aspiration level may vary with the success
of one's search: �A vague principle would be that as the individual, in his exploration of
alternatives, �nds it easy to discover satisfactory alternatives, his aspiration level rises; as he
�nds it di�cult to discover satisfactory alternatives, his aspiration level falls.� (Simon 1955,
p. 111) If the aspiration level shifts dynamically and the realized sequence of examination
is unobserved, then Order-k Rationality would arise, with the index function k given by the
worst possible aspiration level for each set.
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eration set instead of preference: the DMmay feel it is su�cient to contemplate

and compare a certain number of alternatives when making a choice. There are

many rules of thumb that lead to such behavior. When searching on Google,

for instance, the DM may restrict attention to the �rst page of results. More

broadly, Masatlioglu et al. (2012) suggest that the DM may form her consid-

eration her by taking the top-n options according to some auxiliary criterion

(e.g. price, quality, order of appearance). In general, the choice problem may

a�ect the number of alternatives considered. For instance, the DM may insist

on contemplating a certain proportion of alternatives; or she may be over-

whelmed by large choice sets, with the number of alternatives she considers

decreasing in S. Whatever it is, the DM's rule for the minimal consideration-

set size has direct meaning for the index function: if at least n(S) alternatives

are considered in each set S, then the DM's behavior is described by Order-k

rationality with the index function given by k(S) = |S| − n(S) + 1 for all S.

Remark 1. While Order-k Rationality presumes a single preference ordering,

we observe that it can also provide a useful framework for understanding some

testable implications of multi-self and interactive decision making. Consider

the real-life problem of arbitrator selection (see e.g. de Clippel et al. (2014)

and references therein), which is commonly implemented using an alternate-

strikes procedure. Anbarci (1993) showed that backward induction outcomes

must fall above the median of each party's preference ordering.5 Thus Order-

k Rationality, with the index function given by k(S) = b |S|
2
c for all S, is a

necessary condition for the backward induction equilibrium.

3. Testable implications through k-SARP

We now investigate the testable implications of Order-k Rationality. As we

cannot observe the DM's thought process, we cannot identify for certain what

theory she uses. However, we can observe the DM's choices. By understanding

5More generally, one expects this to be a property of fair bargaining outcomes; the
equilibrium of other non-cooperative procedures have this property as well, such as Anbarci's
method of voting by alternating o�ers and vetoes, or de Clippel et. al.'s shortlisting method,
a special instance of the rule of k-names (see Barberà and Coelho (2010, 2017, 2018)).
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the regularities Order-k Rationality imposes on choice behavior, we may know

when it is consistent with the DM's choices, and when it is refuted.

Suppose we observe the DM making a choice for each of several choice

problems. Formally, this can be captured by an observed choice function

cobs : D → X, where the dataset D is the class of choice problems for which

observations have been collected. The observed choice function cobs is consis-

tent with Order-k Rationality if there is a strict preference � such that cobs(S)

is one of the top k(S) options in S, for each S ∈ D. Otherwise, the observed
choices refute the theory. Our goal is to design a simple test to inform us,

for each observed choice function, whether it is consistent with the theory or

refutes it.

One can test the theory of rationality (the special case k(S) = 1 for all S)

by checking whether Samuelson's revealed preference is acyclic; this is known

as the Strong Axiom of Revealed Preference, or SARP. Under rationality, x is

revealed preferred to y if x is picked in the presence of y, that is, there exists

S ∈ D containing y and such that cobs(S) = x.

Such an inference is invalid if k(S) ≥ 2, since there may exist alternatives

in S that are preferred to the choice. However, observed choices do impose

restrictions on what the DM's preference may look like: there must exist

|S| − k(S) alternatives in S that are all inferior to x. We now show that

observed choices are consistent with Order-k Rationality if and only if there

exists an acyclic (strict) relation satisfying such restrictions. This condition

corresponds to a generalization of SARP:

k-SARP There exists an acyclic (strict) relation P such that, for each S ∈ D,
there is a set S ′ ⊂ S of |S| − k(S) alternatives with cobs(S)Py, for all y ∈ S ′.

After proving the result, we will propose a practical way of checking k-SARP,

illustrating how it is comparable in complexity to testing SARP.

Theorem 1. The observed choice function cobs is consistent with Order-k Ra-

tionality if and only if k-SARP is satis�ed.

Proof. Necessity follows from the discussion above. As for su�ciency, let P

be such an acyclic relation, and let � be a completion of P into an ordering.
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Since P -comparisons remain valid under �, cobs(S) � y for all y ∈ S ′, given
any S ∈ D. Thus cobs(S) is among the top k(S) options in S according to �,
and cobs is consistent with Order-k Rationality.

One might conjecture that checking k-SARP is di�cult, as it requires

checking for the existence of an acyclic relation satisfying certain restrictions

(as opposed to SARP, which requires checking that a given relation is acyclic).

Fortunately, that is not the case: testing is of comparable complexity to testing

Rationality. We now explain how the testing is implemented.

Let X1 be the image of cobs, and let Y1 = X \ X1. Intuitively, Y1, the

set of elements never chosen, contains obvious candidates for the DM's worst

elements, with those in X1 ranked somewhere above those in Y1. The data may

suggest further information, however, on how elements in X1 rank in relation

to each other. For each x ∈ X1, let c
−1
obs(x) be the set of choice problems S ∈ D

such that cobs(S) = x. Consider the set

Y2 = {x ∈ X1 | |S ∩ Y1| ≥ |S| − k(S), for all S ∈ c−1obs(x)},

which is the set of x ∈ X1 such that for every set S in which x is chosen, x

already belongs to the top k(S) elements, either because there are su�ciently

many worse-ranked elements (i.e., those in Y1), or because the size of the set

is at most k(S) (e.g., it is a two-element set and the theory is that the DM

chooses from the top two). As elements in Y2 are not forced by the theory to

be better than any other element in X1, the set Y2 contains obvious candidates

for the DM's worst elements in X1. After taking out the elements of Y2 and

ranking these somewhere above the elements of Y1, we would next want to

investigate the set of remaining elements, X2 = X1 \Y2. Building on this idea,

we can de�ne by induction two sequences of sets:

Y`+1 = {x ∈ X` | |S ∩ [∪`i=1Yi]| ≥ |S| − k(S), for all S ∈ c−1obs(x)},

X`+1 = X` \ Y`+1.
(1)

In each step `, the set ∪`i=1Yi represents the set of elements that have already
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been ranked below the remaining elements (those in X`). Similarly, Y`+1 looks

for candidates for worst elements in X`, based on checking which chosen el-

ements already have enough worse-ranked elements that they automatically

belong to the top k(S) whenever chosen in some S. The set Y`+1 is then re-

moved, and ranked somewhere above those previously removed (i.e., ∪`i=1Yi),

to generate the next set of remaining elements, X`+1. Clearly, X`+1 ⊆ X` for

each `. Given that X1 has at most |D| elements, the sequence (X`)`≥1 becomes

constant in at most that many steps. Let X∗ be this limit set, that is, X∗ = X`

where ` is the lowest index such that X` = X`+1. The next result shows that

k-SARP holds (and thus cobs is consistent with Order-k Rationality by The-

orem 1) if and only if X∗ = ∅. Thus k-SARP can be checked in polynomial

time (in the cardinalities of X and D).

Theorem 2. k-SARP holds if and only if X∗ = ∅.

Proof. (Su�ciency) Suppose that X∗ = ∅. Let ` be the smallest index such

that X` = X∗. Consider the partition {Y1, . . . , YL} of X, and the (strict)

relation P de�ned by x � y if the atom of the partition to which x belongs

has a larger index than the atom to which y belongs. Clearly P is acyclic, and

k-SARP is satis�ed using P .

(Necessity) Suppose that the limit set X∗ is nonempty. Let Y ∗ = X \ X∗.
If k-SARP is satis�ed using P , then the restriction of P to X∗ must be such

that |{y ∈ S | cobs(S)Py}| ≥ |S| − k(S) for all S ∈ D such that cobs(S) ∈ X∗.
Decomposing the lower contour set into two components,

|{y ∈ S ∩X∗ | cobs(S)Py}|+ |{y ∈ S ∩ Y ∗ | cobs(S)Py}| ≥ |S| − k(S)

and thus |{y ∈ S ∩ X∗|cobs(S)Py}| + |S ∩ Y ∗| ≥ |S| − k(S) for all S ∈ D
such that cobs(S) ∈ X∗, since in the most permissive scenario, all elements in

S ∩ Y ∗ are P -inferior to cobs(S). Acyclicity implies that one can �nd x ∈ X∗

for which there is no y ∈ X∗ such that xPy. For all S ∈ c−1obs(x), it must be

that 0 ≥ |S| − k(S) − |S ∩ Y ∗|, which cannot be if X∗ is the limit set. Thus

X∗ must be empty if k-SARP holds, as desired.
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Theorems 1 and 2 are similar to those derived in Barberà and Neme (2014)6,

and are special instances of the general methodology suggested and pursued

for a variety of theories in de Clippel and Rozen (2012, 2018). According

to that methodology, testable implications are �rst expressed in terms of the

existence of an acyclic relation satisfying some restrictions (as in k-SARP).

Second, provided that the restrictions all correspond to `lower contour sets'

(as is the case for k-SARP), testing can be done using a simple enumeration

procedure (similar to the iterative process used to de�ne X∗) that is compa-

rable in complexity to checking whether a given relation is acyclic (as is case

when testing Rationality through SARP). de Clippel and Rozen show how

this methodology can be followed successfully for di�erent theories of bounded

rationality, but by far not all. The present paper establishes that Order-k Ra-

tionality provides another interesting class of theories where the methodology

can be followed successfully.

Remark 2. Not all theories of bounded rationality can be tested easily: some

are computationally complex to test, namely NP-hard. The simplicity of testing

Order-k Rationality may be surprising. Indeed, consider Sen's (1993)'s the-

ory of choosing the second best according to a preference ordering (as opposed

to choosing one of the top two elements, as permitted by Order-k Rationality

with k(S) = 2 for all S). Under full data (when the entire choice function is

observed), Baigent and Gaertner (1996) characterize Sen's theory using sim-

ple and easy-to-check axioms.7 They do not capture, however, the empirical

content of this theory when data is limited. In this general case, Sen's rather

simple theory turns out to be NP-hard to test, as we prove in Theorem 9 of the

Appendix. The result follows as a corollary of de Clippel and Rozen (2018)'s

Proposition 3, by showing that their NP-hard problem of testing acyclic satis-

�ability of a `mixed set of binary restrictions' is reducible in polynomial time

to testing Sen's theory. Hence, determining whether choices are second-best

6This paper supersedes Barberà and Neme (2014).
7For single-value choice functions, the two axioms to consider are simply: (i) if x is picked

both from {x, y} and {x, z}, then x is not picked from problems containing x, y, and z, and
(ii) each problem S admits an element y 6= c(S) such that c({y, z}) = z for all z ∈ S di�erent
from y.
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for some preference ordering can be hard, but checking whether it is top best

for some ordering (Rationality), or testing whether it is among the top two

elements for some ordering (2-Rationality) is relatively easy. This is because

k-SARP is a natural and tractable generalization of SARP.

4. Forecasting and Preference Identification

A modeler may have further questions upon determining that observed choices

are consistent with a theory. For instance, what forecasts can be made regard-

ing potential choices in unobserved choice problems? Can the DM's preference

over any pairs of alternatives be unambiguously identi�ed? We address each

of these questions in turn.

4.1 Forecasting

Having observed the DM's selections for choice problems in D, the modeler

would like to guess the DM's choice in an out-of-sample problem S. The

possible guesses consistent with the theory comprise each x ∈ S such that

there is a complete choice function c under Order-k Rationality that extends

cobs and that has c(S) = x. Hence, the problem of forecasting is intimately

related to the problem of testing consistency. Indeed, determining whether

x ∈ S is a possible choice is tantamount to testing whether the extended

observed choice function c̄obs : D ∪ {S} → P(X), given by c̄obs(T ) = cobs(T )

for T ∈ D and c̄obs(S) = x, is consistent with Order-k Rationality. As we know

how to tractably test consistency, we can easily generate forecasts for S.

4.2 Identi�cation

Even with a complete dataset (D = P(X)), it is sometimes possible for di�er-

ent preference orderings to generate the same observed choices under Order-k

Rationality. Recalling the construction from Section 3, if the sequence of sets

Y1, . . . , YL is built according to (1) and partitions X, then it is easy to see

that there are at least
∏L

`=1 |Y`|! possible preference orderings. Nonetheless,

there are choice con�gurations that pin down the preference between some

alternatives. Formally, suppose cobs has already been deemed consistent with

Order-k Rationality. Then x is revealed preferred to y if xPy for any preference
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ordering P that generates cobs. Identifying whether x is revealed preferred to

y is therefore equivalent to ruling out the possibility of a preference P with

yPx generating observed choices.

To illustrate, suppose X has �ve elements. The modeler posits that k(S) =

2 for all S. Observed choices cobs({x1, x2, x3, x5}) = x1 and cobs({x1, x2, x3, x4}) =

x2 are consistent with Order-k Rationality using various preferences, including

for instance x1Px2Px3Px4Px5, x5Px1Px2Px3Px4, and x4Px2Px1Px3Px5,

among others. In all rationalizing preferences, however, both x1 and x2 must

be ranked above x3; that is, x1 and x2 are both revealed preferred to x3. In-

tuitively, x1, x2, x3 all appear in two choice problems, where two of these are

observed to be chosen; as k(S) = 2, this leaves no space for x3 to be ranked

above either.8

In general, we may use the testing technique of Theorems 1 and 2 to address

the problem of identi�cation. Suppose one wonders whether x is revealed

preferred to y. Then it would be impossible to �nd a preference ordering raking

y above x and generating the observed choices under Order k-Rationality. In

other words, x is revealed preferred to y if and only if k-SARP, augmented

by adding the restriction yPx on the acyclic relation P , fails. Modifying the

de�nition of Y`+1 by dropping y for all ` such that x ∈ X` then provides a

simple test as in Theorem 2.

5. Enhancing Existing Theories

Order k-Rationality can be interpreted as capturing a DM whose atten-

tion may be limited, but who is known nevertheless to be minimally attentive.

This condition on attention di�ers from earlier approaches, which typically

restrict how attention sets vary across choice problems. For instance, Lleras

et al. (2017) captures choice overload by requiring the DM's attention cor-

respondence to satisfy IIA: any option paid attention to in large problems is

8Formally, the �rst observed choice reveals that at most one element among x2, x3 and
x5 is preferred to x1. The second observed choice reveals that at most one element among
x1, x3 and x4 is preferred to x2. But if x3 is the one alternative preferred to x2 (x1), and
if at most one of these can be preferred to x1 (x2), then its availability in both observed
problems renders it impossible to explain the choices.
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also paid attention to in smaller problem that contains it. This property also

describes the DM's attention in theories suggested by Manzini and Mariotti

(2012) and Cherepanov et al. (2013).

While it is both intuitive and well-documented that a DM may be over-

loaded when facing too many options, it may be unrealistic that she would

pay attention to only a single option in a problem. This, however, is a fea-

ture of certain choice behaviors that some theories of attention explain. To

illustrate, consider the following observed choice function: cobs(X) = x and

cobs({x, y}) = y, for all y 6= x. These choices are consistent with the theory

of Lleras et al., but only if x is the only option that the DM considers when

facing X, no matter how large or small X is. This is because IIA requires the

DM to consider x in each pair containing it, and hence the DM must prefer

all alternatives to x.

One may desire to enhance theories of attention by adding a lower bound

on the number of alternatives considered. Doing so retains their appealing fea-

tures, while restraining over-permissiveness. Here, we consider this approach

for the theory of Choice Overload. For each choice problem S, let α(S) be the

modeler's lower bound on the number of options that the DM considers when

facing S. Under Choice Overload with α-Minimal Attention, the DM has a

preference ordering P and an attention correspondence A : P(X) → P(X)

such that:

(1) A satis�es IIA,

(2) A(S) is a non-empty subset of S, for each S,

(3) A(S) contains at least α(S) elements, for each S,

(4) The choice from S is the P -maximal element in A(S), for each S.

To understand the testable implications of this new theory, we follow the

methodology suggested by de Clippel and Rozen (2012), by looking for restric-

tions that observed choices place on the DM's preference should her choices be

consistent with the theory. One type of restriction arises from the IIA property:

it implies that xPy whenever x = cobs(S), y = cobs(T ), and y ∈ S ⊂ T . Denote
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by RIIA the set of all such restrictions. This revealed preference was identi�ed

by Manzini and Mariotti (2012), Cherepanov et al. (2013) and Lleras et al.

(2017). Another type of restriction arises from the minimal consideration prop-

erty (3), which requires the DM's choices to be in the top k(S) = |S|−α(S)+1

options according to her preference. Thus, as in Section 3, one must add a

restriction that at least α(S) − 1 elements of S are P -inferior to cobs(S). Let

Rα be the set of all such restrictions.

To summarize, consistency with the theory requires the existence of an

acyclic (strict) relation satisfying the restrictions listed in RIIA ∪ Rα. This

is a more restrictive condition than satisfying either RIIA or Rα alone, as it

is possible to satisfy one but not the other. Does the enhanced theory entail

any restrictions beyond these two types? The next theorem con�rms that

RIIA ∪ Rα fully captures the empirical content of Choice Overload with α-

Minimal Attention. This conclusion is nontrivial: as we will demonstrate below

for another major theory, an enhanced theory need not always be characterized

by the union of the restrictions of the original theory with Rα.

Theorem 3. An observed choice function cobs is consistent with Choice Over-

load with α-Minimal Attention if and only if there is an (strict) acyclic relation

P satisfying the restrictions in RIIA ∪Rα.

Proof. Necessity follows from the discussion above. As for su�ciency, let P

be an acyclic relation satisfying RIIA ∪ Rα, and let � be a completion of P

into an ordering. Clearly, � also satis�es RIIA ∪Rα. For each choice problem

S, let B(S) be the bottom α(S) elements of S according to �, let

A∗(S) = S ∩ {cobs(T ) | T ∈ D, S ⊆ T},

and let A(S) = A∗(S)∪B(S). We conclude the proof by showing that cobs(S)

is the �-maximal element of A(S) for each S ∈ D. By de�nition, cobs(S) ∈
A∗(S) ⊆ A(S). Suppose, by contradiction, that there exists x ∈ A∗(S) such

that x � cobs(S). If x ∈ A∗(S), then cobs(S) � x since � satis�es the restric-

tions in RIIA. This cannot be, so x ∈ B(S). Then cobs(S) has at most α(S)−2

that are �-inferior to it in S, since x has at most α(S)−1 below it (x ∈ B(S))
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and cobs is �-inferior to x. This contradicts � satisfying the restrictions in Rα.

Hence no such x exists, and cobs(S) is the �-maximal element of A(S).

The tractability of testing Order-k Rationality extends to Choice Overload

with α-Minimal Attention. Indeed, testing can be implemented using a similar

approach. Let X̃1 be the image of cobs, and let Ỹ1 = X \ X̃1. Letting k(S) =

|S| − α(S) + 1, de�ne by induction, for each ` ≥ 1:

Ỹ`+1 ={x ∈ X̃` | |S ∩ [∪`i=1Ỹi]| ≥ |S| − k(S), for all S ∈ c−1obs(x),

and @y ∈ X̃` \ {x} s.t. x = cobs(T ), y = cobs(T
′) for x, y ∈ T ⊂ T ′}

X̃`+1 =X̃` \ Ỹ`+1.

The sequence of Ỹ ′` s di�ers from its Section 3-counterpart in that excludes

alternatives which are ranked above another remaining one according to the

IIA-based revealed preference. The sequence X̃` is decreasing, and becomes

constant in at most |D| steps. Letting X̃∗ be this limit set, it is easy to see

that cobs is consistent with Choice Overload with α-Minimal Attention if and

only if X̃∗ = ∅. Thus the theory can be checked in polynomial time (in the

cardinality of D). Moreover, preference identi�cation can be performed as in

Section 4.

Theorem 4. cobs is consistent with Choice Overload with α-Minimal Attention

if and only if X̃∗ = ∅.

Proof. (Su�ciency) Suppose X̃∗ = ∅. Let ` be the smallest index such that

X̃` = X̃∗. Consider the partition {Ỹ1, . . . , ỸL} of X, and the (strict) relation

P de�ned by x � y if x ∈ Ỹj and y ∈ Ỹk, with j > k. Since P is acyclic and

satis�es RIIA ∪Rα, Theorem 3 applies.

(Necessity) Suppose that the limit set X̃∗ is nonempty yet there exists a pref-

erence ordering P from which the choices arise under Choice Overload with

α-Minimal Attention. Following the same reasoning as in the proof of Theorem

2, acyclicity of P implies that one can �nd x ∈ X∗ for which there is no y ∈ X̃∗

such that xPy, yet for all S ∈ c−1obs(x), it must be that 0 ≥ |S|−k(S)−|S∩ Ỹ ∗|,
where Ỹ ∗ = X \ X̃∗. Since X̃∗ is the limit set, this is possible only if there
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exists y ∈ X̃∗ \ {x} such that x = cobs(T ) and y = cobs(T
′) for x, y ∈ T ⊂ T ′.

As P must satisfy RIIA, this means xPy. Thus x is not P -minimal in X̃∗, a

contradiction. Hence X̃∗ must be empty, as desired.

Theorem 3 showed that the testable implications of Choice Overload with

α-Minimal Attention boil down to testing whether there is a (strict) acylic re-

lation satisfying the union of Rα with the theory's original restrictions. When

enhancing other theories with α-Minimal Attention, however, further restric-

tions could potentially be generated. Recall Masatlioglu et al. (2012)'s theory,

which posits that the DM has a preference ordering and a consideration set

mapping that is unchanged when unconsidered alternatives are taken away;

that is, they require that A(S) = A(T ) whenever A(T ) ⊆ S ⊂ T . Suppose we

see the following dataset when X = {a, b, x, y, z}:

S {a, b, x, z} {a, b, x} {a, b, y, z} {a, b, y} {x, y, z}
cobs(S) x a y a z

These observed choices are consistent with α-Minimal Attention for α(S) = 2

for all S. To see this, take the preference ordering P given by zPxPyPaPb.

These observed choices are also consistent with Masatlioglu et al. (2012)'s

theory. To see this, take the preference ordering P given by xPyPzPaPb

and the consideration set mapping A de�ned by A({x, y, z}) = A({x, z}) =

A({y, z}) = z, A({a, b, x}) = A({a, b, y}) = {a, b} and A(S) = S otherwise.

Thus there exists an acyclic relation satisfying the union of the restrictions for

these two theories.9 However, this data is inconsistent with an enhancement of

Masatlioglu et al. (2012)'s theory in which we require the DM to pay attention

to at least two elements in every choice problem. To see this, suppose by

contradiction that the choices are consistent with this new theory. Observe

that z must be considered in {a, b, x, z} (since the choice switches to a when z
is dropped), so x is revealed preferred to z. Similarly, z must be considered in

{a, b, y, z}, so y is revealed preferred to z. This yields a contradiction: because

9See de Clippel and Rozen (2012) for the limited-data restrictions for Masatlioglu et al.
(2012)'s theory.
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at least two options must be considered, z cannot be chosen from {x, y, z}.

6. Determining `good enough' endogenously

Encountering options sequentially may impact a DM's choices. In such cases,

a `good-enough' choice heuristic may be particularly salient due to the inclina-

tion to stop looking after having reviewed su�ciently many options. Following

Rubinstein and Salant (2006), we formalize a list as a sequence (xk)
K
k=1 of dis-

tinct options in X. The notion of a list re�nes that of a choice problem: one

knows both the feasible set of options and the order in which they appear to

the DM. Observing a DM's choices over lists in which the same options ap-

pear in a di�erent order thus provides richer data, with the potential for more

stringent tests and better identi�cation.

In this section, we envision the DM as �rst reviewing a given fraction

of the list to set up a threshold, and picking the �rst option that surpasses

that threshold according to her preference. For each list `, let n(`) be a

number between 1 and the length of the list. The DM is assumed to set up

her threshold by reviewing the �rst n(`) options in the list. Like the index

function k, the modeler chooses the function n and sets out to test the resulting

theory. A natural threshold would be to set n according to a �xed fraction of

the list's length, but more complex functions can be accommodated without

complication. Let τ(`) be the best option in the �rst n(`) elements of the list

`, according to the DM's (unknown) preference ordering �. The DM's choice

is then the �rst option among the remaining ones in the list that is �-superior
to τ(`), if any, and is otherwise τ(`).10 This procedure thus combines features

of both relative satis�cing and limited attention, as the threshold for each list

is set by paying attention to a limited number of options.

In this framework, complete data would mean observing the DM's choice

from every list. Testing is rather straightforward in that case. For each set

S ⊆ X, one looks for a list of S where the DM picks its �rst element, and

10This bears similarity to the classic secretary problem, but departs from it in the ability
to choose an element, τ(`), from earlier in the list.
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denotes that element c∗(S).11 Consistency occurs if and only if (a) the func-

tion c∗ satis�es IIA (is rational), and (b) observed choices can be derived by

applying the choice procedure to the preference ordering revealed by c∗, i.e.,

x is preferred to y if and only if c∗({x, y}) = x.

Of course, having access to such rich data is implausible. However, the

general testing methodology of de Clippel and Rozen (2012) can be applied to

obtain a tractable test of this theory for any dataset. One starts by identifying

restrictions that observed choices place on the DM's preference, should her

choices conform to the theory. First, if she chooses one of the the �rst n(`)

options in a list, then the DM must prefer it over all alternatives in the list.

Second, the element the DM chooses from a list must be preferred to any

alternative that precedes it. Third, any element appearing between the n(`)−
th element of the list and before the chosen element must be inferior to at

least one of the �rst n(`) options in the list. Consistency with the theory thus

requires the existence of an acyclic relation satisfying all these restrictions

implied by observed choices. Do observed choices reveal any other essential

restrictions on the DM's putative preference? No, as the next theorem shows.

Theorem 5. Observed choices are consistent with the theory if and only if

there exists an (strict) acyclic relation P such that, for each observed list `,

(a) If the observed choice x is one of the �rst n(`) elements, then xPy for

all y 6= x in the list;

(b) If x is the observed choice, then xPy for all y preceding x;

(c) For any y following the �rst n(`) elements but preceding the observed

choice, there exists x among the �rst n(`) elements such that xPy.

Proof. Necessity was proved above. As for su�ciency, we can assume without

loss of generality that P is an ordering, as any acyclic relation can be completed

into an ordering and the completion will still satisfy the listed restrictions. We

conclude the proof by checking that observed choices can be derived from the

11Consistency with the theory requires the existence of such a list, e.g. any list that has
the DM's most-preferred element of S in �rst position.
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theory by using P as the DM's preference. Let ` be an observed list. Suppose

that the observed choice x is one of the �rst n(`) options. By (a), x is P -

maximal in the set of elements that appear in `, as desired. Suppose now x

is not one of the �rst n(`) options. By (b), it is P -superior to all preceding

options. By (c), x is the �rst option in the list that succeeds the initial n(`)

options, and is P -superior to all of them. Thus indeed, the theory applied to

P selects x out of `, as desired.

7. Contextual effects and Multi-valued Choice

Multiple options are satisfactory to the DM when k(S) ≥ 2. Our theory does

not describe how the DM settles on a speci�c one. It might be, for instance,

that she reviews options in some order, and settles on the �rst that falls among

the top k(S). The modeler may not know what this order is, either because

it is subjective or unrecorded. More generally, encountering the same choice

problem S on di�erent occasions may lead to di�erent choices among the top

k(S) for reasons the modeler cannot discern. The data collected then takes

the form of an observed choice correspondence, that associates to each S ∈ D
a nonempty subset Cobs(S) ⊆ S of options that the DM has picked when

facing S on various occasions. The observed choice correspondence Cobs is

consistent with Order-k Rationality if there is a preference ordering � for

which all options in Cobs(S) fall within the �-top k(S) options in S, for each

S ∈ D.
Of course, k-SARP must hold with respect to each selection of Cobs. How-

ever, consistency is more demanding than this condition. The reason is that

the same preference ordering must explain all observed choices, including when

multiple ones have been observed for the same problem. If observed choices

were consistent with the theory, then the following restrictions on the DM's pu-

tative preference could be inferred: for each S ∈ D, there must exist |S|−k(S)

alternatives in S, each of which is inferior to all elements of Cobs(S).

Multi-Valued k-SARP There exists an acyclic (strict) relation P such that,

for each S ∈ D, there is a set S ′ ⊂ S of |S|−k(S) alternatives such that xPy,
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for all x ∈ Cobs(S) and all y ∈ S ′.

Both Theorems 1 and 2 extend using Multi-Valued k-SARP, thereby pro-

viding a tractable test of the theory for correspondences as well. The proofs

are almost identical to those before, and left to the reader.

Theorem 6. Cobs is consistent with Order-k Rationality if and only if Multi-

Valued k-SARP is satis�ed.

Theorem 7. Multi-Valued k-SARP holds if and only if X∗ = ∅, where X∗ is
the limit of decreasing sequence of sets (X`)`≥1 as in Theorem 2 after replacing

cobs by Cobs.
12

8. A Cardinal Approach to `Good Enough'

Our notion of `good enough' is de�ned in relative terms, rather than

through utilities. A more general framework would allow cardinal informa-

tion to matter. Here, we introduce and study an intuitive model of search

where the notion of good enough is de�ned cardinally. The perhaps surprising

conclusion is that its empirical content is indistinguishable from an ordinal

theory (more speci�cally, one of the theories in the Order-k Rationality class).

We leave the study of other cardinal models to future work.

Consider a DM with unit demand searching for a product, say a car for

concreteness. A car is described by an array of characteristics (e.g., colors,

seating materials, packages), and is captured by the variable x. Let X be the

�nite set of possible car types. Prices of di�erent car types and the DM's

budget determine her feasible set S. The DM has a strict Bernoulli utility

function u : X → R over car types. The DM knows the measure p(x) > 0 of

cars of any type x ∈ X, but not where to locate such a car. As such, she must

search sequentially through di�erent car lots. The DM considers a car of type

x `good enough,' and concludes her search, if and only if its utility u(x) is at

least as high as her expected utility
∑

x∈S p(x|S)u(x) from continuing, where

12The image of Cobs is the set of options in X that belong to Cobs(S) for some S ∈ D,
and C−1obs(x) is the union of all problems S ∈ D such that x ∈ Cobs(S).
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p(x|S) = p(x)/
∑

x′∈S p(x
′). The DM's choices are consistent with this model

if there exists a strict Bernoulli u such that the DM's choice in each observed

choice problem S quali�es as good enough in this sense.

The above model has a rich structure, and one might expect its testable

implications to go beyond those of Order-k Rationality. Taking an increasing

transformation of the DM's Bernoulli utility function could certainly change

her choices. However, the modeler does not know the DM's utility function

and has the �exibility of choosing it when checking consistency of observed

choices with the theory. As it turns out, the testable implications boil down

to those of an ordinal theory.

Theorem 8. Observed choices are consistent with this cardinal model if and

only if they are consistent with Order-k Rationality, for k(S) = |S| − 1 ∀ S.

In other words, we can only conclude that the DM does not choose her

worst element from any set. Theorem 8 takes as input any �xed, full-support

probability distribution p. A fortiori, the theorem also holds when both the

distribution p and the utility function u are taken to be subjective.

There are other cardinal notions of `good enough' that are more obviously

captured by Order-k Rationality, such as falling above some �xed quantile of

the DM's utility in the set. In general, however, it is possible for a cardinal

model of `good enough' to have testable implications that cannot be captured

by an ordinal one.
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Appendix

Proof of Theorem 8.

Fix any full-support probability distribution p over X. For any S, let p(S) =∑
x∈S p(x). We prove the result by showing that there exists a utility function

u : X → R such that for any nonsingleton set S,

u(x) ≥
∑
x′∈S

p(x′)

p(S)
u(x′)

for all x ∈ S except the u-minimal element in S.

Fix an enumeration of X and the ranking where xi is preferred to xj when

i < j. For any xj, de�ne S(xj) to be the set of subsets S ⊆ X such that xj is

the second-worst element in S. For any S ⊂ X, let xS be the worst element

in S. Recursively de�ne u(xn) = 0, u(x1) = 1, and for j ∈ {2, . . . , n− 1},

u(xj) = max{ max
S∈S(xj)

∑
x∈S\{xS}

p(x)

p(S)
+
p(xS)

p(S)
u(xS),

1 + u(xj+1)

2
}.

This yields a strictly monotone sequence with u(x1) = 1 > u(x2) > · · · >
u(xn−1) > u(xn) = 0. To see this, �rst observe 0 = u(xn) < u(xn−1) =

max{maxS⊇{xn−1,xn}
p(S)−p(xn)

p(S)
, 1
2
} < 1 since p(xn) ∈ (0, 1). Suppose by induc-

tion that 0 = u(xn) < · · · < u(xj+1) < u(xj) < 1 for some j > 2. Due to the

assumption of full support on p and the induction hypothesis, we have both

1 >
1+u(xj)

2
> u(xj) and

∑
x∈S\{xS}

p(x)
p(S)

+ p(xS)
p(S)

u(xS) < 1 for any S ∈ S(xj−1).

Hence u(x1) = 1 > u(xj−1) > u(xj) as desired.

It remains to show that for any S ⊆ X and x ∈ S \ {xS},

u(x) ≥
∑
x′∈S

p(x′)

p(S)
u(x′),

since clearly u(xS) must be strictly smaller than this weighted average. We

show this inequality for the x̂ which is second-worst in S, as a higher-utility

element will then satisfy the inequality a fortiori. Thus S ∈ S(x̂). Note that
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the RHS increases if we replace u(x′) with the value 1 for all x′ 6= xS on the

righthand side. But this is precisely the inner maximand, evaluated at the set

S, in the de�nition of u(x̂). Hence the inequality follows by construction.

Theorem 9. Testing consistency with Sen (1993)'s theory of choosing the

second best according to a preference ordering is NP-hard.

Proof. Fix a mixed set R of binary restrictions de�ned on a set X, as in

Proposition 3 of de Clippel and Rozen (2018). For each restriction r, let xr

be the option whose contour set is being restricted, and let yr, zr be the two

options potentially included in the upper (or lower) contour set of xr if r is an

UCS (or LCS) restriction. We assume wlog that yr 6= zr. Consider the set of

options X ′ that contains all options in X, plus a new option ar for each LCS

constraint r, a new option br for each UCS restriction r, and the following

observed choices:
S {ar, xr} {ar, yr, zr}

cobs(S) ar ar

for each LCS restriction r, and

S {br, xr} {br, yr, zr}
cobs(S) xr br

for each UCS restriction r. We conclude the proof by showing that there exists

an acyclic relation satisfying the restrictions listed in R if, and only if, cobs is

consistent with picking the second best for some preference ordering.

If R is acyclically satis�able, then let P be a strict acyclic relation on X

satisfying the restrictions in R. We can assume without loss of generality that

P is complete, that is, an ordering. Extend this relation into a preference

ordering on X ′ by ranking ar above the P -smallest element of {yr, zr} and

below any other element of X that is P -superior to it, for each LCS restriction

r; and ranking br below the P -largest element of {yr, zr} and above any other

element of X that is P -inferior to it, for each UCS restriction r. It is easy

to check that cobs coincides with the second-best element according to this

preference, for each S ∈ D.
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Conversely, suppose that P ′ is a preference ordering on X ′ with the prop-

erty that cobs(S) is the second-best element of S under P ′, for each S ∈ D.
Consider now a LCS restriction r. Since ar is picked out of {ar, yr, zr}, it must
be that ar is ranked in between yr and zr, that is, yrP

′arP
′zr or zrP

′arP
′yr.

Given that ar is P
′-inferior to xr (for ar to be picked from {ar, xr}), it must

be that xrP
′yr or xrP

′zr. Finally, consider an UCS restriction r. Since br is

picked out of {br, yr, zr}, it must be that br is ranked in between yr and zr,

that is, yrP
′brP

′zr or zrP
′brP

′yr. Given that xr is P
′-inferior to br (for xr to

be picked from {br, xr}), it must be that yrP ′xr or zrP ′xr.
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