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Abstract

Bounded rationality theories are typically characterized over exhaustive data sets.

We develop a methodology to understand the empirical content of such theories with

limited data, adapting the classic, revealed-preference approach to new forms of re-

vealed information. We apply our approach to an array of theories, illustrating its

versatility. We identify theories and datasets testable in the same elegant way as

Rationality, and theories and datasets where testing is more challenging. We show

that previous attempts to test consistency of limited data with bounded rationality

theories are subject to a conceptual pitfall that may lead to false conclusions that the

data is consistent with the theory.
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1. Introduction

The recent literature proposes insightful and plausible choice procedures in re-

sponse to mounting evidence against rational choice. Great progress has been made

to understand the choice functions these theories generate. Though theoretically in-

sightful, such results do not apply to typical situations, in which only some choices

are observed. In empirical settings, the modeler cannot control the choice problems

individuals face. In experimental settings, generating a complete dataset can require

an overwhelming number of decisions (e.g., 1,013 choice problems with 10 alterna-

tives). A long literature studies Rationality under limited data (Samuelson, 1948;

Houthaker, 1950; Richter, 1966; Afriat, 1967; Sen, 1971; Varian, 1982). We explore

how these ideas can be brought into the discourse on bounded rationality.

A Decision Maker (DM)’s observed choices are consistent with a theory if they

can be extended to a complete choice function that arises under the theory. The first

works to study bounded rationality theories under limited data focus on explaining

only observed choices, without considering out-of-sample implications (Manzini and

Mariotti 2007, 2012; Tyson, 2013). This approach may seem natural, since we never

worry about out-of-sample problems when testing Rationality in its standard descrip-

tion: if there is a preference ordering for which observed choices are maximal, then

choices may be defined for out-of-sample problems by maximizing that same prefer-

ence. Such extensibility need not hold in general, leading to an overfitting problem:

choices could be attributed to a theory under which no extension of those choices can

arise. This paper thus begins by clarifying what the right definition of consistency is,

effectively moving the goalpost for consistency tests to the proper location.

We then explore how one might capture the empirical content of a wide range of

choice theories. For this, we build on the classic, revealed-preference approach for

testing Rationality. That insightful approach, culminating in the Strong Axiom of

Revealed Preference (SARP), can be decomposed as follows. First, infer key prefer-

ence comparisons under the presumption that the DM is rational. Next, observe that

transitivity of the DM’s preference requires these comparisons to be acyclic. Finally,

prove that acyclicity is not just necessary, but also sufficient for consistency, to ensure

that all key preference comparisons have been inferred from the data.

For theories of bounded rationality, we observe that choices may reveal more

elaborate information than the direct-preference comparisons (e.g., a is better than

b) revealed under Rationality. Moreover, that information may pertain to an acyclic
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relation that need not be complete, and not be a preference. Consider the choice

pattern cobs({a, b, d, e}) = a and cobs({a, b}) = b. Under Masatlioglu, Nakajima and

Ozbay (2012)’s theory of Limited Attention, this pattern reveals that the DM prefers a

to at least one of d or e, but doesn’t reveal which one(s). Under Rubinstein and Salant

(2006a,b)’s theory of Triggered Rationality, which models reference dependence, these

choices instead reveal the DM finds at least of one of d or e more salient than a.

This paper argues that the emergence of new forms of revealed information does

not preclude us from pursuing the classic testing approach, at least for theories which

have an acyclic relation in their description (or are observationally equivalent to one

that does). We show that many prominent bounded-rationality theories are character-

ized by the ability to find an acyclic relation that simultaneously satisfies a collection

of restrictions revealed by observed choices. This notion of acyclic satisfiability is the

natural extension of SARP to accommodate revealed restrictions that may be more

complex than those for Rationality.

Since Rationality only reveals direct comparisons like ‘a is better than b’, the

data precisely identifies which relation to check for cycles. By contrast, checking

acyclic satisfiability of more complex restrictions entails some guesswork: one must

find an acyclic relation satisfying them. Nonetheless, we show that the same simple

and elegant way we test Rationality generalizes to test theories that are characterized

by acyclic satisfiability of upper-contour set (UCS) restrictions (or lower-contour set

(LCS) restrictions). Intuitively, we test Rationality by constructing a preference

ordering over the elements that respects the revealed preference: there must be a

best element x1 ∈ X that is not revealed inferior to any alternative, a next-best

element x2 that is not revealed inferior to any alternative in X \ {x1}, etc. A UCS

restriction, which we formalize later, reveals that the upper-contour set of an element

must contain some other element(s), but may not tell us which. Still, this information

suffices to determine viable candidates for ‘best’ in a set. Hence the way we test

Rationality applies more broadly than it seems.

Perhaps surprisingly, a variety of theories beyond Rationality can be tested in this

manner. There are also several bounded-rationality theories which generate restric-

tions outside of the UCS (or LCS) class. Even then, applying the revealed-restrictions

methodology results in insights and a deeper understanding of the theory. One may

still wonder whether, by thinking some more, it is possible to find a ‘better’ char-

acterization with UCS restrictions, or some more clever procedure, to make testing
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the theory as simple as testing Rationality. It turns out that even small, systematic

departures from the UCS (or LCS) class make testing significantly more challenging.

We formalize the sense in which a theory can generate complex sets of restrictions,

and show that testing such a theory is NP-hard. Given the current consensus that

P 6=NP, this means that there is no easy way to systematically check consistency,

thereby addressing the questions above. But understanding the restrictions such the-

ories generate can still help pinpoint datasets for which testing is tractable, because

restrictions simplify to UCS (LCS).

We illustrate the methodology with four bounded-rationality theories: Choice

Overload (Lleras, Masatlioglu, Nakajima and Ozbay, 2017), Triggered Rationality,

Limited Attention and Shortlisting. We find that Choice Overload and Triggered

Rationality boil down to the acyclic satisfiability of UCS restrictions, making them

testable in a manner akin to Rationality. We show Limited Attention corresponds to

acyclic satisfiability of more elaborate restrictions, and in fact generates complex sets

of restrictions; however, these simplify to LCS if the dataset contains the intersection

of any two choice problems that violate WARP. Similarly, we establish that Short-

listing generates complex sets of restrictions, but these simplify to UCS if the dataset

contains all pairwise choices, and any triplets from which pairwise choices are cyclic.

The versatility of our approach does not mean there is no limitation. For each

theory, seeing the empirical content through the lens of acyclic satisfiability takes a

bit of thought.1 While many theories (explicitly or implicitly) involve a relation to

examine, a theory may have a sufficiently different structure that trying to understand

it through acyclic satisfiability is unfruitful. Still, the array of applications illustrates

the scope of the approach we develop here. Some further applications appear in

the earlier working paper or subsequent work, covering among other things choice

correspondences (de Clippel and Rozen, 2019); various forms of satisficing (Barberà,

de Clippel, Neme and Rozen, 2020); misperception in consumer theory (de Clippel

and Rozen, 2018a); Manzini and Mariotti (2012)’s Categorization and Cherepanov,

Feddersen and Sandroni (2013)’s Rationalization with limited data (de Clippel and

Rozen, 2018b); and classic assignment methods in interactive decision-making with

rational agents (de Clippel and Rozen, 2018c).

1This feature is not unique to our work or choice theory. For example, neither recursive techniques
in repeated games (Abreu, Pearce and Stacchetti, 1990) nor the revelation principle in mechanism
design (Myerson, 1979) yield immediate answers in applications; they require work to bear fruit.
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2. Testing the Consistency of Observed Choices with Theories

Consider a finite set X of alternatives. A choice problem is a nonempty subset

of X and represents those alternatives that are feasible. The set of all conceivable

choice problems is denoted P(X). A choice function c : P(X) → X associates an

element c(S) ∈ S to each choice problem S.

A theory of choice describes the DM’s choice procedure, and defines the set of

choice functions that could possibly arise. For instance, Rationality posits that the

DM applies a single preference ordering to select the best element from any choice

problem: for some ordering P , c(S) = arg maxP S for all S ∈ P(X). Manzini and

Mariotti (2007)’s theory of Shortlisting posits that the DM makes a shortlist of un-

dominated options using an asymmetric relation P1, and chooses the undominated

element in the shortlist according to an asymmetric preference relation P2:

(1) {c(S)} = max(max(S, P1), P2), for all S ∈ P(X).2

As another example, Masatlioglu, Nakajima and Ozbay (2012)’s theory of Limited

Attention posits that the DM has some preference ordering P , and for each choice

problem the DM maximizes P over his consideration set Γ(S) ⊆ S, with the restriction

that consideration sets don’t change when removing ignored alternatives:

(2a) c(S) = arg max
P

Γ(S), for all S ∈ P(X), and

(2b) Γ(S) ⊆ T ⊆ S ⇒ Γ(T ) = Γ(S), for all S, T ∈ P(X).

To be clear, we use relation to mean a binary relation (possibly incomplete or cyclic);

we use ordering to mean a complete, asymmetric (i.e., strict) and transitive relation;

and for any relation P and S ⊆ X, denote arg maxP S := {x ∈ S | xPy, ∀y ∈ S\{x}}.
Importantly, only the DM’s choices, not her thought process or choice method,

can be observed. In the presence of limited data, one observes the DM’s choices only

for problems in a dataset D ⊆ P(X). An observed choice function cobs : D → X

associates to each choice problem S ∈ D the alternative in S that the DM selected.

We aim to understand when observed choices are consistent with (that is, do not

refute) a given theory. This means that the theory must yield at least one choice

2Following Manzini and Mariotti (2007)’s notation, max(S,R) = {x ∈ S | @y ∈ S s.t. yRx}.
Their notation {c(S)} requires the undominated set to be a singleton.
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function that coincides with cobs on D, guaranteeing the ability to make coherent

predictions for out-of-sample choice problems.

Definition 1 (Consistency) An observed choice function cobs : D → X is consis-

tent with a theory if there is a choice function c arising under the theory such that

cobs(S) = c(S) for every S ∈ D.

It is possible for two theories to describe quite different choice processes, and yet

generate the same set of choice functions. While formally different, Definition 1 makes

clear that such theories cannot be distinguished from each other using standard choice

data alone. A theory’s testable implications thus come only from the set of choice

functions that it generates, not from the precise story or mathematical language the

theory uses to define those choice functions.

We briefly expand on this point before moving to our main results in the next sec-

tions, as Definition 1 highlights an issue in the recent literature. To study Shortlisting

with limited data, Manzini and Mariotti (Corollary 1, 2007) examine when there ex-

ist asymmetric relations P1, P2 such that (1) holds for S ∈ D. Manzini and Mariotti

(Definition 4, 2012) take a similar approach for Categorize-Then-Choose. To test

Limited Attention with limited data, Tyson (2013) seeks conditions guaranteeing the

existence of an ordering P and a consideration set mapping defined on D such that

(2a) and (2b) hold for S, T ∈ D. In other words, instead of using Definition 1, they

check the conditions describing how choices emerge over observed choice problems.

The approach taken by this literature may seem natural at first, as it mirrors

how we typically apply the classic definition of Rationality: we simply look for a

preference ordering for which the observed choices are maximal, because it is trivial to

extend them to a complete choice function under Rationality (just maximize that same

preference). Such extensibility, however, does not hold for Shortlisting, Categorize-

then-Choose, or Limited Attention. This means observed choices may be incorrectly

attributed to a theory under which no extension of those choices can arise.

Before illustrating this overfitting problem for Limited Attention, it is helpful to

illustrate the basic idea with a simpler example. Suppose X = {a, b, c} and we observe

cobs({a, b}) = a, cobs({b, c}) = b and cobs({a, c}) = c. Imagine our theory says that

the DM makes a choice in each set which is undominated according to an asymmetric

binary relation. This theory generates the same choice functions as Rationality, be-

cause the DM’s need to make a choice from {a, b, c} forces the binary relation to be
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an ordering; Sen (1971) makes a related point for preference maximization with re-

spect to general binary relations, observing the relation is necessarily a weak ordering

when all finite subsets are in the feasible domain. It would be mistaken to deem cobs

consistent with this theory just because observed choices are undominated according

to the relation aPbPcPc: there is no possible extension of cobs to the out-of-sample

problem {a, b, c} that remains consistent with the theory.3

Going back to Limited Attention, suppose we observe the following choices:

S ae ef abd ade bde bef

cobs(S) e f d a b e

The prior literature would deem cobs consistent with Limited Attention, since (2a)

and (2b) hold for S, T ∈ D using the ordering defined by aPdPePbPf , and with

Γ(S) given by the weak lower-contour set of cobs(S) for S ∈ D. To the contrary, we

claim there is no choice function under Limited Attention that extends cobs. Suppose

otherwise. Since removing d from {a, d, e} changes the choice, (2b) implies d is con-

sidered in {a, d, e}. As a is chosen from {a, d, e}, and d is considered, we learn aPd.

Similarly, b ∈ Γ({b, e, f}) and ePb. Now consider the out-of-sample problem {b, d}.
The ranking aPd implies a 6∈ Γ({a, b, d}), since d is chosen from that set. Thus (2b)

requires Γ({b, d}) = Γ({a, b, d}). Similarly, ePb implies e 6∈ Γ({b, d, e}), thus (2b)

also requires Γ({b, d}) = Γ({b, d, e}). This implies Γ({a, b, d}) = Γ({b, d, e}), which is

impossible because the choices from {a, b, d} and {b, d, e} differ.

This caveat does not apply to all bounded-rationality theories. In some cases,

though, minor rephrasings of a theory (that do not affect the set of choice functions

generated) can switch extensibility on/off. For instance, Triggered Rationality, stud-

ied in Section 5.2, does not have an extensibility issue as written, but it would if the

salience ordering were replaced with a salience function satisfying IIA. The variant

of Rationality above provides another example. Choice theorists could study how

to phrase a theory in an extensible way, but we see no reason to be concerned with

phrasing here. As Definition 1 makes clear, a correct test of consistency depends

only on the set of choice functions arising under a theory. Thus our work in the next

3For another example, take a theory which says choices satisfy the IIA axiom: if c(T ) = x and
x ∈ S ⊂ T then c(S) = x. This also generates the same choice functions as Rationality. No extension
of the above cobs to {a, b, c} satisfies IIA, and it would be mistaken to deem cobs consistent with the
theory merely because IIA is satisfied (vacuously) on D = {{a, b}, {b, c}, {a, c}}.
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sections circumvents the matter of extensibility entirely.

3. Building Insights

With the proper definition of consistency, we can now ask how theories of bounded

rationality can be tested. Though we don’t have a universal answer to offer, we do

show that the classic revealed-preference approach to testing rationality generalizes

substantially. For this, we restrict attention to theories with at least one acyclic

relation in their description. Of course, since testing is based only on the set of

choice functions compatible with a theory, the methodology also applies to theories

that don’t include an acyclic relation in their description, but are observationally

equivalent to one that does.

The common methodology goes as follows. Assuming consistency, start by identi-

fying choice patterns revealing some restrictions on the acyclic relation. By construc-

tion, finding an acyclic relation satisfying these restrictions – what we will call acyclic

satisfiability in the next section – is a necessary condition for consistency. To make

sure the data cannot reveal any more critical information about this relation, one must

prove sufficiency: the existence of an acyclic relation satisfying these revealed restric-

tions must guarantee consistency. Failing to do so (and finding a counter-example)

means that the theory has more restrictions to reveal.

To illustrate, consider a DM who decides what to order from restaurant menus.

A menu item x ∈ X comprises both a description of the food and its price, which

is denoted p(x). The DM may be indecisive initially, as captured by an incomplete

preference P1 over menu items, but then makes a choice by selecting the cheapest item

among those that are P1-undominated. For expositional convenience, we assume the

menu items in X have distinct prices.4 The theory Frugal when Undecided posits

that the DM picks:

{c(S)} = arg min
x∈max(S,P1)

p(x), for all S ∈ P(X).

This theory is an instance of Manzini and Mariotti (2007)’s Shortlisting, with the

second criterion P2 known by the modeler (frugality in this case); we’ll discuss the

general case of unknown and possibly cyclic P2 in Section 5.4. While Shortlisting

4This ensures single-valued choice functions, as assumed throughout the paper. Correspondences
can also be accommodated, see the working-paper version, de Clippel and Rozen (2019).
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presumes P1 is asymmetric, one can equivalently require it to be acyclic: if there were

a cycle, then the DM would have no shortlist for the menu of elements in that cycle.

Consider what observed choices reveal about P1. Suppose that in some observed

menu S, there is a menu item x which is cheaper than cobs(S). For choices to still

be consistent with the theory, there must be an item y ∈ S which rules out x from

consideration, that is, with yP1x. However, the data may disqualify some y’s from

playing this role. This would be the case, for instance, if x is ever picked in the

presence of y. Thus, we may more accurately conclude that there is some y in S\S(x)

that P1-dominates x, where S(x) is the union of all observed choice problems from

which x is chosen. Being able to find an acyclic relation satisfying these restrictions

is necessary for consistency. The next proposition shows it is also sufficient.

Proposition 1 Observed choices cobs are consistent with Frugal when Undecided

if and only if there is an acyclic relation P1 satisfying the restrictions:

(3) For all x ∈ S ∈ D with p(x) < p(cobs(S)), there is y ∈ S \ S(x) such that yP1x

Proof. Necessity follows from the above discussion. As for sufficiency, let P1 be an

acyclic relation satisfying (3). As P1 may contain too many relationships, we construct

a selection P ∗1 in the following way: yP ∗1 x if yP1x and x belongs to some observed

problem S for which p(x) < p(cobs(S)) and y ∈ S \ S(x). Since P1 is acyclic, so is P ∗1 .

Because P ∗1 is acyclic, the shortlist {x ∈ S | @y ∈ S : yP ∗1 x} is nonempty for all

choice problems S. We now check that for S ∈ D, cobs(S) is the cheapest item in

the shortlist. First, notice cobs(S) belongs to the shortlist: there is no y ∈ S which is

P ∗1 -superior to cobs(S), because every y ∈ S \{cobs(S)} belongs to S(cobs(S)). Finally,

since P1 satisfies (3), for any x ∈ S that is cheaper than cobs(S) there is y ∈ S \ S(x)

such that yP1x. Thus yP ∗1 x holds, and x does not belong to the shortlist. Q.E.D.

Determining whether or not there exists an acyclic relation satisfying restrictions

like (3) may at first seem hard to check. As opposed to the classic SARP condi-

tion of Rationality, the restrictions in (3) don’t immediately tell us which pairwise

comparisons to examine for cycles. Consider the following example.

Example 1 Suppose X = {a, b, d, e, f, g} and we observe the choices:

S ag bf de abde abdf abdg

cobs(S) a b d e f g
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with items coming earlier in the alphabet cheaper than items coming later. Notice that

S(a) = {a, g}, S(b) = {b, f}, and S(d) = {d, e}. Since a, b and d are available when

the more expensive item e is picked from {a, b, d, e}, the restrictions in (3) reveal:

bP1a or dP1a or eP1a, from p(a) < p(e)

aP1b or dP1b or eP1b, from p(b) < p(e)(4)

aP1d or bP1d, from p(d) < p(e)

Similarly, since f is chosen from {a, b, d, f}, we learn that:

bP1a or dP1a or fP1a, from p(a) < p(f)

aP1b or dP1b, from p(b) < p(f)(5)

aP1d or bP1d or fP1d, from p(d) < p(f)

Finally, since g is chosen from {a, b, d, g}, we learn that:

bP1a or dP1a, from p(a) < p(g)

aP1b or dP1b or gP1b, from p(b) < p(g)(6)

aP1d or bP1d or gP1d, from p(d) < p(g)

By Proposition 1, the data is consistent with Frugal when Undecided if, and only if,

there exists an acyclic P1 satisfying the above nine conditions.

At first, it may not be clear how to check whether there is an acyclic relation

satisfying the restrictions in Example 1. The next section shows there is a simple,

systematic method to do so (and that the above data is inconsistent with the theory).

Perhaps surprisingly, this method is just the standard procedure for checking SARP,

which generalizes to an extended family of restrictions that includes those in (3).

4. Acyclic Satisfiability, and How to Check It

Under Rationality, consistency reveals multiple direct preference comparisons:

xPy whenever x is picked in the presence of y. For other theories, one may en-

counter restrictions that are conjunctions and disjunctions of direct comparisons. As

is well known, any logical formula can be written in disjunctive normal form (i.e., as

a disjunction of conjunctions). We restrict attention to this formulation.
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Definition 2 For each i = 1, . . . , n, let Ai ⊆ X ×X be a set of ordered pairs of

options. The strict relation P satisfies the restriction rA1∨···∨An if there exists i such

that xPy for all (x, y) ∈ Ai.

The restriction that P satisfies a direct comparison xPy is thus written rA1 , where

A1 = {(x, y)}. For a more elaborate restriction, recall Example 1. The top restriction

in (4) is written there as bP1a or dP1a or eP1a. This corresponds to rA1∨A2∨A3 , where

A1 = {(b, a)}, A2 = {(d, a)}, and A3 = {(e, a)}.
We now introduce the notion of acyclic satisfiability, a natural extension of SARP,

to capture the empirical content of many theories of choice.

Definition 3 A collection of restrictions is acyclically satisfiable if there exists a

strict acyclic relation satisfying all the restrictions in the collection.

In the absence of disjunctions (as in SARP), acyclic satisfiability simply boils down

to there being no cycles in the (usually incomplete) relation that is pinned down by

the restrictions. But in the presence of disjunctions, one does not know precisely

which relation to test for acyclicity. In this section, we identify classes of restrictions

for which acyclic satisfiability can be tested in the same way as one checks SARP, as

well as cases for which testing is much more challenging.

Definition 4 For z ∈ X, rA1∨···∨An restricts z’s upper-contour set if y = z for all

(x, y) ∈
⋃
iAi. In that case, we call rA1∨···∨An an upper-contour set (UCS) restriction.

Similarly, rA1∨···∨An restricts z’s lower-contour set if x = z for all (x, y) ∈
⋃
iAi, and

in that case, we call rA1∨···∨An a lower-contour set (LCS) restriction.

Hence, an UCS restriction requires the upper-contour set of an element z to contain

{x ∈ X|(x, y) ∈ Ai} for some i = 1, . . . , n. The restrictions in Example 1, and more

generally (3), are a collection of UCS restrictions. For instance, the top restriction in

(4) requires a’s upper-contour set to contain at least one of b, d or e; while the second

restriction in (4) requires b’s upper-contour set to contain at least one of a, d or e.

Consider how to test SARP. In each step k ≥ 1, one simply seeks and removes an

option xk that is not ranked below any remaining alternatives, according to Samuel-

son’s revealed preference. Such an xk is a candidate-maximal element among those

remaining. It is possible to enumerate all of X in this manner if and only if SARP

holds (that is, Samuelson’s revealed preference is acyclic). Intuitively, this process

constructs a possible preference ordering for the DM from the top down, by itera-

tively identifying a candidate for the best remaining option. Our first observation,
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formalized in Section 4.1, is that the acyclic satisfiability of UCS restrictions (or LCS

restrictions) can be tested in the same manner as SARP. While UCS restrictions may

not precisely identify which alternatives are ranked above an option, they do reveal

that something is ranked above it, which is all we need to know to preclude it from

being top ranked. By contrast, Section 4.2 shows that testing consistency for theories

which systematically generate wider classes of restrictions is much harder.5

4.1 Testing Comparable to SARP with UCS (LCS) Restrictions

The ability to apply the procedure for checking SARP to UCS restrictions rests on

two observations, presented as lemmas. The first lemma echoes the intuition above.

Lemma 1 Let X be a set of options and R be a collection of UCS restrictions

defined on X. If R is acyclically satisfiable, then there exists an option x ∈ X such

that no restriction in R restricts the upper-contour set of x.

Indeed, any acyclic relation satisfying R can be completed into an ordering satisfying

R, and x may be taken to be the maximal element. This provides a first, simple

necessary condition for acyclic satisfiability: traverse elements of X to find one that

does not appear at the bottom of a restriction.

Take an element x1 with this property (if one exists), and make it the top element

of the ordering. If a restriction rA1∨···∨An has Ai = {(x1, x)}, for some x ∈ X and some

i = 1, . . . , n, then that restriction is satisfied, and can be safely eliminated from the

collection R. Otherwise, simplify the restriction to rA′
1∨···∨A′

n
, where A′i = {(y, x) ∈

Ai|y 6= x1}. Let R1 be this reduced set of UCS restrictions over X \ {x1}.

Lemma 2 Let x1 satisfy the property of Lemma 1. Then R (defined over X) is

acyclically satisfiable if and only if R1 (defined over X\{x1}) is acyclically satisfiable.

Necessity obtains by considering the restriction of the acyclic relation satisfying R
to the set X \ {x1}. Sufficiency obtains by augmenting the acyclic relation satisfying

R1 by placing x1 at the top of any pairwise comparison.

5Testing acyclic satisfiability can be seen as an extension of the topological sort problem in
computer science. Some extensions have been studied in problems of job-scheduling with waiting
conditions; see Möhring et al. (2004) who provide a fast scheduling algorithm given conditions “job
i comes before at least one job in a set J,” which is a special type of lower-contour set restriction.
They show scheduling is NP-hard for the generalization “some job in a set I comes before some job
in a set J”; we show the problem is already NP-hard with simpler restrictions.
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Lemmas 1-2 hold independently of the set X and the set of UCS restrictions R,

so the reasoning may be iterated. The Lemmas thus provide a conceptual roadmap

for defining the enumeration procedure for UCS restrictions. The first step follows

as in Lemma 1, while Lemma 2 shows how to iterate the procedure. In each step

k, if there has been no failure to find a candidate-best element thus far, then we

treat x1, . . . , xk−1 as if they are ranked above all remaining elements. Thus, we may

restrict attention to a simplified set of restrictions Rk−1, where x1, . . . , xk−1 have

been eliminated, that is, each restriction rA1∨···∨An ∈ R simplifies to rA′
1∨···∨A′

n
, where

A′i = {(y, x) ∈ Ai|y 6∈ {x1, . . . , xk−1}}, and can be eliminated entirely if A′i = ∅ for

some i. Writing R0 = R, the enumeration procedure can be stated as follows.

Step k, for k ≥ 1: Look for an element xk ∈ X \ {x1, . . . , xk−1} that does not

appear at the bottom of any UCS restriction in Rk−1. Continue to the next

step if and only if such an element is found.

Definition 5 The enumeration procedure fails if in some step we cannot find a

candidate xk for the best element; but if one can enumerate all of X in this way, then

the enumeration procedure succeeds.

Importantly, Lemma 2 ensures path independence: even if there are multiple

candidates for the best element in a step, a different selection among these would not

convert failure of the procedure to success, or vice versa; that is, success and failure

are definitive outcomes. The above reasoning shows that success of the enumeration

procedure is a necessary condition for R to be acyclically satisfiable. Vice versa, the

ranking of options arising from a successful enumeration (that is, with xk being the

k-th best) will satisfy R by construction. We have thus shown the following.

Proposition 2 Suppose that consistency of cobs with a theory has been reduced

to checking the acyclic satisfiability of a collection R of UCS restrictions. Then

consistency holds if, and only if, the enumeration procedure using R succeeds.

We have thus found a systematic way to process UCS restrictions when checking

whether or not they are acyclically satisfiable. In particular, testing turns out to be

tractable (in a number of steps that is at most polynomial in the size of the data)

despite the possibility of disjunctions in the restrictions; this assumes, of course,

that restrictions are tractably derived from observed choices, as is the case in all our

applications of the enumeration procedure throughout the paper.
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Example 1 (continued) The nine restrictions (4-6) are UCS restrictions. To start,

one must find options whose upper-contour set is left unrestricted. All three options

e, f and g qualify; we can enumerate them first in any order. This allows us to cross

out the six longer restrictions, which have two disjunctions each, in (4), (5) and (6).

Three restrictions involving only a, b and d remain, and the enumeration procedure

fails: for each of these remaining options, the upper-contour set is restricted. Thus

the theory Frugal when Undecided is refuted by the example data.

Clearly, the procedure can also be used to check consistency when it is reduced

to checking the acyclic satisfiability of a collection of LCS restrictions. The only

difference is that one seeks candidate minimal options in each step, i.e., options that

do not appear at the top of any remaining LCS restrictions.

4.2 Hard to Test Otherwise

As we are expanding the realm of the classic, revealed-preference testing method-

ology beyond Rationality, it is natural to ask whether we have reached the frontier

of ‘tractable testing.’ The enumeration procedure shows how to easily work through

UCS (LCS) restrictions to determine acyclic satisfiability. Does this mean that te-

dious guesswork is unavoidable for theories that generate more complex restrictions?

Is there some other approach which makes testing consistency easy in those cases?

Alternatively, could we have potentially come up with a ‘better’ characterization of

the theory in terms of UCS (LCS) restrictions? Is it possible that some theories of

bounded rationality are hard to test, whatever the methodology followed?

These are difficult questions, and we borrow techniques from computer science

to provide some answers. The notions of P and NP are of interest to computer

scientists for assessing running times of algorithms: P is the set of problems solvable

in polynomial time; NP is the set of problems that may or may not be solvable in

polynomial time, but for which any conjectured solution can be verified in polynomial

time; and a problem is NP-hard if solving it is at least as complex as solving the most

difficult problems in NP. We repurpose these ideas to instead get at the questions

above: showing that a particular theory is NP-hard to test establishes there is neither

a simple test nor a ‘better’ characterization that involves UCS (LCS) restrictions, at

least given the widely-held belief that P 6=NP. In particular, if someone could find a

simple way to check any observed choices for consistency with an NP-hard theory,

then this would have the wide-reaching implication that P=NP.

13



Consider a collection of restrictions which is only a small departure from direct

comparisons, but does not fall into the UCS (or LCS) class. As formalized below,

imagine a collection where each restriction is a disjunction of two unrelated, direct

comparisons (“z1 must be ranked above z2, or z3 must be ranked above z4”).

Definition 6 A basic disjunctive restriction on a set Z is a restriction of the form

r{(z1,z2)}∨{(z3,z4)}, for some distinct z1, z2, z3, z4 ∈ Z.

The departure from Section 4.1 may seem small (we’d have an LCS restriction if

z1 = z3 and an UCS restrictions if z2 = z4), but has a significant impact. To state the

next result, we must first formalize what it means for a theory to generate ‘complex

sets’ of restrictions such as these.

Definition 7 A choice theory generates complex sets of restrictions if for any

finite set Z and any collection R of basic disjunctive restrictions on Z, one can

construct (in polynomial time) a set of options X ⊇ Z and observed choices cobs from

some subsets of X, with the feature that cobs is consistent with the theory if, and only

if, R is acyclically satisfiable.

For such theories, it turns out that there is no simple method to establish the

consistency of any given dataset with the theory.

Proposition 3 Testing a theory that generates complex sets of restrictions is

NP-hard.

It is important for Proposition 3 that basic disjunctions occur systematically under

the theory, as formalized in Definition 7. Indeed, suppose we have a theory for which

consistency amounts to acyclic satisfiability of UCS restrictions plus a single basic

disjunction r{(z1,z2)}∨{(z3,z4)}. Testing remains easy: check by enumeration if the UCS

restrictions are acyclically satisfiable while assuming z1 is superior to z2; and if that

fails, then do the same while assuming z3 is superior to z4. The proof of Proposition

3, which appears in the Appendix, proceeds by showing that every instance of SAT3,

a classic NP-hard problem, has a polynomial-time reduction to an equivalent problem

of checking acyclic satisfiability of some basic disjunctive restrictions, which in turn

has a polynomial-time reduction to testing consistency of some observed choices with

the theory. Formally, the SAT3 problem takes a set of ‘clauses’ that are disjunctions

of three ‘literals’ (variables or their negations), and asks whether there is a truth

assignment for the variables that makes all clauses true. The idea is that if one could
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find a tractable way to test consistency with the theory, then one could leverage that

method to tractably solve SAT3, overturning the general consensus that P6=NP.

Proposition 3 is broader than may seem at first glance. A restriction ‘z1 is superior

to z2, or z3 is superior to z4’ could in general be a UCS restriction (z2 = z4), an LCS

restriction (z1 = z3), a direct comparison (z1 = z3 and z2 = z4), a basic disjunction

(distinct z’s), or a basic UCS-or-LCS restriction ‘z1 is superior to z2, or z2 is superior

to z4’, which sets z2 = z3 above. We have not yet discussed collections of basic UCS-or-

LCS restrictions; nor have we discussed mixed collections having both UCS and LCS

restrictions (even simple binary ones like above). What if a theory systematically

generates one of these other types of collections of restrictions? It turns out that

such a theory will also generate complex sets of restrictions, so focusing on basic

disjunctions in Definition 7 is without loss of generality; see the Appendix.

Observation 1 Suppose for each finite set Z and each collection of basic UCS-

or-LCS restrictions (resp., mixed binary LCS and UCS restrictions) on Z, one can

construct in polynomial time a set of options X ⊇ Z and observed choices cobs from

some subsets of X, with the feature that cobs is consistent with the theory if, and only

if, R is acyclically satisfiable. Then the theory generates complex sets of restrictions.

Thus we have shown that even small, systematic departures from all-UCS, or all-

LCS, restrictions make theories much harder to test. Finding some choice patterns

that reveals such restrictions is suggestive that testing is likely NP-hard. However,

reaching that conclusion requires a formal argument to be sure the empirical content

cannot generally be simplified further: the modeler must show the theory generates

complex sets of restrictions. We demonstrate this in the next section, where we apply

our methodology, and illustrate Propositions 2 and 3, for some prominent theories.

5. Applications

We now apply the methodology we developed to study some prominent theories

of bounded rationality: Choice Overload, Triggered Rationality (a form of reference-

dependent preferences), Limited Attention, and Shortlisting.

5.1 Choice Overload

Suppose the DM may become overwhelmed and unable to consider all alternatives

in some choice problems, as in Lleras, Masatlioglu, Nakajima and Ozbay (2017)’s
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theory of Choice Overload. The DM has a preference ordering P and, for each choice

problem S, maximizes P over his consideration set Γ(S) ⊆ S. Crucially, any option

considered in a problem remains considered in smaller problems to which it belongs:6

(7) S ⊂ T ⇒ Γ(T ) ∩ S ⊆ Γ(S), for all S, T ∈ P(X).

Notice from (7) that preference comparisons can be inferred from IIA violations. By

(7), the DM pays attention to cobs(T ) in every set S ⊆ T such that cobs(T ) ∈ S.

Hence an IIA violation, cobs(S) 6= cobs(T ), reveals that the DM prefers cobs(S) over

cobs(T ). These are direct preference comparisons, which qualify as both LCS and UCS

restrictions, and are thus testable by enumeration.

The next result guarantees that there are no other, possibly more complex restric-

tions to consider. A nice implication is that the revealed preference identified by the

above authors for full datasets happens to also capture the testable implications in

limited datasets.

Proposition 4 Observed choices cobs are consistent with Choice Overload if and

only if there is an acyclic relation P satisfying the UCS restrictions:

(8) cobs(S)Pcobs(T ), whenever cobs(S) 6= cobs(T ) ∈ S ⊂ T.

Proof. Suppose there is an acyclic relation satisfying (8), and let P be a transitive

completion. Clearly P still satisfies (8). Define the consideration set mapping Γ by

Γ(S) = {arg min
P

S} ∪ {cobs(T ) | S ⊆ T, T ∈ D, cobs(T ) ∈ S},

for all S ∈ P(X). By construction, Γ satisfies (7). Let c be the choice function arising

from maximizing P over Γ(S) in each choice problem S.

To complete the proof, we show that c extends cobs. Suppose, by contradiction,

that c(S) 6= cobs(S) for some S ∈ D. Then Γ(S) contains at least two elements, and

c(S) must be the observed choice from some T ∈ D with S ⊂ T . Since P satisfies

(8), this implies cobs(S)Pc(S), contradicting P -maximality of c(S) in Γ(S). Q.E.D.

6Property (7) also characterizes consideration sets in Manzini and Mariotti (2012) and
Cherepanov, Feddersen and Sandroni (2013), who allow cyclic preferences. de Clippel and Rozen
(2018c) show these theories are observationally equivalent to one with an acyclic relation in its
description, and are testable by enumeration if the data includes all pairs, but NP-hard in general.
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5.2 Reference Dependence

Suppose that the DM is subject to reference dependence. Rubinstein and Salant

(2006a, 2006b)’s theory of Triggered Rationality posits the DM has a collection

{Px}x∈X of reference-dependent preference orderings and a salience ordering �σ over

the alternatives in X. The most salient alternative in a set determines which prefer-

ence Px the DM maximizes.

Before attempting to infer the DM’s preferences from his observed choices, we must

figure out which preference is being maximized in each choice problem. This requires

understanding which alternative is his reference point. Suppose we conjecture x is

the most salient alternative in the choice problem S. Then x would also be the most

salient alternative in all subsets of S in which it is contained, and any choices observed

from those choice problems would all arise from the same preference ordering Px. Let

PS,x denote the Samuelson revealed-preference from those observations: cobs(R)PS,xa

if cobs(R) 6= a and a, x ∈ R ⊆ S. If PS,x has any cycles, then x could not possibly be

the anchor for the preference used in S: that is, some other alternative in S must be

more salient than x. Thus the data can reveal restrictions on relations that are not

preferences (in this case, the salience ordering �σ). These restrictions, which take the

UCS form, are not only necessary but also sufficient for consistency with the theory.

Proposition 5 Observed choices cobs are consistent with Triggered Rationality if

and only if there is an acyclic relation � satisfying the UCS restrictions:

(9) ∃y ∈ S with y � x, whenever PS,x is cyclic.

Proof. Suppose such an acyclic � exists, and let �σ be a transitive completion; hence

�σ still satisfies (9). Let xi denote the i-th maximal element under �σ, and let

Xi = {xi, xi+1, . . . , xn} be those elements weakly less salient than xi. For each i, define

the preference ordering Pxi to be a transitive completion of the Samuelson-revealed

preference PXi,xi . A transitive completion exists, because xi being �σ-maximal in Xi

implies PXi,xi is acyclic. To complete the proof, we show the choice function generated

by �σ and the reference-dependent preferences (Px)x∈X extends cobs. To see this, take

any S ∈ D and let xk be the �σ-most salient (smallest-indexed) element in S. Then

S ⊆ Xk. By construction, cobs(S)Pxky for all y ∈ S \ {cobs(S)}. Q.E.D.

Testing a theory using data requires not just checking acyclic satisfiability of a
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given set of restrictions, but also constructing those restrictions from the data. The

number of possible restrictions in (9) may at first seem worrying, since there could be

restrictions for each S ∈ P(X). But, conveniently, applying the enumeration proce-

dure does not require going through all S’s, and testing Triggered Rationality remains

tractable. Indeed, only restrictions affecting the viability of candidate-maximal ele-

ments for the |X|−1 non-singleton sets encountered along the way matters. Remem-

ber that the enumeration procedure starts by looking for x1 ∈ X whose upper-contour

set is unrestricted. For Triggered Rationality, this simply means finding x1 such that

PX,x1 is acyclic (if PX,x1 is acyclic, then so is PS,x1 for any subset S containing x1, and

hence focusing on restrictions arising from X is sufficient). Failing to find such an x1

means observed choices are inconsistent with the theory. Otherwise, the enumeration

procedure looks for x2 ∈ X \ {x1} whose upper-contour set is unrestricted within

X \ {x1}. Next, one looks for x2 such that PX\{x1},x2 is acyclic; and so on. Thus one

can simply construct restrictions ‘online’ for sets encountered as the procedure runs.

5.3 Limited Attention

Recall Masatlioglu, Nakajima and Ozbay (2012)’s theory of Limited Attention

from Section 2. In this theory, an observed choice is only revealed preferred to alter-

natives in the DM’s consideration set, which itself must be inferred from the choice

data. What can we then learn about preferences from observed choices?

Masatlioglu et al. (2012) provides an answer for full data sets (D = P(X)).

They show that consistency with Limited Attention is equivalent to acyclicity of the

following revealed preference: the DM prefers x over z ∈ S \{x} if she picks x from S

but not from S \{z}. Indeed, the DM must pay attention to z in S, else property (2b)

requires her attention set (and thus her choice) to be the same in S and S\{z}. Their

result does not extend to limited data, as restriction can arise from choice problems

that are not related by dropping one alternative. These are redundant with full data,

but may be critical with limited data. Still, their underlying argument readily extends

to any IIA violation: if the choice from T is available but not chosen from S ⊂ T ,

then the DM must consider at least one alternative in T \ S when choosing from T .

Otherwise, (2b) would require Γ(T ) = Γ(S), contradicting that the observed choices

differ. The IIA violation thus reveals that cobs(T )Pz for some z ∈ T \ S.

More subtly, any violation of the Weak Axiom of Revealed Preference (WARP)

reveals information about the DM’s preference:
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For all S, T ∈ D with cobs(S) 6= cobs(T ) and cobs(S), cobs(T ) ∈ S ∩ T :

cobs(S)Pz for some z ∈ S \ T or cobs(T )Pz′ for some z′ ∈ T \ S.
(10)

To see this, suppose the DM does not consider any option from S \ T when choosing

from S, and does not consider any option from T \ S when choosing from T . Then

(2b) would require Γ(S ∩ T ) to equal both Γ(S) and Γ(T ), so that Γ(S) = Γ(T ).

This would be impossible to reconcile with observed choices from S and T being

different. Consequently, it must be that the DM considers some option in S \ T
when choosing from S, or considers some option from T \ S when choosing from

T . Whatever that option is, he does not choose it. Hence cobs(S)Pz for some z ∈
S \ T or cobs(T )Pz′ for some z′ ∈ T \ S. The restrictions in (10) encompass those

revealed by IIA violations, which are a special case with S and T related by inclusion.

In summary, if choices are consistent with Limited Attention, then there must

be an acyclic relation (e.g., the DM’s preference ordering) which satisfies all the

restrictions that observed choices reveal in (10). The next result shows that the

existence of an acyclic relation satisfying (10) guarantees consistency with the theory.

Proposition 6 Observed choices cobs : D → X are consistent with Limited Atten-

tion if and only if there exists an acyclic relation P satisfying the restrictions (10).

Proof. Only sufficiency remains. Suppose an acyclic relation satisfying (10) exists,

and let P be a transitive completion (so P still satisfies (10)). Define Γ : P(X) →
P(X) as follows. For S ∈ D, Γ(S) = {cobs(S)} ∪ {x ∈ S|cobs(S)Px}; and for S 6∈ D,

Γ(S) =

{
Γ(T ) if S ⊆ T, T ∈ D, and Γ(T ) ⊆ S

S otherwise.

Clearly Γ(S) 6= ∅ for any S ∈ P(X) and the P -maximal element in Γ(S) is cobs(S)

for any S ∈ D. It remains to show Γ is well-defined and satisfies (2b).

Suppose Γ is not well-defined. Then for some S 6∈ D, there are T, T ′ ∈ D such that

S ⊆ T ∩T ′ with Γ(T )∪Γ(T ′) ⊆ S, but Γ(T ) 6= Γ(T ′). This implies cobs(T ) 6= cobs(T
′).

Consider y ∈ T \ T ′. Since S ⊆ T ′, y ∈ T \ S. Moreover, Γ(T ) ⊆ S implies

y ∈ T \ Γ(T ). By definition of Γ(T ) for T ∈ D, this means yPcobs(T ). Similarly, if

y ∈ T ′ \ T , then yPcobs(T
′), contradicting that P satisfies (10). Finally, for (2b), we

show Γ(S \ {x}) = Γ(S) for S ∈ P(X) and x ∈ S \ Γ(S). There are four cases:

Case 1 (S \{x}, S ∈ D). As S ∈ D, and x 6∈ Γ(S), we know xPcobs(S). Suppose that

Γ(S \ {x}) 6= Γ(S). Then cobs(S) 6= cobs(S \ {x}). Applying (10) for choice problems
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S and S \ {x}, we conclude cobs(S)Px, a contradiction.

Case 2 (S\{x} ∈ D, S 6∈ D). As S\{x} ∈ D, we know Γ(S\{x}) = cobs(S\{x})∪{y ∈
S|cobs(S \ {x})Py}. Since S \ Γ(S) 6= ∅, there exists T ∈ D with S ⊆ T and

Γ(T ) ⊆ S. Because T ∈ D, zPcobs(T ) for all z ∈ T \ S. Since Γ(S) = Γ(T ),

we know x ∈ T \ Γ(T ). Hence xPcobs(T ). If Γ(S \ {x}) 6= Γ(S) = Γ(T ), then

cobs(S \ {x}) 6= cobs(T ) contradicting (10) for the pair of sets T and S \ {x}.

Case 3 (S \ {x} 6∈ D, S ∈ D). Since S ∈ D, Γ(S) = cobs(S) ∪ {y ∈ S|cobs(S)Py}. If

x ∈ S \ Γ(S) then Γ(S) ⊆ S \ {x}, so by construction Γ(S \ {x}) = Γ(S).

Case 4 (S \ {x}, S 6∈ D). As S \Γ(S) 6= ∅, there is T ∈ D with S ⊆ T and Γ(T ) ⊆ S.

Since x ∈ S \ Γ(S), we have Γ(T ) = Γ(S) ⊆ S \ {x}. Then Γ(S \ {x}) = Γ(T ) by

construction, and equals Γ(S) by transitivity. Q.E.D.

The restrictions in (10) suggest that the theory might generate complex sets of

restrictions. The next proposition confirms this intuition. Hence, while the above

proposition provides an intuitive and helpful characterization of Limited Attention,

there is neither a simple, systematic method to navigate the revealed-preference re-

strictions to check acyclic satisfiability, nor is there an entirely different method to

make testing always simple. Checking acyclic satisfiability will require a lot of guess-

work for some datasets.

Proposition 7 Limited Attention generates complex sets of restrictions.

Proof. Let Z be any finite set, and let R be any collection of basic disjunctive re-

strictions on Z. For each r ∈ R, we use zr1, zr2, zr3, and zr4 to denote the elements of

Z so that r corresponds to “zr1 must be ranked above zr2, or zr3 must be ranked above

zr4.” Let X be derived from Z by adding a new option ar for each restriction r ∈ R.

Consider then the following observed choices, for each r ∈ R:

S arz
r
1z
r
2z
r
3 arz

r
1z
r
3z
r
4

cobs(S) zr1 zr3

Clearly, X and cobs are constructed from Z and R in polynomial time. Proposition

6 tells us cobs is consistent with Limited Attention if, and only if, R is acyclically

satisfiable. Q.E.D.

As should be clear from the definitions, generating complex sets of restrictions

means that there exist datasets for which testing consistency is intractable. But there
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may be interesting classes of datasets for which testing can be done by enumeration.

To illustrate this, notice that only LCS restrictions matter whenever D is closed

under intersection (or at least contains the intersection of any two choice problems

causing a WARP violation). Indeed, if S and S ′ cause a WARP violation, then S∩S ′

causes an IIA violation with S or S ′. Suppose it occurs with S. Then cobs(S) must

be preferred to some element of S \ S ′, satisfying the ‘or’ condition from the WARP

violation between S and S ′. Thus, one can test consistency with Limited Attention in

a manner similar to testing SARP for any dataset satisfying this intersection property.

5.4 Shortlisting

The theory Frugal when Undecided studied in Section 3 is an instance of Manzini

and Mariotti (2007)’s theory of Shortlisting where P2 is a known ordering. Shortlisting

more generally allows P2 to be any asymmetric relation. The observation that P1 must

be acyclic remains valid, and it remains the primitive of interest for our analysis.

We start by singling out restrictions on P1 that specific choice patterns reveal.

Suppose we observe cobs({a, x, y}) = x and cobs({b, x, y}) = y. Since x and y are chosen

in each other’s presence, they must be incomparable under P1, and thus comparable

under P2. To explain this data, x and y cannot both survive the shortlist in both

{a, x, y} and {b, x, y}. This data thus reveals a basic disjunctive restriction: aP1y or

bP1x. This suggests Shortlisting might generate complex sets of restrictions, which

the next result confirms. The proof is available in the Appendix.

Proposition 8 Shortlisting generates complex sets of restrictions.

Like for Limited Attention, we can identify a large class of datasets for which

Shortlisting is easily testable. A first observation, going back to Manzini and Mariotti

(2007, Remark 1), is that without loss of generality, P2 can be taken to be the revealed

preference arising from binary choice problems. Suppose then that we have all binary

choice problems in our dataset, making P2 known.

Here it is helpful to keep in mind the UCS characterization in Section 3 of the

theory Frugal when Undecided, where the second rationale is also known, but is an

exogenously given ordering. For that theory, when there is an option x ∈ S which is

cheaper than cobs(S), then we learn that some alternative y ∈ S \ S(x) eliminates x

from the shortlist (recall that S(x) is the union of all observed choice problems where

x is chosen). The analogy for Shortlisting is that when there is an option x ∈ S which
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is preferred to cobs(S), based on observing x = cobs({x, cobs(S)}), then there must be

some y ∈ S \ S(x) that eliminates x from the shortlist. Formally,

For all x ∈ S ∈ D with x 6= cobs(S) and cobs({x, cobs(S)}) = x,

there is y ∈ S \ S(x) such that yP1x(11)

These are not quite all the testable implications, even with all binary choices. As P2

may have cycles, P1 must eliminate at least one element from any such cycle to ensure

choices are well defined. Since the data provides us with a complete P2, any cycle in P2

includes a cycle of three options. Say that a triplet {a, b, c} has pairwise-cyclic choices

if a is chosen from {a, b}, b is chosen from {b, c} and c is chosen from {a, c}. The next

result shows that if our dataset also includes any triplet with pairwise-cyclic choices,

then the above UCS restrictions do encapsulate consistency with theory. Without

knowing the choices from such triplets, more complex restrictions arise.

Proposition 9 If D contains all pairs and all triplets with pairwise-cyclic choices,

then cobs is consistent with Shortlisting if, and only if, the UCS restrictions (11) are

acyclically satisfiable.

Proof. It remains to show sufficiency. Let P be an acyclic relation satisfying (11).

We can assume without loss of generality that P is an ordering. For all x, y ∈ X,

say yP2x if cobs({x, y}) = y, and define P1 by yP1x if yPx and there is S ∈ D such

that y ∈ S \S(x) and cobs({x, cobs(S)}) = x. We show cobs(S) = max(max(S, P1), P2),

for all S ∈ D. First, cobs(S) ∈ max(S, P1): there is no x ∈ S with xP1cobs(S), as

S ⊆ S(cobs(S)). Second, cobs(S) is P2-maximal in max(S, P1): if x ∈ S were P2-

superior to cobs(S), i.e. cobs({x, cobs(S)}) = x, then there would be y ∈ S with yP1x.

Finally, we show max(max(S, P1), P2) is single-valued for all S ⊆ X. Notice

max(S, P1) is nonempty since P1 is acyclic. As P2 is complete, max(max(S, P1), P2) is

singleton if, and only if, there is x ∈ max(S, P1) such that xP2y for all y ∈ max(S, P1).

So if it is not singleton, there is a P2-cycle in max(S, P1), and one can find {a, b, c} ⊆
max(S, P1) with aP2bP2cP2a. As it has pairwise-cyclic choices, {a, b, c} ∈ D. To fix

ideas, say cobs({a, b, c}) = a (a similar argument applies in the other two cases). But

cobs({a, c}) = c since cP2a, and hence bP1c, which contradicts c ∈ max(S, P1). Q.E.D.

What if the dataset is not as rich as Proposition 9 requires? An obvious corollary

is that observed choices are consistent with Shortlisting if, and only if, they can be

22



extended to some cobs having all binary choice problems and any triplets with pairwise-

cyclic choices, such that the resulting UCS restrictions (11) are acyclically satisfiable.

Though this is a concise characterization for any dataset, there could still be many

pairs (or corresponding triplets) missing if one is unlucky, or did not construct the

dataset with Proposition 9 in mind. Proposition 8 tells us that there is no good way

to get around the complexity: testing is necessarily hard for some datasets.
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Möhring, R., M. Skutella, and F. Stork (2004), Scheduling With And/Or

Precedence Constraints, Siam Journal on Computing, 33(2), 393–415.

Myerson, R. (1979), Incentive-Compatibility and the Bargaining Problem, Econo-

metrica, 47, 61–73.

Richter, M. (1966), Revealed Preference Theory, Econometrica, 34, 635–645.

Rubinstein, A. and Y. Salant (2006a), A Model of Choice from Lists, Theoret-

ical Economics, 1, 3–17.

Rubinstein, A. and Y. Salant (2006b), Two Comments on the Principle of

Revealed Preference, mimeo.

Samuelson, P. (1948), Consumption Theory in Terms of Revealed Preference,

Economica, 15, 243–253.

Sen, A. (1971), Choice Functions and Revealed Preference, The Review of Economic

Studies, 38, 307–317.

Tyson, C. (2013), Behavioral Implications of Shortlisting Procedures, Social Choice

and Welfare, 41, 941–963.

Varian, H. (1982), The Nonparametric Approach to Demand Analysis, Economet-

rica, 50, 945–973.

Appendix

Proof of Proposition 3. Fix an instance of SAT3 with a set V of variables and

a set C of clauses. The 3 literals (a variable v ∈ V or its negation v̄) in a clause C

are denoted `Ci for i = 1, 2, 3. C is true if at least one of `C1 , `C2 or `C3 is true. Let Z

be the set with all variables v and negations v̄; all clauses C; options xC , x′C , x′′C , yC ,

zC , per clause C; options av, bv per variable v; and an option t. Let R be:

(i) r{(v,t)}∨{(av ,bv)} and r{(v̄,t)}∨{(bv ,av)},

(ii) r{(t,C)}∨{(yC ,zC)} and r{(t,C)}∨{(zC ,yC)}, for each clause C,

(iii) r{(C,`C1 )}∨{(xC ,x′C)}, r{(C,`C2 )}∨{(x′C ,x
′′
C)}, and r{(C,`C3 )}∨{(x′′C ,xC)}, for each clause C.
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Clearly, Z and R are derived in polynomial time. Since the theory generates complex

sets of restriction, one can construct (in polynomial time as well) a superset X of Z

and an observed choice function cobs on X such that cobs is consistent with the theory

if, and only if, R is acyclically satisfiable. To conclude the proof, we show that the

instance of SAT3 has a truthful assignment if, and only if, R is acyclically satisfiable.

Given a truthful assignment for SAT3, an ordering constructed as follows satisfies

R: place from worst to best, first all variables v that are true, then v̄ for each false

variable v, then all clauses C, then xC , x′C and x′′C in an order that respects surviving

restrictions in (iii) above (which is possible since at most two of the three restrictions

survive, given that at least one literal of C is ranked below C), then t, then bv for

true v’s, then av for all v’s, then bv for false v’s, then yC and zC for all clauses C (in

any order), then v for all false variables v, and finally v̄ for all true variables v.

Conversely, let P be an acyclic relation satisfying R. We can assume without loss

of generality that P is an ordering (otherwise take an acyclic completion of P ; this

will still satisfy R). Any variable v ranked below t is declared true, while all other

variables v are declared false. Given that P is acyclic on {av, bv}, we know from (i)

that at most one of v or v̄ can be ranked below t. For each clause C, given that P

is acyclic on {xC , x′C , x′′C}, it must be by (iii) that at least one of its literal is ranked

below C. Given that P is acyclic on {yC , zC}, it must be by (ii) that C is ranked

below t. Thus we have a truthful assignment for the instance of SAT3. Q.E.D.

Proof of Observation 1. Take any finite Z and any collection R of basic disjunc-

tions on Z. Construct Z ′ ⊃ Z by adding ar and br for each r ∈ R. We claim acyclic

satisfiability of R is equivalent to acyclic satisfiability of the collection R′ of binary

LCS and UCS restrictions given by r{(zr1 ,ar)}∨{(br,ar)}, r{(ar,zr4)}∨{(ar,br)}, r{(br,zr2)}∨{(br,ar)},

and r{(zr3 ,br)}∨{(ar,br)}, for each r ∈ R. Suppose P (without loss, an ordering) satisfies

R′. If arPbr, then zt1Par and brPzr2, thus zr1Pzr2 by transitivity; while if arPbr, then

similarly zr3Pzr4. Conversely, if P satisfies R, extend it by zr1ParP1brPzr2 if zr1Pzr2 and

by zr3PbrP1arPzr4 otherwise. By assumption, one can construct (in polynomial time)

a set X ⊇ Z ′ ⊇ Z and choices cobs from some subsets of X, such that cobs is consistent

with the theory if, and only if, R′ (equivalently, R) are acyclically satisfiable.

Next, for any finite Z and mixed collection of binary LCS and UCS restrictions on

Z, we construct (in polynomial time) a set X ⊇ Z and choices cobs from some subsets

of X, such that cobs is consistent with the theory if, and only if, R is acyclically
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satisfiable. The above paragraph then implies the result. Note acyclic satisfiability of

R amounts to acyclic satisfiability of the collection R′′ of UCS-or-LCS restrictions:

r{(zr1 ,zr2)}∨{(zr2 ,zr3)} and r{(zr2 ,zr1)}∨{(zr1 ,zr3)}, for each UCS restriction r{(zr1 ,zr3)}∨{(zr2 ,zr3)}; and

r{(zr1 ,zr2)}∨{(zr2 ,zr3)} and r{(zr1 ,zr3)}∨{(zr3 ,zr2)}, for each LCS restriction r{(zr1 ,zr2)}∨{(zr1 ,zr3)}. It is

easy to see an acyclic relation P (without loss, an ordering) satisfies R if, and only

if, it satisfies R′′. So by assumption, one can construct (in polynomial time) a set

X ⊇ Z and choices cobs from some subsets of X, such that cobs is consistent with the

theory if, and only if, R′′ (or equivalently R) is acyclically satisfiable. Q.E.D.

Proof of Proposition 8. Given Z and R, derive X from Z by adding six options,

ar, br, cr, dr, er and fr, for each r ∈ R. We again use zr1, zr2, zr3, and zr4 to denote the

elements in a restriction r. Consider the following observed choices, for each r ∈ R:

S arcr brdr erz
r
2 frz

r
4 arerz

r
2 brfrz

r
4 arbrcrz

r
1 arbrdrz

r
3

cobs(S) ar br zr2 zr4 er fr br ar

X and cobs can be constructed from Z and R in polynomial time. We conclude by

showing cobs is consistent with Shortlisting if, and only if, R is acyclically satisfiable.

Necessity. Suppose (P1, P2) generate cobs under Shortlisting. Since zr4 and fr are

chosen in the other’s presence, they are P1-incomparable. So zr4 = cobs({fr, zr4})
means zr4P2fr, and zr4 6= cobs({br, fr, zr4}) means brP1z

r
4. Similarly, arP1z

r
2. From the

last two choices, ar and br are P1-incomparable, and thus P2-comparable. If brP2ar,

then the last choice requires drP1br be P1-inferior to dr or zr3. As br = cobs({br, dr}),
zr3P1br. If arP2br, similar reasoning gives zr1P1ar. Hence zr1P1ar or zr3P1br. Complete

P1 into an ordering P . Since arP1z
r
2 and brP1z

r
4, we have zr1Pzr2 or zr3Pzr4.

Sufficiency. Without loss, let P be an ordering satisfying R. Define P1 on X by

arP1z
r
2, brP1z

r
4, crP1z

r
1, drP1z

r
3, erP1ar, frP1br, z

r
1P1ar if zr1Pzr2, and zr3P1br if zr3Pzr4,

for each r ∈ R. Notice P1 is acyclic.7 Let P2 be an ordering on X with elements of Z

at the top in any order; right below ar’s and br in any way such that arP2br if zr1Pzr2,

and brP2ar if zr3Pzr4 but not zr1Pzr2; and below all remaining options, in any order. It

is easy to see (P1, P2) generates cobs under Shortlisting. Q.E.D.

7E.g., it extends to an ordering with y1 = minP Z at the bottom; above, elements of {ar|zr2 =
y1}∪{br|zr4 = y1} in any order; above, the analogous block of y2, ar’s and br’s for y2 = minP Z\{y1};
and so on, till Z is exhausted; above cr’s and dr’s in any order; and then er’s and fr’s in any order.
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