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Abstract
A decision maker (DM) may not perfectly maximize her preference

over the feasible set. She may feel it is good enough to maximize her
preference over a sufficiently large consideration set; or just require that
her choice is sufficiently well-ranked (e.g., in the top quintile of options);
or even endogenously determine a threshold for what is good enough,
based on an initial sampling of the options. Heuristics such as these
are all encompassed by a common theory of Order-k Rationality, which
relaxes perfect optimization by only requiring choices from a set S to
fall within the set’s top k(S) elements according to the DM’s preference
ordering. Heuristics aside, this departure from rationality offers a natu-
ral way, in the classic ‘as if’ tradition, to gradually accommodate more
choice patterns as k increases. We characterize the empirical content
of Order-k Rationality (and related theories), and provide a tractable
testing method which is comparable to the method of checking SARP.
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1. Introduction

In its classic expression, an individual is rational if she systematically
chooses the best available alternative according to a preference ordering. Some
may think of rationality as a plausible model of the thought process underlying
choices. Others may prefer to remain agnostic about how choices crystalize,
but are interested in rationality as long as it captures choices reasonably well.
This is the classic ‘as if’ justification.

Advances in behavioral economics provide robust evidence that people’s
choices may be incompatible with rationality in some circumstances. In such
cases, the ‘as if’ justification fails, and some alternatives to rational choice
should be considered. Besides, the binary classification rational/irrational is
not very useful in the imperfect world of actual choice data. Instead, one
would like to quantify someone’s level of rationality.

To address these considerations, while preserving the central role of prefer-
ence orderings, we simply propose to relax the perfect maximization require-
ment. To this end, we introduce an index function k that associates to each
choice problem S a strictly positive index k(S) that is smaller than, or equal
to, the number of elements in S. Then choices from S will be required to fall
within the top k(S) options in S according to some given preference ordering.
This defines our notion of Order–k Rationality. The special case k(S) = 1

for all S corresponds to the rational benchmark that has been much studied
and applied. Our goal is to discuss and analyze the more permissive theories
arising from less stringent threshold functions.

So far we have presented Order-k Rationality as a simple, structured de-
parture from rationality that gradually accommodates more and more choice
patterns as k increases. This approach should be appealing to those who abide
by the ‘as if’ motivation for rationality. That being said, we also find it in-
sightful to describe some circumstances under which order–k rational choices
arise. This forces us to provide more detailed models of how choices crystal-
ize, exploring possible underlying thought processes and causes for bounded
rationality. In a first heuristic, we envision a preference-maximizing decision
maker (henceforth DM) who finds it good enough to identify and evaluate a
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certain number of options. This relates directly to recent papers on limited
attention in choice theory,1 but for an important difference. Attention sets
are restricted by imposing a minimal bound on the number of elements they
contain, while the literature has so far restricted how they vary across choice
problems.

The second heuristic we consider is a formalization of Simon’s (1955) sat-
isficing. Instead of maximizing a preference ordering, the DM picks the first
alternative that is good enough. In our version, what is good enough may
vary across choice problems, and is based on an underlying preference order-
ing. For instance, the DM may find it good enough to pick an option that
falls in the top quintile, according to her preference, of the available options.
In Section 3.2, we discuss circumstances under which this version of satisficing
seems reasonable, and perhaps more so than others.

The third heuristic endogenizes the preference threshold that makes an
option good enough: the DM reviews a certain number of elements, and then
continues reviewing options until she finds one that is superior to the best one
encountered in the sampling phase (she picks that best option if she runs out of
options without having found a better one). We show in Section 3 how choices
arising from all three heuristics described above are observationally equivalent
to Order-k Rationality (see Observations 1–3). That Order-k Rationality is
not only an intuitive relaxation of Rationality to organize choices in the ‘as if’
tradition, but also arises for multiple heuristics, only reinforces its importance.

In Section 4, we characterize the empirical content of Order-k Rational-
ity through a weakening of the classic Strong Axiom of Revealed Preference
(SARP) (Samuelson 1938, Houthakker 1950). Choices reveal preference re-
strictions, and consistency amounts to finding an acyclic relation satisfying
them. While these restrictions simply pin down preference comparisons in the
case of rationality (e.g., a revealed preferred to b when a is picked in the pres-
ence of b), more complex restrictions arise in general (e.g., ‘a revealed preferred
to both b and c, or to both b and d, or to both c and d’). Nonetheless, Theorem

1See for instance Manzini and Mariotti (2007, 2012), Masatlioglu et al. (2012),
Cherepanov et al. (2013), and Lleras et al. (2017).
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2 shows how the usual method for checking SARP can be adapted to test its
weakening as well, making the testing of Order-k Rationality comparable to
the testing of rationality itself, whatever the index function k. These results
prove that the weaker rationality assumption still imposes significant testable
restrictions on the admissible choice behavior of DMs, provides operational
guidance for discussing identification and forecasting exercises, and can be
used to test the ‘degree of rationality’ that is reflected by a DM’s choices.

We conclude the paper with a few observations about testing and related
theories.2 First, while the order in which a DM reviews alternatives is often
unknown to the modeler (e.g., subjective to the DM), there are situations
where this information is available (Rubinstein and Salant, 2006). Clearly,
having access to such enriched data may matter when it comes to testing the
second and third heuristics. We show in Section 5.1 how our testing result for
Order-k Rationality can easily be adjusted to tackle those situations as well.
Once again, testing is doable in a way that is comparable to checking SARP.

Second, the ability to test Order-k Rationality in a way comparable to
checking SARP (as established in Theorems 1 and 2) is by no means obvious a
priori. To put the result in perspective, consider a theory as simple as picking
the second best for a preference ordering, as suggested by Sen (1983). We
prove in Section 5.2 that testing it can be much more demanding (in a sense
to be made precise) than testing rationality and/or order-2 rationality.

Third, we suggest in Section 5.3 that it may be fruitful to enhance earlier
theories of limited attention by adding (in the spirit of the first heuristic) a
lower bound on the cardinality of consideration sets. Indeed, a potential issue
with earlier approaches is that the dataset’s consistency with the theory may
be possible only when the DM pays attention to very few options in some
choice problems – in some cases just the observed choice itself. While the

2For another related theory, Aleskerov et al. (2007) considers settings where the entire
acceptable set is chosen (e.g., team building): given utility function u : X → R and threshold
τ(S), the DM picks all elements whose utility is above τ(S). Our DM picks an option at
a time; not observing the DM pick x doesn’t imply x is unacceptable. Hence Aleskerov’s
formulation has no testable implication in our setting (e.g., set τ(S) = 0 and u always
positive). Related to Aleskerov et al (2007)’s approach but with added structure, Eliaz et
al. (2011) study selecting two finalists, and Chambers and Yenmez (2017) the top q options.
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DM may suffer from choice overload in large choice problem, assuming that
she pays attention to a single option may be unrealistic too. We characterize
the testable implications of such an enrichment to Lleras et al. (2017). Once
again, testing is doable in a way that is comparable to checking SARP.

Finally, in Section 5.4 we observe that Order-k Rationality may also arise
from some collective decision processes, expanding the settings to which our
model applies.

2. Order-k Rationality

Remember from the introduction that X denotes the finite set of all con-
ceivable alternatives, that a choice problem is any nonempty subset of X, and
that the index function k associates to each choice problem S a strictly positive
index 1 ≤ k(S) ≤ |S|. An observed choice correspondence Cobs associates to
each choice problem S a subset Cobs(S) of recorded choices from S. Notice that
Cobs(S) could be empty (no choice data pertaining to S has been recorded) or
contain multiple elements (DM picked different options when encountering S
on different occasions). For each choice problem S, integer t ≥ 1, and ordering
�, let M t

�(S) be the set of the top t options in S according to �:

M1
�(S) = argmax

�
S, and M t

�(S) =M t−1(S)∪argmax
�

[S\M t−1(S)], ∀t ≥ 2.

Definition 1. Cobs is consistent with Order–k Rationality if there exists a
preference ordering � on X such that Cobs(S) ⊆M

k(S)
� (S), for all S.

3. Theories of Good Enough

We develop three heuristics below that give rise to order–k rational choices.
While distinct, they share the common feature of formalizing what it means
for choices to be ‘good enough.’

3.1 Minimal Consideration

As has been well-documented, decision makers don’t always actively con-
sider and compare all their available options. Yet they may still be boundedly
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rational, in the sense of maximizing a preference ordering over those options
that are considered.

For instance, a DM may find it good enough to review m options in choice
problems with at least that many alternatives (and to review all options in
smaller choice problems). The process by which options catch the DM’s at-
tention may be random, nudged by third parties (e.g. through advertisement),
or the result of some targeted search (e.g. focusing on them cheapest options).
Most often, the modeler does not know how consideration sets crystallize. For
this reason, the theory we present below restricts only their sizes.

Varyingm defines a collection of nested theories, with fewer choice patterns
compatible the larger m is. Indeed, a choice that is optimal in a consideration
set with m options remains optimal when other options are dropped from con-
sideration. Thus positing instead that the DM considers at least m options in
all problems containing at least that many (and reviews all options in smaller
problems) would be observationally equivalent. With this new interpretation
in mind, we could view m as one way to calibrate the level of bounded ratio-
nality, with the modeler seeking the largest m allowing to explain the data.

In some cases, the modeler may find other threshold functions worth con-
sidering as well. The modeler may conjecture, for instance, that the DM
contemplates a certain fraction of alternatives (e.g., a prospective employer
reviewing more files the more candidates there are). To cover a wide class of
possible theories, we consider a threshold function α that associates to each
choice problem S an integer α(S) ∈ {1, . . . , |S|}. It is up to the modeler to
decide which theory (that is, which threshold function) is most natural and
worth testing.

Finally, we recognize the possibility that the DM uses different consider-
ation sets across different occasions of facing the same choice problem. This
would be the case, for instance, if attention is stochastic, or if it is impacted by
contextual information (e.g. advertisement, placement, or packaging). This
added feature seems reasonable and accommodates situations where choice
may vary even when preference is strict.3 However, our analysis and results

3As data is oftentimes limited, we think primarily of cases where one has at most a
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also apply when the consideration set is uniquely determined by the feasi-
ble set. This simply amounts to restricting attention to single-valued choice
functions.

Definition 2. Cobs is consistent with the theory of Minimal Consideration
with Threshold α if there exists a preference ordering � such that, for each S
and each x ∈ Cobs(S), there exists an attention set A(S) that contains at least
α(S) elements and such that x is �-maximal over A(S).

Observation 1. Cobs is consistent with Order-k Rationality if, and only if,
it is consistent with the theory of Minimal Consideration with Threshold α,
where α(S) = |S| − k(S) + 1 for all S.

3.2 Ordinal Relative Satisficing

Order–k Rationality is reminiscent of Simon (1955)’s satisficing procedures.
The general idea is that, instead of maximizing her preference, the DM reviews
feasible options sequentially, and picks the first one that she finds acceptable.
There are many ways, however, to formalize this. The purpose of this section
is to make precise which form of satisficing Order–k rationality encompasses,
and under which circumstances it might make sense.

As should be clear right away, the set of acceptable options for S should
beMk(S)

� (S) if Order-k Rationality is to be interpreted as a form of satisficing.
This set is defined relative to, and hence may vary with, the choice problems.
While this is not the case in the simplest incarnations of Simon’s satisficing that
use a single aspiration level, we think this depature is in fact more natural in
many settings. For instance, a prospective employee may be satisfied to accept
a lower-wage job in case of economic downturn, but not otherwise. A consumer
may be satisfied with a consumption bundle when the budget set is small, but
not anymore when her income increases. Dependence of k(S) on the set S is

few observations for a limited number of choice problems. However, our approach remains
meaningful if one had access to very many observations per choice problem, resulting in a
stochastic choice dataset. Our theory then applies to the support of those distributions,
while placing no restriction on relative frequencies.
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also consistent with the findings of Caplin, Dean and Martin (2011), who test
the satisficing model with an innovative experiment generating choice-process
data; they estimate that the reservation utility increases with set size, and
depends on object complexity as well.4

While indeed intuitive, we emphasize that relative satisficing thus presumes
the DM knows the set of feasible options when making a decision. Satisficing
behavior occurs because the DM is forced to search for them. When hiring,
for instance, an employer may know the set of applicant characteristics avail-
able, as a function of the posted wage and the market conditions, but has to
read through files and conduct interviews to learn each particular applicant’s
characteristics. When shopping for a new car, one can easily discover the
possible vehicle specifications (model trims and color combinations) that are
affordable, but effort is required to figure out in which dealerships they can be
found. When looking to buy a product or a service, one may be aware of prices
to expect based on past observations, but effort and patience is required to
identify what each provider charges. Nowadays, there are websites reporting,
for instance, the range of prices other customers paid for a car, or for hiring a
contractor to do some specific work.

To make a satisficing procedure complete, we must also discuss how the
DM encounters alternatives, to determine which is the first acceptable one
she faces. When reviewing applicant files, the employer may review them in
the order they were uploaded online. Car dealerships can nudge consumers to
visit them first through advertisements and promotions (e.g., a free giftcard

4Caplin et al (2011) introduces such process data because, as they point out, the standard
incarnation of satisficing does not have testable implications unless one observes search
order (following their approach, Papi (2012)’s theoretical analysis, which exogenously fixes
the DM’s reference level independently of the set, assumes such choice-process data as
well). Caplin et al (2011) further observes that the lack of empirical content means one
cannot tell how poor the DM’s choices are. By contrast, each of the satisficing theories we
propose, indexed by the function k, does have testable implications within a standard choice
domain; and our approach allows the modeler to both parametrize irrationality and garner
information about preferences. For example, the modeler may believe the DM always picks
from the top x% based on the size of the set, and may find that the smallest x fitting the
data is 10%. Combined with the resulting revealed restrictions on preferences (discussed
later), the modeler can say quite a bit about the quality of the DM’s choices.
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for test driving). Sellers can strategize to make their products more visible
on the internet. When a traveler familiar with a region decides where to stop
for lunch at one of the restaurants she expects to find along the highway, the
order in which options are reviewed vary with both her location at lunchtime
and the order in which restaurants are lined up along the highway. As these
examples show, it is possible that the DM picks different options when facing
the same choice problem on different occasions, as randomness or contextual
information unknown to the modeler may impact the order in which the DM
reviews alternatives. Interpreted as a model of satisficing, Order–k Rationality
accommodates, but does not require, such effects; indeed, it may be that a
choice problem is observed only once, or that the DM always picks the same
option whenever she faces it.5

To formalize these ideas, we start by introducing the notion of a list, which
is simply a sequence ` = (x1, x2, . . . , xK) of distinct options in X. The notion
of a list thus refines that of a choice problem: one knows both the feasible
options and the order in which they appear to the DM. Suppose first that we
know the lists faced, not just the option sets. Observing the DM’s choice from
lists in which the same options appear in a different order thus provides richer
data, with the potential for more stringent tests and better identification (see
Rubsinstein and Salant (2006) for a first analysis of choice from lists).

Definition 3. Observed choices from known lists are consistent with Ordinal
Relative Satisficing with Threshold Function k if there exists a preference or-
dering � such that the chosen element for each list ` is the first option in the
list that belongs to Mk(S)

� (S).

In Section 5.1, we develop the testable implications of Ordinal Relative Sat-
isficing when observing choices from known lists. However, as discussed before
Definition 3, there are many cases where the list is not known to the mod-

5As data is oftentimes limited, we think primarily of cases where one has at most a
few observations for a limited number of choice problems. However, our approach remains
meaningful if one had access to very many observations per choice problem, resulting in a
stochastic choice dataset. Our theory defined shortly then applies to the support of those
distributions, while placing no restriction on relative frequencies.
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eler. The next observation then formalizes the straightforward link between
Order-k Rationality and ordinal relative satisficing with threshold function k.

Observation 2. Cobs is consistent with Order-k Rationality if, and only if,
for each S and each x ∈ Cobs(S), there exists a list `S,x such that the modified
choice data where x is picked from the list `S,x, for each S and x ∈ Cobs(S), is
consistent with ordinal relative satisficing with threshold function k.

Like for the theories of minimal consideration, the DM ends up maximiz-
ing her preference over a smaller set of options. In contrast to those earlier
theories, however, the set here can be very small (sometimes down to a single
alternative) or much larger, depending on how soon the DM encounters an
acceptable option.

3.3 A Hybrid: Minimal Attention to Determine the Satisficing Threshold

In this section, we endogenize the acceptance threshold. We envision the
DM as first reviewing a given fraction of the list to set up a threshold, and
picking the first option that surpasses that threshold according to her prefer-
ence. For each list `, let n(`) be a number between 1 and the length of the list.
The DM reviews the first n(`) options in the list, and sets up her satisficing
threshold based on this sample. Like the index function k, the modeler chooses
the function n and sets out to test the resulting theory. A natural threshold
would be to set n according to a fixed fraction of the list’s length, but more
complex functions can be accommodated without complication.

Definition 4. Observed choices from lists are consistent with Satisficing after
n-Sampling if there exists a preference ordering � such that the chosen element
for each observed list ` is the first option in the list that is �-superior to x∗(`),
the best option in the first n(`) elements of the list. If no such option exists,
then the chosen element is x∗(`) itself.6

6This bears similarity to the classic secretary problem, but departs from it in the ability
to choose an element, x∗(`), from earlier in the list.
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This procedure thus combines features of both relative satisficing and lim-
ited attention, as the threshold for each list is set by paying attention to a
limited number of options. The higher is n(`), the more stringent is the DM’s
bar for what is good enough. As discussed earlier, observing choices from
lists is a form of enriched data, where the modeler knows not only the set of
available options, but also the sequence in which the DM assessed them. If
the modeler does not have access to that information (e.g., the order in which
options are presented is not recorded, or the order is subjective), then we are
back to the notion of Order–k Rationality.

Observation 3. Cobs is consistent with Order-k Rationality if, and only if,
for each S and each x ∈ Cobs(S) there exists a list `S,x such that the modified
choice data where x is picked from the list `S,x, for each S and x ∈ Cobs(S), is
consistent with Satisficing after n-sampling, where n(S) = |S| − k(S).

4. Testing, Identification and Forecasting

Suppose one is interested in Order–k Rationality, either because it offers
a natural departure from Rationality as an ‘as if’ story, or because of the
heuristics-based motivations offered in Observations 1–3. How does one test
whether observed choices are consistent with Order–k Rationality?

As is well-known, a DM’s observed choices are consistent with Rationality
if, and only if, the Strong Axiom of Revealed Preference (SARP) holds. We
propose to extend this classic result to Order–k Rationality by pursuing de
Clippel and Rozen (2019)’s general methodology to test bounded rationality
theories. The first step is to identify an exhaustive collection of revealed
preference restrictions, by proving that consistency is equivalent to checking
whether the set of restrictions is acyclically satisfiable, that is, whether there
exists an acyclic relation satisfying them. The second step is to look into the
type of preference restrictions needed for such characterizations. If they are all
lower contour set (LCS) restrictions (e.g., ‘a preferred to b or c’ restricts the
lower contour set of a), then acyclic satisfiability can be checked essentially in
the same way SARP is checked.
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Suppose the DM is consistent with Order–k Rationality. Observed choices
then impose the following restrictions on what the DM’s preference may look
like: if x ∈ Cobs(S), then there exists |S| − k(S) alternatives in S that are
all inferior to x. Let Rk(Cobs) be the set of all such restrictions. Consistency
with Order–k rationality thus implies that Rk(Cobs) is acyclically satisfiable,
that is, there exists an acyclic relation sarisfying them. Could it be that by
thinking harder we would identify other revealed preference restrictions that
are critical for testing? No, as the following result shows.

Theorem 1. Cobs is consistent with Order-k Rationality if, and only if, Rk(Cobs)

is acyclically satisfiable.

Proof. Necessity was proved in the discussion above. As for sufficiency, let P
be an acyclic relation satisfying the restrictions in Rk(Cobs), and let � be a
completion of P into an ordering. For each each x ∈ Cobs(S), the corresponding
restriction in Rk(Cobs) tells us that one can find at least |S|−k(S) alternatives
in S that are P -inferior to it. Since P -comparisons remain valid under �, x is
among the top k(S) options in S according to �, and Cobs is consistent with
Order-k Rationality.

One might be concerned that checking acyclic satisfiability for Rk is much
more challenging than checking SARP, as the revealed preference restrictions
do not pin down comparisons between pairs of alternatives. Instead, one must
check whether one can find an acyclic relation satisfying restrictions of the
form ‘a must be preferred to both b and c, or a must be preferred to both b
and d, or a must be preferred to both b and d’ (the revealed preference re-
striction arising from a being picked from S = {a, b, c, d} with k(S) = 2). Yet,
checking whether Rk is acyclically satisfiable can be done in a way comparable
to checking SARP.7

Let X1 be the image of Cobs, and let Y1 = X \ X1. Intuitively, Y1, the
set of elements never chosen, contains obvious candidates for the DM’s worst

7The procedure we defined to prove this appeared in Barberà and Neme (2014), as well
as in a supplement to de Clippel and Rozen (2012) as a special instance of their more general
enumeration procedure, which applies here because Rk contains only LCS restrictions.
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elements, with those in X1 ranked somewhere above those in Y1. The data may
suggest further information, however, on how elements in X1 rank in relation
to each other. For each x ∈ X1, let C−1obs(x) be the set of choice problems S
such that x ∈ Cobs(S). Consider the set

Y2 = {x ∈ X1 | |S ∩ Y1| ≥ |S| − k(S), for all S ∈ C−1obs(x)},

which is the set of x ∈ X1 such that for every set S in which x is chosen, x
already belongs to the top k(S) elements, either because there are sufficiently
many worse-ranked elements (i.e., those in Y1), or because the size of the set
is at most k(S) (e.g., it is a two-element set and the theory is that the DM
chooses from the top two). As elements in Y2 are not forced by the theory to
be better than any other element in X1, the set Y2 contains obvious candidates
for the DM’s worst elements in X1. After taking out the elements of Y2 and
ranking these somewhere above the elements of Y1, we would next want to
investigate the set of remaining elements, X2 = X1 \Y2. Building on this idea,
we can define by induction two sequences of sets:

Y`+1 = {x ∈ X` | |S ∩ [∪`i=1Yi]| ≥ |S| − k(S), for all S ∈ C−1obs(x)},

X`+1 = X` \ Y`+1.
(1)

In each step `, the set ∪`i=1Yi represents the set of elements that have already
been ranked below the remaining elements (i.e., those in X`). Then Y`+1

contains the candidates for worst elements in X`: each x ∈ Y`+1 has enough
elements ranked below it that it is already belongs to the top k(S) for every S
where it is chosen. The set Y`+1 is then removed, and ranked somewhere above
those previously removed, to generate the next set of remaining elements, X`+1.

Clearly, the set of remaining elements weakly shrinks in each step: X`+1 ⊆
X` for each `. Given that X1 has at most |D| elements, where D is the
set of choice problems S such that Cobs(S) 6= ∅, the sequence (X`)`≥1 becomes
constant in at most that many steps. Let X∗ be this limit set, that is, X∗ = X`

where ` is the lowest index such that X` = X`+1. The next result shows that
Rk(cobs) is acyclically satisfiable holds (and thus Cobs is consistent with our
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theories by Theorem 1) if and only if X∗ = ∅.

Theorem 2. Rk(Cobs) is acyclically satisfiable holds if, and only if, X∗ = ∅.

Proof. (Sufficiency) Suppose that X∗ = ∅. Let ` be the smallest index such
that X` = X∗. Consider the partition {Y1, . . . , YL} of X, and the (strict)
relation P defined by x � y if the atom of the partition to which x belongs
has a larger index than the atom to which y belongs. Clearly P is acyclic, and
acyclic satisfiability holds using P .

(Necessity) Suppose that the limit set X∗ is nonempty. By construction, X∗

is contained in the image of Cobs. Let Y ∗ = X \ X∗. If Rk is acyclically
satisfiable using P , then the restriction of P to X∗ must be such that for all
x ∈ X∗ and for all S ∈ C−1obs(x), |{y ∈ S | xPy}| ≥ |S| − k(S). Decomposing
the lower-contour set into two components,

|{y ∈ S ∩X∗ | xPy}|+ |{y ∈ S ∩ Y ∗ | xPy}| ≥ |S| − k(S).

Thus |{y ∈ S∩X∗|xPy}|+|S∩Y ∗| ≥ |S|−k(S) for all x ∈ X∗ and S ∈ C−1obs(x),
since in the most permissive scenario, all elements in S ∩ Y ∗ are P -inferior to
x. Acyclicity implies that one can find x∗ ∈ X∗ for which there is no y ∈ X∗

such that x∗Py. But then applying the above bound to x∗, for all S ∈ C−1obs(x
∗)

it must be that 0 ≥ |S| − k(S)− |S ∩ Y ∗|, which cannot be if X∗ is the limit
set. Thus X∗ must be empty if Rk is acyclically satisfiable, as desired.

This testing procedure is of a similar spirit, and similar complexity,8 to
procedures used to check SARP (the special case where k(S) = 1 for all S).
The relative simplicity of testing may be surprising, as many other theories of
bounded rationality are NP-hard to test. Consider, for instance Sen’s (1993)’s
theory of choosing the second best according to a preference ordering (as op-
posed to choosing one of the top two elements, as permitted by Order-k Ra-
tionality with k(S) = 2 for all S). Under full data (when the entire choice
function is observed), Baigent and Gaertner (1996) characterize Sen’s theory

8A number of steps which is polynomial in the size of the data.
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using simple and easy-to-check axioms.9

They do not capture, however, the empirical content of this theory when
data is limited. In this general case, Sen’s rather simple theory turns out to
be NP-hard to test, as we show in Theorem 4 of Section 5.2. This provides an
interesting contrast with our results above. Determining whether choices are
second-best for some preference ordering can be hard, but checking whether
choices are top best for some ordering (Rationality), or among the top two
elements for some ordering (2-Rationality) is tractably tested using a method
comparable to checking SARP.

What becomes clear from the testing procedure above is that it is possible
for different preference orderings to generate the same observed choices under
Order-k Rationality. Contrary to Rationality, this is true even for a complete
dataset. If the testing procedure yields the sequence of sets Y1, . . . , YL, then
there are at least

∏L
`=1 |Y`|! possible preference orderings. The rationalizing

preference constructed has all the elements of Y` ranked below all the elements
of Y`+1, for each `; but within each Y`, it does not matter how the alternatives
are ranked.

Nonetheless, there are choice configurations that completely pin down the
preference between some alternatives.10 Formally, x is unambiguously revealed
preferred to y if xPy for any preference ordering P that generates Cobs under
Order–k Rationality. Identifying whether this is so amounts to ruling out the
possibility of generating observed choices with a preference P such that yPx.

9For single-value choice functions, the two axioms are simply: (i) if x is picked both from
{x, y} and {x, z}, then x is not picked from problems containing x, y, and z, and (ii) each
problem S has an element y 6= c(S) such that c({y, z}) = z for all z ∈ S different from y.

10Suppose X = {x1, x2, x3, x4, x5} and the modeler posits k(S) = 2 for all S. Observed
choices cobs({x1, x2, x3, x5}) = x1 and cobs({x1, x2, x3, x4}) = x2 are consistent with Order-
k Rationality using various preferences, including x1Px2Px3Px4Px5, x5Px1Px2Px3Px4,
and x4Px2Px1Px3Px5, among others. In all rationalizing preferences, both x1 and x2 must
be ranked above x3; that is, x1 and x2 are revealed preferred to x3. Intuitively, x1, x2, x3 all
appear in two choice problems, where two of these are observed to be chosen; as k(S) = 2,
this leaves no space for x3 to be ranked above either. The first choice reveals that at most
one element among x2, x3 and x5 is preferred to x1. The second choice reveals that at most
one element among x1, x3 and x4 is preferred to x2. But if x3 is the one alternative preferred
to x2 (x1), and if at most one of these can be preferred to x1 (x2), then its availability in
both observed problems renders it impossible to explain the choices.
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We may use Theorems 1 and 2 to address this problem, by augmenting the col-
lection of restriction Rk with the restriction yPx. Clearly, x is unambiguously
revealed preferred to y if, and only if, acyclic satisfiability of the augmented
restrictions fails. Modifying the definition of Y`+1 to remove y for any ` with
x ∈ X` then provides a simple test as in Theorem 2.

Theorem 2 is also useful for out-of-sample predictions. Given Cobs, option
x ∈ S is a valid prediction for S under Order–k Rationality if there exists �
generating Cobs under the theory such that x falls in the top k(S) element of S
according to �. To check this, simply append the choice x from S to Cobs, and
apply the method suggested in Theorem 2 to check whether this extension of
observed choices is consistent with Order–k Rationality. Consistency holds if,
and only if, x is a valid forecast for S.

5. Comments on Testing and Related Theories

In Section 5.1, we develop the empirical content of Ordinal Relative Satisfic-
ing and Satisficing after Sampling for rich datasets where choice from lists are
observed. Section 5.2 illustrates that the ability to test Order-k Rationality in
a matter similar to SARP is highly nontrivial, as doing so is impossible even
for Sen (1993)’s related theory of choosing the second best. The ensuing sub-
sections develop interesting extensions of our approach. Section 5.3 considers
a hybrid model, whereby a common theory of consideration sets is enriched
with our minimal-consideration requirement (the first heuristic). In Section
5.4 we show Order-k Rationality may also arise from collective decision-making
processes, expanding the types of datasets where the model may be of use.

5.1 Enriched Data: Choice from Lists

In Sections 3.2 and 3.3, we introduced the theories of Ordinal Relative Satisfic-
ing, and of Satisficing after Sampling, noting that their testable implications
amount to Order-k rationality when the DM’s choices are observed knowing
only the set of options faced, but not their order. We now explore the testable
implications when the modeler sees these lists.
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Things are rather straightforward in the case of Ordinal Relative Satisficing
with Threshold Function k. If option x is the observed choice from a list `,
then we learn that (i) x falls within M

k(S)
� (S), where S is the set of options

appearing in `; and (ii) the set of elements preceding x in the list, which we
denote P`(x), does not belong toM

k(S)
� (S). Thus observing the list allows us to

refine the revealed-preference restrictions listed in Rk(Cobs): (a) x is revealed
preferred to each option in P`(x), and (b) one must find |S|−k(S)−|P`(x)| ≥ 0

options in S \ P`(x) that are ranked below x. Similarly to Theorem 1, it is
not difficult to check that consistency with the theory is equivalent to acyclic
satisfiability of the set of revealed preference restrictions derived this way from
Cobs. Since all restrictions pertain to lower-contour sets of options in X, one
can adapt the procedure given in Theorem 2 to tractably test consistency in
a way comparable to checking SARP.

We next consider Satisficing after n-Sampling when lists are known. Some
necessary conditions on the DM’s preference are easy to develop. First, if she
chooses one of the first n(`) options in a list, then the DMmust prefer it over all
alternatives in the list. Second, the element the DM chooses from a list must
be preferred to any alternative that precedes it. Third, any element appearing
between the n(`)− th element of the list and before the chosen element must
be inferior to at least one of the first n(`) options in the list. The next theorem
shows that observed choices do not reveal any other essential restrictions on
the DM’s putative preference.

Theorem 3. Observed choices from known lists are consistent with Satisficing
after n−Sampling if and only if the following set of restrictions is acyclically
satisfiable: for each subset of alternatives S there exists a list `S such that

(a) If the observed choice x is one of the first n(`S) elements, then x � y for
all y 6= x in the list;

(b) If x is the observed choice, then x � y for all y preceding x;

(c) For any y following the first n(`S) elements but preceding the observed
choice, there exists x among the first n(`S) elements such that x � y.
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Since all restrictions pertain to lower-contour sets of options in X, one can
adapt the procedure given in Theorem 2 to tractably test consistency in a
manner comparable to checking SARP.

5.2 Sen’s (1993) Theory of Choosing Second-Best Alternatives

Order-k Rationality, which allows for the DM to choose any of her top-
k(S) elements from S, may be contrasted with Sen (1993)’s theory that the
DM chooses exactly her second-best alternative according to her preference
ordering. While Order-k Rationality can be tested in a way that generalizes
the way we test SARP, it turns out that Sen (1993)’s more precise theory
cannot. More specifically, if one could find a way to test Sen’s theory in a
manner akin to SARP, then one could find a tractable way to test any NP-hard
problem, overturning the conventional wisdom that no such method exists.

Theorem 4. Testing consistency with Sen (1993)’s theory of choosing the
second best according to a preference ordering is NP-hard.

The proof builds on de Clippel and Rozen (2018)’s Proposition 3, which
says that it is NP-hard to test whether there is an acyclic relation satisfying
‘mixed sets’ of binary restrictions, where some are of the form x is worse than
y or z, while others are of the form x′ is better than y′ or z′ By contrast,
in k-SARP, there are only lower-contour set restrictions. The connection of
such mixed restrictions with Sen’s theory may not be entirely obvious. Seeing
that x is chosen from {x, y, z} does mean that x is worse than y or z, and
that x is better than y or z, but determining which alternative is better than
x also determines which is worse. To see how the ‘better than’ and ‘worse
than’ restrictions can be disentangled, suppose we observe that x is chosen
from {b, x} and that b is chosen from {b, y, z}. Then, we know that y or z
is preferred to b. As b is preferred to x, we know at least one of y or z is
preferred to x, and there is no implication that the other belongs to the lower-
contour set. Formally, the proof proceeds by showing that for any collection
of mixed binary restrictions, one can construct (in polynomial time) a dataset
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where testing Sen’s theory is equivalent to testing whether there is an acyclic
relation satisfying the restrictions.

5.3 Choice Overload with Minimal Consideration

The theory of Minimal Consideration puts a lower bound on attention within
any choice problem. This differs from earlier approaches to attention, which
typically restrict how consideration sets vary across choice problems. For
instance, Lleras et al. (2017) captures choice overload by requiring the DM’s
attention correspondence to satisfy an ‘IIA’ property: if x is considered when
facing a choice problem S, then x must also be considered when facing any
subset of S in which it is contained. This same property arises in Cherepanov
et al. (2013)’s theory of rationalization. Both theories presume a single-
valued choice function is observed (implicitly, each choice problem is associated
with a unique consideration set), and we will thus assume the same in this
subsection. To avoid confusion, observed choices will now be denoted as a
function cobs : D → X with cobs(S) ∈ S for each S ∈ D, where D is the set of
choice problems for which a choice has been recorded.

It is intuitive and well-documented that a DM may be overloaded when fac-
ing too many options. However, going to the extreme that she pays attention to
a single option may be unrealistic. Say that cobs(X) = x and cobs({x, y}) = y,
for all y 6= x. These choices are consistent with the above theories, but only if
x is the only option the DM considers when facing X (regardless of X’s size).
This is because IIA requires the DM to consider x in any pair containing it,
and hence the DM must prefer all alternatives to x.

One may desire to enhance theories of attention by adding a lower bound
on the number of alternatives considered. Doing so retains their appealing fea-
tures, while restraining over-permissiveness. Here, we consider this approach
for the theory of Choice Overload.

Definition 4 A single-valued choice function cobs is compatible with Choice
Overload with α-Minimal Consideration, if there exists a strict preference
ordering � over X, and a consideration-set mapping A that satisfies IIA and
for each S, contains at least α(S) elements, with cobs(S) =M1(A(S)).
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If a DM’s choices are consistent with this hybrid theory, then certain choice
patterns reveal information about her preference. First, as observed for full
datasets by Cherepanov et al. (2013) and Lleras et al. (2017), xPy when
x = cobs(S), y = cobs(T ), and y ∈ S ⊂ T . This follows at once from the
consideration set mapping satisfying IIA. Denote by RIIA(cobs) the set of all
such restrictions. Second, the restrictions Rk from Section 4, with k(S) =

|S| − α(S) + 1, must also hold. The next theorem shows that no further
restrictions arise beyond these two types.

Theorem 5. An observed choice function cobs is consistent with Choice Over-
load with α-Minimal Consideration if and only if RIIA(cobs)∪Rk(cobs) is acycli-
cally satisfiable, where k(S) = |S| − α(S) + 1 for each S.

Acyclic satisfiability of RIIA(cobs)∪Rk(cobs) is more demanding than hav-
ing RIIA(cobs) and Rk(cobs) both acyclically satisfiable. To put it differently,
just because data is consistent with both the theories of Choice Overload and
α-Minimal Consideration does not guarantee consistency with the hybrid the-
ory; we include such an example dataset in the Appendix. The reason is that
the same acyclic relation must satisfy both sets of restrictions simultaneously
to be compatible with the hybrid theory. The tractability of testing Order-
k Rationality, and the ability to perform preference identification, extend to
Choice Overload with α-Minimal Consideration. Indeed, testing can be imple-
mented using a very similar approach. Details are provided in the Appendix;
loosely speaking, one constructs the sequence of sets for Theorem 2, with the
only difference being that one must also exclude from Y` alternatives which
are ranked above another remaining one according to RIIA(cobs).

5.4 Rationalizing Collective Decisions

A classical issue in the theory of preference aggregation is whether the
choices generated through voting or other methods of collective choice can be
viewed ‘as if’ the group was acting with some degree of rationality. Indeed, we
can identify joint decision processes whose outcomes would satisfy our notion
of good enough decision-making. One is the case when two agents participate
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in choosing from a set of n candidates through the use of rules of r names.
Under these rules, one of the agents proposes a set of r candidates to the other,
who then selects one from that set. The subgame-perfect equilibrium of the
induced extensive-form game is the best alternative for the proposer out of
the (n− r+ 1) that are best for the chooser (Barberà and Coelho 2010, 2017,
2018). Hence, the collective choice involved will satisfy the criterion of (n−r+
1)−rationality, provided the agents involved play the game’s subgame-perfect
equilibrium. de Clippel, Eliaz and Knight (2014) experimentally examine the
real-life problem of arbitrator selection, which is commonly implemented using
an alternate strikes procedure, corresponding to r = b(n + 1)/2c. That rule
has the attractive fairness property of guaranteeing that the joint choice will
be at least as good for both players as the median choices; see also Anbarci
(1993). In general, one expects the equilibria of other bargaining procedures
to exhibit some degree of ‘good enough’ rationality as well.
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A Appendix: Details for Section 5

A.1 Proof of Theorem 3

Necessity was proved above. As for sufficiency, we can assume without loss
of generality that P is an ordering, as any acyclic relation can be completed
into an ordering and the completion will still satisfy the listed restrictions. We
conclude the proof by checking that observed choices can be derived from the
theory by using P as the DM’s preference. Let ` be an observed list. Suppose
that the observed choice x is one of the first n(`) options. By (a), x is P -
maximal in the set of elements that appear in `, as desired. Suppose now x

is not one of the first n(`) options. By (b), it is P -superior to all preceding
options. By (c), x is the first option in the list that succeeds the initial n(`)
options, and is P -superior to all of them. Thus indeed, the theory applied to
P selects x out of `, as desired.

A.2 Proof of Theorem 4

Fix a mixed setR of binary restrictions defined on a setX. For each restriction
r, let xr be the option whose contour set is being restricted and let yr, zr be
the two options, one of which must belong to the relevant contour set of xr.
We say r is an upper-contour set (UCS) restriction when either yr or zr is
better than xr; and similarly, say r is a lower-contour set (LCS) restriction
when xr is better than either yr or zr. We assume wlog that yr 6= zr. Consider
the set of options X ′ that contains all options in X, plus a new option ar for
each LCS restriction r, a new option br for each UCS restriction r, and the
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following observed choices:

S {ar, xr} {ar, yr, zr}
cobs(S) ar ar

for each LCS restriction r, and

S {br, xr} {br, yr, zr}
cobs(S) xr br

for each UCS restriction r. We conclude the proof by showing that there exists
an acyclic relation satisfying the restrictions listed in R if, and only if, cobs is
consistent with picking the second best for some preference ordering.

If R is acyclically satisfiable, then let P be a strict acyclic relation on X
satisfying the restrictions in R. We can assume without loss of generality that
P is complete, that is, an ordering. Extend this relation into a preference
ordering on X ′ by ranking ar above the P -smallest element of {yr, zr} and
below any other element of X that is P -superior to it, for each LCS restriction
r; and ranking br below the P -largest element of {yr, zr} and above any other
element of X that is P -inferior to it, for each UCS restriction r. It is easy
to check that cobs coincides with the second-best element according to this
preference, for each S ∈ D.

Conversely, suppose that P ′ is a preference ordering on X ′ with the prop-
erty that cobs(S) is the second-best element of S under P ′, for each S ∈ D.
Consider now a LCS restriction r. Since ar is picked out of {ar, yr, zr}, it must
be that ar is ranked in between yr and zr, that is, yrP ′arP ′zr or zrP ′arP ′yr.
Given that ar is P ′-inferior to xr (for ar to be picked from {ar, xr}), it must
be that xrP ′yr or xrP ′zr. Finally, consider an UCS restriction r. Since br is
picked out of {br, yr, zr}, it must be that br is ranked in between yr and zr,
that is, yrP ′brP ′zr or zrP ′brP ′yr. Given that xr is P ′-inferior to br (for xr to
be picked from {br, xr}), it must be that yrP ′xr or zrP ′xr.
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A.3 On Choice Overload with α-Minimal Consideration

Proof of Theorem 5

Necessity follows from the discussion above. As for sufficiency, let P be an
acyclic relation satisfying RIIA(cobs) ∪ Rk(cobs), and let � be a completion of
P into an ordering. Clearly, � also satisfies RIIA(cobs) ∪ Rk(cobs). For each
choice problem S, let B(S) be the bottom α(S) elements of S according to �,
let

A∗(S) = S ∩ {cobs(T ) | T ∈ D, S ⊆ T},

and let A(S) = A∗(S)∪B(S). We conclude the proof by showing that cobs(S)
is the �-maximal element of A(S) for each S ∈ D. By definition, cobs(S) ∈
A∗(S) ⊆ A(S). Suppose, by contradiction, that there exists x ∈ A∗(S) such
that x � cobs(S). If x ∈ A∗(S), then cobs(S) � x since � satisfies the restric-
tions in RIIA(cobs). This cannot be, so x ∈ B(S). Then cobs(S) has at most
α(S) − 2 that are �-inferior to it in S, since x has at most α(S) − 1 below
it (x ∈ B(S)) and cobs is �-inferior to x. This contradicts � satisfying the
restrictions in Rk(cobs). Hence no such x exists, and cobs(S) is the �-maximal
element of A(S).

Consistency with both theories 6=⇒ consistency with hybrid theory

Consider the following data:

S {a, b, x, y} {b, x, y} {d, e, y, z} {e, y, z} {w, x, y, z}
cobs(S) y x z y z

The restrictions inRIIA(cobs) are simply xPy and yPz, which is acyclically sat-
isfiable. Taking α(S) = |S|−1 (overlooking at most one option) or k(S) = 2 for
all S, the restrictions inRk(cobs) are satisfied by the ordering zPxPyPaPbPdPe.
Yet RIIA(cobs) ∪ Rk(cobs) is not acyclically satisfiable. Indeed, the last data
point reveals that at least two elements in {w, x, y} must be P -inferior to z,
which cannot be satisfied acyclically once combined with the restrictions xPy
and yPz from RIIA(cobs).
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Implementing testing

The tractability of testing Order-k Rationality extends to Choice Overload
with α-Minimal Consideration. Indeed, testing can be implemented using a
similar approach. Let X̃1 be the image of cobs, and let Ỹ1 = X \ X̃1. Letting
k(S) = |S| − α(S) + 1, define by induction, for each ` ≥ 1:

Ỹ`+1 ={x ∈ X̃` | |S ∩ [∪`i=1Ỹi]| ≥ |S| − k(S), for all S ∈ c−1obs(x),

and @y ∈ X̃` \ {x} s.t. x = cobs(T ), y = cobs(T
′) for x, y ∈ T ⊂ T ′}

X̃`+1 =X̃` \ Ỹ`+1.

The sequence of Ỹ ′` s differs from its Section 3-counterpart in that it excludes al-
ternatives which are ranked above another remaining one under the IIA-based
revealed preference. The sequence X̃` is decreasing, and becomes constant in
at most |D| steps. Letting X̃∗ be this limit set, it is easy to see that cobs is con-
sistent with Choice Overload with α-Minimal Attention if and only if X̃∗ = ∅
(details left to the reader). In particular, checking consistency with the theory
can be done in polynomial time. Moreover, preference identification can be
performed as before.
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