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Abstract

Following Kamenica and Gentzkow (2011), the paper studies persuasion as
an information design problem. We investigate how mistakes in probabilistic
inference impact optimal persuasion. The ‘concavification method’ is shown to
extend naturally to a large class of belief updating rules, which we identify and
characterize. This class comprises many non-Bayesian models discussed in the
literature. We apply this new technique to gain insight in a variety of questions
about, among other things, the revelation principle, the ranking of updating rules,
and circumstances under which persuasion is beneficial. Our technique extends
to also shed light on the question of robust persuasion.
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1 Introduction

The past decade has seen much progress on the topic of information design. In a seminal
paper, Kamenica and Gentzkow (2011), henceforth KG, studies how a rational agent
(Receiver, She) can be persuaded to take a desired action by controlling her informa-
tional environment. They provide tools to determine when persuasion is profitable,
and how to best persuade. They also illustrate how these techniques provide valuable
insights in a variety of applications.

The purpose of the present paper is to expand the analysis to accommodate agents
who make mistakes in probabilistic inference. Experimental evidence (Camerer 1998,
Benjamin 2019) shows that people oftentimes systematically depart from Bayes’ rule
when confronted with new information. Though our analysis easily extends to other
contexts as well, we find it more natural as a benchmark to keep assuming the persuader
(Sender, He) is Bayesian.1 After all, a person who exerts effort to figure out the best
way to persuade is also likely to make an effort to assess probabilities accurately.

Example scenarios from KG naturally extend to our setting. Suppose a rational doc-
tor has a patient’s best interest at heart, but knows that his patient is too conservative
in her updated belief upon hearing bad news. Which tests should he run to optimally
acquire information and persuade the patient to undergo surgery when necessary? Con-
sider now a prosecutor trying to maximize his conviction rate. How should he conduct
his investigation when facing a judge suffering from base-rate neglect (Kahneman and
Tversky 1973)?2 A rational firm may strategize when supplying product information
to prospective buyers. How can it best exploit customers who have a favorable bias
towards the trademark when processing information? To what extent does it remain
possible to persuade other customers who have an unfavorable updating bias? We ad-
dress these questions, and others discussed below, by extending KG’s main results from
Bayesian persuasion to our setting. The paper thus also speaks to the robustness of
their results against a richer, sometimes more realistic class of updating rules.

Receiver’s action is determined by her belief. Hence the first step in understanding
the limits of persuasion is to figure out how signals (or experiments) impact Receiver’s
belief. Under Bayesian updating, as in KG, a distribution of posteriors is achievable by
some signal if, and only if, it satisfies the martingale property (the expectation of the
posteriors matches the prior). This is the key observation that leads to the now-classic
concavification argument to derive optimal persuasion value and strategies. A first
question then is whether comparable characterization results obtain when Receiver is
not Bayesian. Furthermore, Sender and Receiver will now typically have different pos-
teriors. This raises new, interesting questions when Sender’s utility is state-dependent,
as her preferred action also varies with information revealed by the experiment. Thus

1Sender’s updating rule does not even matter if his utility is state-independent.
2Evidence of judges’ mistakes in statistical inference, including base-rate neglect, is provided in

Guthrie, Rachlinski, and Wistrich (2001, 2007), Lindsey, Hertwig, and Gigerenzer (2002), Koehler
(2002), Danziger, Levav, and Avnaim-Pesso (2011), and Kleinberg, Lakkaraju, Leskovec, Ludwig, and
Mullainathan (2017).
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we must not only characterize distributions of Receiver’s posteriors induced by experi-
ments, but distributions over Sender-Receiver posterior pairs (see Section 2).

After obtaining such characterization results for a couple of classic non-Bayesian
updating rules, we discovered a common, overarching methodology, which we present in
Section 3. Let µ0 be the common prior (our approach also applies to non-common priors,
see below). As we will show, for many updating rules commonly used in the literature,
there exists a distortion function Dµ0 mapping beliefs into beliefs, such that the updated
belief after receiving a signal realization simply corresponds to the distortion of the
accurate, Bayesian posterior ν (independently of other realizations that could arise). In
other words, the Sender-Receiver posterior pair is simply (ν,Dµ0(ν)) in that case. These
rules are said to systematically distort updated beliefs. KG’s concavification argument
for optimal persuasion extends to such rules with Sender’s indirect utility for Bayesian
posteriors modified by factoring in the distortion function.

Though straightforward once the idea of a distortion function has been recognized,
this result is nonetheless powerful as it turns out that many rules commonly used in
the literature do systematically distort updated beliefs in the above sense. To better
gauge their prevalence and understand what they entail, Section 4 starts with a useful
characterization of these rules. It then provides a variety of examples encompassed
by our notion, including conservative Bayesianism (Edwards, 1968), Grether (1980)’s
α − β model, Cripps’ (2018) divisible updating rules, and other forms of confirmatory
bias and motivated beliefs. As it turns out, our methodology also applies to situations
with a Bayesian Receiver who either distorts probabilities when making decisions (a
key ingredient in prospect theory), or has a different prior from Sender (a problem first
studied in Alonso and Câmara (2016)). To complete the picture of the power and limits
of our approach,3 Section 4 ends with a few ‘non-examples’, that is, updating rules that
do not systematically distort updated beliefs.

Sender faces a moral hazard problem: he has to provide the right incentives for
Receiver to take the desired action. The revelation principle (see e.g. Section 6 in
Myerson (1991)) applies when Receiver is Bayesian: each signal admits an outcome-
equivalent incentive compatible signal where realizations are suggested actions. Section
5 starts with an example showing that the revelation principle need not hold when
Receiver is subject to mistakes in probabilistic inference. Within the class of rules that
systematically distort updated belief, we then essentially characterize those for which
the revelation principle holds. The key property is that the distortion function maps
straight lines into straight lines (as do affine functions, or more generally projective
transformations). As a corollary, if optimal persuasion is achievable (which it is under
some mild continuity assumption), then it can be achieved with a number of signal re-
alizations no greater than the number of actions. This result breaks down for distortion
functions that do not map straight lines into straight lines. Even then, no more than n
signal realizations are needed for optimal persuasion, where n is the number of states,

3We should point out, however, that many conceptual contributions of the paper, in the questions
we raise and the definitions we introduce to tackle them, are valid beyond the class of rules we focus
on to answer them.
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for rules that systematically distort updated beliefs.
KG highlights the surprising fact that effective persuasion is possible in many prob-

lems despite the fact that Receiver is rational and knows the Sender’s intent to persuade
her to take an action to his advantage. One may think at first that persuasion gets only
easier if Receiver lacks rationality when processing information. Quickly one realizes
though that departures from Bayes’ rule need not equate to easier manipulation. For
an extreme example, the worst for Sender is a stubborn Receiver who never updates
her belief. Of course, persuasion is sometimes easier: the best for Sender is a totally
gullible Receiver who adopts any suggested belief. This raises interesting, related ques-
tions. When is effective persuasion possible away from Bayesian updating? How does
Sender fare as a function of the updating rule? Are some updating rules preferable to
others? We tackle these questions in Sections 6 and 7.

Of course, by offering a method to compute Sender’s optimal payoff, our extension
of KG’s concavification argument provides a tool for addressing such questions in any
given persuasion problem. When ranking updating rules, however, more robust com-
parisons – those that hold for a large class of persuasion problems sharing a common
information structure – can be more informative of the way specific belief updating
rules systematically impact optimal persuasion. We carefully develop these ideas in
Section 6 by introducing and comparing different definitions, and illustrate the con-
cepts by means of examples. Then we prove that, perhaps surprisingly, no two rules
that systematically distort updated beliefs (and whose distortion function is invertible)
can be unambiguously compared when permitting all payoff structures. In particular,
Bayesian updating is neither systematically superior, nor systematically inferior to any
of these rules. Unambiguous comparisons between these rules may sometimes be pos-
sible, however, when restricting attention to interesting subclasses of problems (e.g.,
state-independent utility for Sender).

Effective persuasion is possible if, and only if, there is a signal that gives Sender
a strictly larger payoff than with Receiver’s default action (optimal for the prior).
Thanks to our earlier result, this can be determined, for rules that systematically distort
updated beliefs, by checking the value of a concavified function. However, given that
concavifying a function can be hard, it may be worthwhile (as in KG) to provide simpler,
necessary and sufficient conditions for when effective persuasion is possible. Section 7
speaks to the robustness of KG’s Proposition 2 in that regard, as the result extends
verbatim to most rules that systematically distort updated beliefs. Of course, their
property ‘there is information that Sender would share’ must now take into account
that Receiver’s posterior after processing that information is a distortion of the Bayesian
posterior.

Given the difficulty of concavifying general functions in the presence of multiple
states, effort has been devoted to better understand the simpler case where Receiver’s
optimal action is measurable with respect to the state’s expected value (see, e.g., KG,
Kamenica and Gentzkow (2016), and Dworczak and Martini (2019)). We show in
Section 8 that these results extend for updating rules associated to affine distortion
functions. Indeed, the original persuasion problem can then be proved to be equivalent
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to a Bayesian persuasion problem where Receiver’s utility is distorted. We use this result
to illustrate how mistakes in probabilistic inferences may impact optimal persuasion and
consumer welfare when a firm tries to persuade a customer to buy its product (a simple
model proposed by KG to illustrate their theory of Bayesian persuasion). Interestingly,
the customer may actually fare better on average (in actual terms instead of perceived
utility) when she suffers from an unfavorable updating bias towards the product.

Section 9 concludes by highlighting how our methodology for dealing with non-
Bayesian updating extend in two directions. First, optimal persuasion value remains
computable by concavification in problems where Sender views different distortion func-
tions as possible, and attaches positive probabilities to multiple updating rules. Second,
by extending the notion of distortion function to accommodate correspondences, we can
capture an idea of robust persuasion. Suppose, for instance, Sender is concerned that
Receiver’s posterior may fall in a neighborhood of the Bayesian posterior. Fearing the
worst, his indirect utility for that Bayesian posterior is now his minimal utility over
Receiver’s preferred actions for all beliefs in that neighborhood. Once again, Sender’s
optimal persuasion value remains computable by concavification, and represents a guar-
anteed level of profit despite the risk of Receiver’s mistakes.

Related Literature

Alonso and Câmara (2016) investigate optimal persuasion for a Bayesian Receiver
who has a different (full-support) prior than Sender. Galperti (2019) models changing
worldviews, which also entail non-common priors, but with different supports. Receiver
always adopts the same full-support prior (which is known to Sender and independent
of the signal) after unexpected evidence and then updates based the new prior fol-
lowing Bayes’ rule. Receivers in those papers could alternatively be interpreted as
non-Bayesian with respect to Sender’s prior, providing neat examples of rules that
systematically distort updated beliefs (see Example 5). Levy, de Barreda, and Razin
(2018a, 2018b) study persuasion with a Receiver who suffers from correlation neglect
and prove that Sender can achieve close to his first-best in that case. We show that
such updating rules do not systematically distort updated beliefs.

While we take the updating rule as an exogenous primitive capturing how Re-
ceiver performs probabilistic inferences, some endogenize it. Bloedel and Segal (2018),
Lipnowski, Mathevet, and Wei (forthcoming), and Wei (2018) study optimal persua-
sion when Receiver is rationally inattentive — i.e., Receiver is Bayesian but rationally
decides how much information to acquire. Such a Receiver would appear as mak-
ing mistakes in probabilistic inferences if one ignored the cost she faces in acquiring
information. Given her utility function, one can define an updating rule, which sys-
tematically distorts updated beliefs if the attention cost function is posterior-separable
(Caplin, Dean, and Leahy 2019) as in Lipnowski et al. (forthcoming) and Wei (2018).
Eliaz, Spiegler, and Thysen (2019) studies strategic interpretations where Receiver’s
capability of interpreting equilibrium messages is restricted by a “dictionary” chosen
by Sender. By choosing different dictionaries, Sender essentially manipulates Receiver’s
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updating rule, which enhances his persuasiveness to the point that full persuasion is
sometimes possible.

There is a contemporary effort to incorporate non-Bayesian updating in other models
of communication. Lee, Lim, and Zhao (2019) investigate the implications of conser-
vative Bayesianism (or ‘prior-biased inferences’ in their term) in cheap talk problems.
Benjamin, Bodoh-Creed, and Rabin (2019) analyze an example where an informed per-
suader chooses whether or not to reveal a verifiable signal to an audience who suffers
from base-rate neglect. In contrast, we study a wide range of updating rules with a
communication protocol where Sender has full commitment power.

The paper fits a broader effort in the literature to accommodate features of behav-
ioral economics in mechanism design. de Clippel (2014) studies implementation when
individual choices need not be compatible with the maximization of a preference or-
dering. Crawford (2019), de Clippel, Saran, and Serrano (2019) and Kneeland (2019)
study mechanism design with agents who need not have rational expectations. The
present paper pursues this broad effort by investigating the implications of mistakes in
probabilistic inferences, this time in an information design problem.

Our paper also relates to the axiomatization of non-Bayesian updating. Recent
attempts in this direction include Epstein (2006), Epstein, Noor, and Sandroni (2008),
Lehrer and Teper (2016), Zhao (2016), Augenblick and Rabin (2018), Cripps (2018), and
Chauvin (2019). Although we do not propose any axiom, the property of systematically
distorting updated beliefs can help classify different updating rules.

2 General Framework

As in KG, a state ω is drawn at random according to a full support distribution µ0 on a
finite set Ω. Sender (he) and Receiver (she) are both expected utility maximizers with
continuous von Neumann-Morgenstern utility functions v(a, ω) and u(a, ω), where a is
Receiver’s chosen action from a compact set A. Neither player knows the state, but
Sender can costlessly choose a signal π, which consists of a finite realization space S
and a family of distributions {π(·|ω)}ω∈Ω over s. It will always be assumed that S does
not contain any redundant signal, that is, each signal in S occurs with strictly positive
probability under π. Upon observing the realization s, Sender correctly updates his
belief by applying Bayes’ rule:

µBs (ω;µ0, π) =
π(s|ω)µ0(ω)∑

ω′∈Ω π(s|ω′)µ0(ω′)
. (1)

In contrast to KG, Receiver may make mistakes in probabilistic inferences. Her posterior
is denoted µRs (ω;µ0, π).

Given the prior µ0 and Receiver’s updating rule µR, signal π generates a distribu-
tion τ ∈ ∆(∆(Ω) × ∆(Ω)) over pairs of Sender-Receiver posteriors. The pair (ν, ν ′)
occurs with probability

∑
s∈S(ν,ν′)

∑
ω π(s|ω)µ0(ω), where S(ν, ν ′) is the set of signal
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realizations s such that ν = µBs ( . ;µ0, π) and ν ′ = µRs ( . ;µ0, π). Let T (µ0, µ
R) denote

the set of all such distributions obtained by varying π.
Given belief ν ′, Receiver picks an optimal action

â(ν ′) ∈ arg max
a∈A

Eν′u(a, ω),

and we assume that â(ν ′) maximizes Sender’s expected utility whenever Receiver is
indifferent between some actions at ν ′. To figure out the optimal signal, Sender aims
to solve the following optimization problem:

V (µ0, µ
R) = sup

τ∈T (µ0,µR)

Eτ v̂ = sup
τ∈T (µ0,µR)

∑
(ν,ν′)∈ supp(τ)

τ(ν, ν ′)v̂(ν, ν ′), (2)

where
v̂(ν, ν ′) =

∑
ω

ν(ω)v(â(ν ′), ω)

represents Sender’s utility should the posteriors be ν for himself and ν ′ for the Receiver.

Remark 1. The problem further simplifies should Sender’s utility be state-independent.
Indeed, v̂(ν, ν ′) = v(â(ν ′)) is then independent of ν, which will be denoted v̂(ν ′). Only
marginal distributions of Receiver’s posteriors matter. Let TR(µ0, µ

R) be the set of
distributions τR ∈ ∆(∆(Ω)) for which there exists τ ∈ T (µ0, µ

R) such that τR(ν ′) =∑
(ν,ν′)∈ supp(τ) τ(ν, ν ′), for each ν ′ in the support of τR. Then

V (µ0, µ
R) = sup

τR∈TR(µ0,µR)

EτR v̂ = sup
τR∈TR(µ0,µR)

∑
ν′∈ supp(τR)

τR(ν ′)v̂(ν ′). (3)

3 Simplifying the Problem:

An Interesting Class of Updating Rules

As is clear from (2) and (3), a critical step for computing the Sender’s optimal signal
is to gain a better understanding of the sets T (µ0, µ

R) and TR(µ0, µ
R). A key insight

in KG is that, should Receiver be rational, a distribution τR of posteriors can arise if,
and only if, it is Bayes-plausible,4 that is,∑

ν∈Supp(τR)

ντR(ν) = µ0.

Much like the revelation principle, this characterization greatly simplifies the Sender’s
problem as one doesn’t need to worry about the multitude of possible signals, but only
about the much simpler space of Bayes-plausible distributions of posteriors.

4See also Shmaya and Yariv (2009).
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Suppose now the Receiver is prone to mistakes in probabilistic inference: µR 6= µB.
Can one find a similar, simple characterization of the set TR(µ0, µ

R) of distributions
over posteriors? More generally, can one find a simple characterization of T (µ0, µ

R),
which also expresses how the Receiver’s posterior varies as a function the Sender’s
rational posterior? By ‘simple’, we mean characterization results that, like Bayes-
plausibility, can be expressed in terms of distributions over posteriors, with no reference
to signals. As we will confirm below, this would allow us to extend the tractable
techniques identified in KG to solve for optimal persuasion.

Say that µR systematically distorts updated beliefs if, for all full-support prior µ0,
there exists a distortion function Dµ0 : ∆(Ω)→ ∆(Ω) such that, for all signal π and all
signal realizations s, µRs ( . ;µ0, π) = Dµ0(µBs ( . ;µ0, π)). As desired, the function Dµ0

expresses the relationship between the Receiver’s posterior and the Sender’s rational
one in a systematic way that is independent of the signal.

Remark 2. If, in addition, the distortion functions are invertible (which, as we will
see, is the case in many examples, but is not needed for our analysis), then the set
TR(µ0, µ

R) of distributions τR over Receiver’s posteriors that can arise under µR are
characterized by the following distorted Bayes-plausibility condition:∑

µ∈Supp(τR)

D−1
µ0

(µ)τR(µ) = µ0.

Indeed, Receiver has a posterior µ with probability τR(µ) if, and only if, the rational
posterior is D−1

µ0
(µ). The characterization result then follows from the characterization

of rational distributions over posteriors through Bayes-plausibility.

Suppose that µR systematically distorts updated beliefs with distortion functions
(Dµ0)µ0∈∆(Ω). Then, for all priors µ0, Sender can generate a distribution τ over pairs of
posteriors (ν, ν ′) (that is, τ ∈ T (µ0, µ

R)) if, and only if, the marginal of τ on the first
component is Bayes-plausible and ν ′ = Dµ0(ν) for all (ν, ν ′) in the support of τ . Thus

V (µ0, µ
R) = sup

ρ Bayes-plausible

∑
ν∈ supp(ρ)

ρ(ν)v̌(ν), (4)

where
v̌(ν) = v̂(ν,Dµ0(ν)).5 (5)

Finding Sender’s best signal is thus equivalent to finding the best signal under ratio-
nality provided one uses the distorted indirect utility function v̌ defined over Bayesian
posteriors. The following result then follows from Kamenica and Gentzkow (2011)’s
Corollary 2. For each function f : ∆(Ω) → R, let f ’s concavification (Aumann and
Maschler 1995), denoted CAV (f), be the smallest concave function that is everywhere
weakly greater than f :

[CAV (f)](µ) = sup{z | (µ, z) ∈ co(f)},
5For notational simplicity, we do not label v̌ with Dµ0

while keeping in mind that it depends on
the distortion function and potentially the prior.
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where co(f) denotes the convex hull of the graph of f .

Proposition 1. Suppose that µR systematically distorts updated beliefs with distor-
tion functions (Dµ0)µ0∈∆(Ω). The value of an optimal signal for the common prior µ0

is [CAV (v̌)](µ0). Sender benefits from persuasion if, and only if, [CAV (v̌)](µ0) >
v̂(µ0, µ0).

Unlike in Bayesian persuasion, to see if Sender benefits from persuasion, we need
to compare [CAV (v̌)](µ0) to v̂(µ0, µ0) =

∑
ω µ0(ω)v(â(µ0), ω), rather than v̌(µ0) =∑

ω µ0(ω)v(â(Dµ0(µ0)), ω). The former is Sender’s default payoff with no persuasion
while the latter represents his payoff from sending an uninformative signal. The two
coincide if Receiver is Bayesian, but may differ if Sender’s belief can be modified by an
uninformative signal (Dµ0(µ0) 6= µ0).

4 Characterization and Examples

The next result offers a characterization of all updating rules that systematically distort
updated beliefs. We will see afterwards that multiple non-Bayesian updating rules
discussed in the literature have that property.

Proposition 2. The updating rule µR systematically distorts updated beliefs if, and
only if, given any full-support prior µ0, µRs ( . ;µ0, π) = µRŝ ( . ;µ0, π̂) for all signal-

realization pairs (π, s) and (π̂, ŝ) such that the likelihood ratio π̂(ŝ|ω)
π(s|ω)

is constant as a

function of ω.6

In that case, the distortion function Dµ0 is uniquely defined as follows:

Dµ0(µ) = µRŝ ( . ;µ0, π̂µ),

for all µ ∈ ∆(Ω), where π̂µ is any signal giving the realization ŝ with probability

π̂µ(ŝ|ω) = µ(ω)
µ0(ω)

minω′
µ0(ω′)
µ(ω′)

, for all ω ∈ Ω.

Let’s pause a moment and have a second look at the necessary and sufficient con-
dition identified in Proposition 2. A first requirement is that the Receiver’s updated
belief after a signal realization should be independent of the label used to describe that
realization and the set of other realizations that could have occurred. All that matters
is the likelihood of getting that signal realization as a function of the different states.
More substantially, the updated belief should remain unchanged when rescaling those
probabilities by a common factor, a property of homogeneity of degree zero.

It is easy to provide some further intuition for Proposition 2. Let’s restrict attention,
for simplicity, to signals π such that π(s|ω) > 0 for all s and all ω. It follows from (1)
that

µBs (ω;µ0, π)

µBs (ω′;µ0, π)
=
π(s|ω)

π(s|ω′)
µ0(ω)

µ0(ω′)
,

6With the convention that 0
0 can be set to any desired value, that is, no restriction is imposed for

states ω such that π(ŝ|ω) = π(s|ω) = 0.
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for all s, ω, ω′. Hence, given µ0, Bayes’ rule defines a bijection (independent of π and

s) between posterior µBs and the set of all likelihood ratios {π(s|ω′)
π(s|ω)

| ω, ω′ ∈ Ω}. If µR

also defines a bijection between this set and the posteriors it generates, then we have a
bijection (independent of π and s) between Receiver’s and Sender’s posteriors. In that

case, if π(s|ω′)
π(s|ω)

= π̂(ŝ|ω′)
π̂(ŝ|ω)

for all ω, ω′, then Receiver’s belief given the realization s for
the signal π must coincide with her belief given the realization ŝ for the signal π̂. In
the appendix, we provide a formal proof of Proposition 2, which in addition does not
rely on distortion functions to be bijections, and accommodates signal realizations that
have zero probability under some state.

4.1 Examples

Many non-Bayesian models in the literature systematically distort updated beliefs. Im-
portantly, for each of the examples below, we indicate the associated distortion func-
tions.

Example 1 (Affine Distortion). Under this class of updating rules, Receiver’s posterior
falls in between a given belief ν∗ ∈ ∆(Ω) and the correct, Bayesian posterior:

µRs ( . ;µ0, π) = χν∗ + (1− χ)µBs ( . ;µ0, π)

where 0 ≤ χ ≤ 1 is a constant parameter. This rule matches the simple, tractable
functional form Gabaix (2019) suggests to unify various aspects of behavioral economics.
A larger χ means moving further away from Bayesian updating, and the tendency to
update towards ν∗ becomes stronger. Clearly, the updating rule systematically distorts
updated beliefs, with

Dχ,ν∗

µ0
(ν) = χν∗ + (1− χ)ν

which is affine in ν.
Depending on the nature of ν∗, this updating rule captures different biases. One

may think of ν∗ as an ‘ideal’ belief, but other interpretations can also be interesting.
When ν∗ is the uniform distribution over Ω, it means Receiver tends to smooth out
posterior beliefs. We can also allow ν∗ to vary with µ0. In the presence of two states,
for instance, putting full weight under ν∗ on the more likely state under µ0 captures
the idea of ‘confirmatory bias’ (Rabin and Schrag, 1999). When ν∗ = µ0, it generates
posteriors that are closer to the prior than the Bayesian ones and is called ‘conservative
Bayesianism’ (Edwards, 1968), with the distortion function

DCBχ
µ0

(ν) = χµ0 + (1− χ)ν.

Example 2 (Motivated Updating). Consider a motivated belief updating model where
Receiver suffers a psychological loss when her posterior is away from a reference belief ν∗

and can adjust her posterior relative to the Bayesian posterior ν with some cost.7 Such

7Beliefs also impact Receiver’s utility in Lipnowski and Mathevet (2018), but belief-based utilities
do not determine posteriors in their framework. Instead, they study optimal information disclosuse
when Sender is a benevolent expert who pursues a Bayesian Receiver’s best interest.
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a trade-off is summarized by a belief-based utility, U(µ, ν, ν∗), which Receiver wants to
maximize, then the associated distortion function is

DMU
µ0

(ν) = arg max
µ∈Γ(ν)

U(µ, ν, ν∗)

where Γ(ν) ⊂ ∆(Ω) is the set of Receiver’s possible posteriors given the Bayesian one.
We assume the above constrained maximization has a unique solution at each ν ∈ ∆(Ω).

For a concrete example, consider a model of motivated conservative Bayesian up-
dating (Hagmann and Loewenstein 2017) where ν∗ = µ0. Receiver updates her beliefs
in a conservative Bayesian fashion defined in Example 1, but chooses χ to maximize
U(DCBχ

µ0
(ν), ν, µ0). Therefore

DMCB
µ0

(ν) = χ∗µ0 + (1− χ∗)ν

where χ∗ = arg maxχ∈[0,1] U(DCBχ
µ0

(ν), ν, µ0).

The updating rules above naturally satisfy the property of systematically distorting
updated beliefs since they are defined by their distortion functions. Below are some
subtler examples.

Example 3 (Grether’s α − β Model). The two-parameter updating rule below is the
most common specification of non-Bayesian updating in the literature (Grether 1980,
Benjamin, Rabin, and Raymond 2016, Augenblick and Rabin 2018, Benjamin 2019,
Benjamin et al. 2019):

µRs (ω;µ0, π) =
π(s|ω)βµ0(ω)α∑

ω′∈Ω π(s|ω′)βµ0(ω′)α

where α, β > 0. With different parameter values, it compromises four common biases
in belief updating: base-rate neglect for 0 < α < 1, overweighting prior for α > 1,
underinference for 0 < β < 1 and overinference for β > 1. To see it satisfies the
condition in Proposition 2, note that for any signal-realization pairs (π, s) and (π̂, ŝ)
described in Proposition 2, there exists a constant λ such that π(s|ω) = λπ̂(ŝ|ω), so

µRs (ω;µ0, π) =
(λπ̂(ŝ|ω))βµ0(ω)α∑

ω′∈Ω(λπ̂(ŝ|ω′))βµ0(ω′)α
=

(π̂(ŝ|ω))βµ0(ω)α∑
ω′∈Ω(π̂(ŝ|ω′))βµ0(ω′)α

= µRs (ω;µ0, π̂).

Therefore, it systematically distorts updated beliefs, with:

Dα,β
µ0

(ν) =
νβµα−β0∑

ω′∈Ω ν(ω′)βµ0(ω′)α−β
.8

8For vectors s, t ∈ RN , st denotes the component-wise product, i.e., (st)i = siti. Similarly, ( st )i = si
ti

and (sα)i = sαi .
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Example 4 (Divisible Updating). Cripps (2018) axiomatically characterizes the belief
updating processes that are independent of the grouping of multiple signals, i.e., divisible
updating rules. Any divisible updating rule is characterized by a homeomorphism F :
∆(Ω)→ ∆(Ω) such that

µRs ( . ;µ0, π) = F−1
(
µBs ( . ;F (µ0), π)

)
.

For any signal-realization pairs (π, s) and (π̂, ŝ) described in Proposition 2, µBs ( . ;F (µ0), π) =
µBs ( . ;F (µ0), π̂), so by Proposition 2, it systematically distorts updated beliefs, with

DDU
µ0

(ν) = F−1

(
ν F (µ0)

µ0∑
ω′∈Ω ν(ω′)F (µ0)(ω′)

µ0(ω′)

)
.

Note that DDU
µ0

(µ0) = µ0.

4.2 Broader Examples

Examples below involve a Bayesian Receiver, but depart from KG in other dimensions.
These cases can also be addressed using the techniques established in this paper. The
first example shows how previous results by Alonso and Câmara (2016) and Galperti
(2019) relates to our general approach.

Example 5 (Bayesian Updating with a Different Prior). A Bayesian persuasion prob-
lem where Sender and Receiver have different full-support priors, µ0 and µR0 , is equiv-
alent to a common-prior non-Bayesian persuasion problem where Receiver’s updating
rule is

µRs ( . ;µ0, π) = µBs ( . ;µR0 , π).

For any signal-realization pairs (π, s) and (π̂, ŝ) described in Proposition 2, µBs ( . ;µR0 , π) =
µBŝ ( . ;µR0 , π̂), so by Proposition 2, it systematically distorts updated beliefs, with

DNCP
µ0

(ν) =
ν
µR0
µ0∑

ω′∈Ω ν(ω′)
µR0 (ω′)

µ0(ω′)

.

This is exactly Equation (6) in Alonso and Câmara (2016, Proposition 1). Note that
DNCP
µ0

(µ0) = µR0 6= µ0.
A distortion function may exist even if Sender and Receiver have non-common priors

with different supports. Galperti (2019) assumes that when an unexpected realization
happens, Receiver first changes her prior to a full-support one, which is fixed and known
to Sender, and then applies Bayesian updating. Since Receiver’s prior only depends on
whether the evidence is expected (not π itself), her posterior is pinned down by the
Bayesian one. The corresponding distortion function only differs from the above in that
Receiver’s prior is either the original µR0 or the full-support one, depending on whether
the Bayesian posterior disproves µR0 , see Galperti (2019, Proposition 1).
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Example 6 (Probability Weighting). When making choices, people oftentimes attribute
excessive weight to events with low probabilities and insufficient weight to events with
high probability (a feature accommodated in prospect theory, for instance). While per-
haps updating beliefs accurately, Receiver may not use the Bayesian posterior correctly
when deciding on which action to take, but instead use W (µBs ( . ;µ0, π)) for some prob-
ability weighting function W : ∆(Ω) → ∆(Ω). Of course, this is an example of rule
that systematically distorts updated beliefs, where the distortion function is simply the
probability weighting function itself.

That being said, we don’t know much about the interplay between probability weight-
ing and belief updating. In another scenario, Receiver might first subconsciouly distort
the prior, using W (µ0) instead of µ0, then apply Bayesian updating, and finally distort
the posterior once again, using the posterior W (µBs ( . ;W (µ0), π)). It is straightforward
to check, as for Examples 4 and 5, that the condition in Proposition 2 is satisfied.

4.3 Non-Examples

To better understand the realm of our approach, it is also informative to see examples of
rules that do not share this feature of systematically distorting updated beliefs. Many
of these examples will be used to illustrate ideas in the rest of the paper. We start with
a couple of simple, more technical examples.

Example 7. [No Learning Without Full Disclosure] Consider a Receiver who does not
learn unless every realization of the signal reveals a state with certainty:

µRs (ω;µ0, π) =


1, if π(s|ω) > 0 and for all s′,∃!ω′ s.t. π(s′|ω′) > 0

0, if π(s|ω) = 0 and for all s′,∃!ω′ s.t. π(s′|ω′) > 0

µ0(ω), otherwise.

This updating rule satisfies the martingale property but does not systematically distort
updated beliefs since the mapping between the Bayesian posterior and the non-Bayesian
one depends on the signal.

Example 8 (Normalized Exponential Transformation). Given a function f : [0, 1] →
R+ such that f(x) > 0 if x > 0, think of the general updating rule

µfs (ω;µ0, π) =
f(π(s|ω)µ0(ω))∑

ω′∈Ω f(π(s|ω′)µ0(ω′))
.

Bayes’ rule corresponds to the special case where f is the identity. For many other
functions, however, µf is not homogenous of degree zero in π(s|·) and thus does not
systematically distort updated beliefs, by Proposition 2.

Signal realizations are oftentimes multi-dimensional. A doctor, for instance, may
run multiple tests to guide his patient; a prosector’s investigation may follow multiple
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lines of inquiry to support his case; a drug company may present multiple evidence
to get its new drug approved. In these cases, a signal realization s is more precisely
described as a vector (s1, . . . , sK), that is, Sender uses a signal where S has a product
structure: S = S1×· · ·×SK . As for rational updating, that structure is inconsequential
for rules studied thus far. Indeed, all that matters is how states correlate with signal
realizations s, and the nature of those realizations does not matter. By contrast, the
next two examples illustrate mistakes in probabilistic inferences that can arise with
multi-signals.

Example 9 (Information Aggregation Mistakes). Similar to the non-Bayesian social
learning literature,9 see DeGroot (1974), Jadbabaie et al. (2012), and Molavi et al.
(2018), Receiver treats each aspect of the signal realization in isolation (e.g., Receiver
reads sections of a report one at a time, independently drawing inferences from each),
and averages the K induced Bayesian posteriors:

µAV Gs ( . ;µ0, π) =
K∑
k=1

1

K
µBs ( . ;µ0, πk),

where πk is the marginal of π on dimension k, for k = 1, . . . , K. We can apply Propo-
sition 2 to see that µAV G does not systematically distort updated beliefs. Suppose there
are two equally-likely states, Ω = {A,B}, and a signal πγ delivering realizations in
{a, b}× {a′, b′} according to the conditional distributions given in Table 1, where γ is a
parameter between 1/4 and 1/2. For systematic distortion, it must be that the probabil-
ity of A conditional on receiving the realization (a, a′) is independent of γ (e.g., equal to
1/2 in case of Bayesian updating). By contrast, the updated belief under µAV G is equal
to 1+4γ

1+8γ
, which does vary with γ.

(a) Likelihoods under state A (b) Likelihoods under state B

Table 1. Signal πγ

Example 10 (Correlation Neglect). Alternatively, Receiver is said to suffer from ‘cor-
relation neglect’ (Levy et al. 2018a, 2018b) if she processes all K signals as a whole but
applies Bayesian updating to the wrong joint distribution, treating each component of
the joint signal as an independent signal:

9In social learning, the multiple sources of information come from different people one is connected
to in a network.
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µCNs ( . ;µ0, π) = µBs ( . ;µ0,
K∏
k=1

πk).

Again, Proposition 2 shows that this rule does not systematically distort updated beliefs:
going back to the example scenario of Table 1, the updated belief for A conditional
on (a, a′) – 1+8γ+16γ2

1+8γ+32γ2 – also varies with γ. Clearly, correlation neglect can also arise

under µAV G, but the two updating rules are quite different. For a stark example, when
(s1, ..., sK) are fully correlated, µCN is equivalent to an α − β rule where α = 1 and
β = K. By contrast, µAV G agrees with Bayesian updating in this case, recognizing that
information can be gleaned only from a single component of the realizations, as others
are just copies of it. Also, notice how distributions over posteriors satisfy the martingale
property under µAV G but not always under µCN .

Unlike Examples above, some complicated information processing models cannot be
reduced to an updating rule µRs (ω;µ0, π) that, given µ0 and π, maps each realization s to
a posterior belief and are thus beyond our framework. For example, Rabin and Schrag
(1999) model ‘confirmatory bias’ with a binary signal as probabilistically mistaking a
disconfirming realization for a confirming one, so µR maps a confirming signal to its
Bayesian posterior but a disconfirming realization to a distribution over two posteriors.10

With this model, τR induced by a signal has the same support as the Bayesian one but
different likelihoods of posteriors, which renders it hard to adapt the concavification
method. Another example is Bloedel and Segal (2018), where a rationally inattentive
Receiver’s attention cost is proportional to the mutual information between Senders
signals and her perceptions. Due to the optimal attention strategy, Receiver’s updated
belief depends on her incentive u and the entire signal structure. Hence even if we
extend our definition to allow µR to vary with u, it still does not systematically distort
updated beliefs for each given u.

5 Revelation Principle

Sender faces a moral hazard problem: he wants Receiver to take some action, but
Receiver is free to choose what she desires. KG establishes a version of the revela-
tion principle (Myerson 1991, Section 6) for Bayesian persuasion. Specifically, with a
Bayesian Receiver, any value v∗ achievable with some signal π can be achieved with
a straightforward signal π′ that produces a “recommended action” always followed by
Receiver, that is, S ′ ⊂ A and π′(a|ω) =

∑
s∈Sa π(s|ω), where Sa = {s|â(µRs ) = a} for

each a ∈ A. With µR = µB, since a was an optimal response to each s ∈ Sa, it must
also be an optimal response to the realization a from π′, so the distribution of Receiver’s
actions conditional on the state under π′ is the same as under π. However, this may not

10In contrast, the specification we give in Example 1 models ‘confirmatory bias’ with a general signal
and is applicable under our non-Bayesian persuasion framework.
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be true for a non-Bayesian updating rule µR even if it systematically distorts updated
beliefs.

Example 11. Consider Ω = {ω1, ω2, ω3}, a uniform prior µ0, and A = {a1, a2}. Re-
ceiver applies the following updating rule:

µRs (ω;µ0, π) =
π(s|ω)2µ0(ω)∑

ω′∈Ω π(s|ω′)2µ0(ω′)

which is a special case of the α−β model where α = 1 and β = 2. With signal π and Re-
ceiver’s utility function u shown in Table 2, simple algebra confirms that Sa1 = {s1, s2}
while Receiver strictly prefers a2 when facing the straightforward signal realization a1,
so the revelation principle fails.

(a) Signal π (b) Receiver’s utility u

Table 2. Example Where the Revelation Principle Fails

The reason why the revelation principle holds with a Bayesian Receiver is that any
Bayesian posterior induced by a recommendation a is a convex combination of the
Bayesian posteriors induced by the original signal realizations in Sa. Since a is Re-
ceiver’s optimal choice for each of these original posteriors, it will remain optimal for
the new posterior obtained through convex combination. Similarly, if µR systematically
distorts updated beliefs and the distortion function Dµ0 always maps a convex combi-
nation of Bayesian posteriors to a convex combination of the distorted posteriors, the
revelation principle will remain valid. The formal proof is in the appendix.

Proposition 3. Given Ω, if the distortion function Dµ0 satisfies that for any ν1 and
ν2 ∈ ∆(Ω) and any λ ∈ [0, 1], there exists γ ∈ [0, 1], such that

Dµ0(λν1 + (1− λ)ν2) = γDµ0(ν1) + (1− γ)Dµ0(ν2),

then the revelation principle holds.

Any affine distortion function certainly satisfies the condition in Proposition 3 with
γ = λ, so the revelation principle holds for the variety of cases discussed in Example
1. More generally, any projective transformation satisfies it, with γ being in general a
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function of ν1, ν2 and λ. For example, the revelation principle holds for the updating
rule discussed in Example 5: DNCP

µ0
is a projective transformation with

γ =
λ < ν1,

µR0 (ω′)

µ0(ω′)
>

λ < ν1,
µR0 (ω′)

µ0(ω′)
> +(1− λ) < ν2,

µR0 (ω′)

µ0(ω′)
>
.

Similarly, the revelation principle holds for an α−β rule where β = 1 and for a divisible
rule where F is a projective transformation (so DD

µ0
is a composition of two projective

transformations). Also note that the condition in Proposition 3 holds often when there
are only two states, as it suffices that the distortion function is monotonic.

The following proposition shows that a slightly weaker version of the condition
identified in Proposition 3 is necessary: If the images of three collinear beliefs under
Dµ0 are non-collinear, then the revelation principle fails in some persuasion problem
involving Dµ0 .

Proposition 4. Given |Ω| ≥ 3, if there exist two beliefs ν1, ν2 ∈ ∆(Ω) and 0 < λ < 1
such that Dµ0(λν1 + (1 − λ)ν2) is not collinear with Dµ0(ν1) and Dµ0(ν2), then there
exists an action space A, a Receiver’s utility function u and a signal π such that the
revelation principle does not hold.

With Proposition 4, it is easy to see that the revelation principle does not hold for
any α−β rule where β 6= 1 if there are more than two states. Combining the above two
propositions and the fundamental theorem of projective geometry leads to the following
corollary:

Corollary 1. Given |Ω| ≥ 3, the revelation principle holds with an one-to-one distor-
tion function Dµ0 if, and only if, Dµ0 is a projective transformation.

When the revelation principle holds in a persuasion game, any value v∗ achievable
with some signal can be achieved with a straightforward signal. Thus optimal persua-
sion (if well-defined) can be achieved in such cases with at most |A| signal realizations.
Many more signal realizations may be required for optimal persuasion when the revela-
tion principle fails.11 For a straightforward example, consider a Receiver who does not
learn unless there is full disclosure (Example 7). When Eµ0v(â(µ0), ω) < Eµ0v(â(ω), ω)
(which is generically true if u = v), Sender will choose full disclosure, so optimal per-
suasion requires |Ω| signal realizations, which may be much larger than |A|.

Another result from KG tells us that optimal Bayesian persuasion can be achieved
with a signal that has at most |Ω| realizations. This follows from an application of
Caratheodory’s theorem, and remains true independently of the properties of the indi-
rect utility functions. Thus this result extends to any rule that systematically distorts
updated beliefs.

11There are also situations with an optimal signal involving less than |A| realizations while the
revelation principle fails.
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Proposition 5. Whenever an optimal signal exists,12 optimal persuasion can be achieved
using a signal with at most |Ω| realizations.

6 Which Updating Rule is Preferable?

By now, we understand better how each persuasion problem generates a value for
Sender. Receivers can then be ranked based on the value they generate given the
updating rules they use. In this section, we intend to better understand the role of non-
Bayesian updating rules on optimal persuasion by uncovering more robust comparisons,
that is, comparisons that hold for a large class of persuasion problems sharing a common
information structure.

Adopting Bayes’ rule to update beliefs is the rational, correct thing to do. Without
thinking much about it, one could conjecture that Sender can always profitably nudge
a receiver who suffers from mistakes in statistical inferences. Very quickly, one realizes
that this view is naive. For instance, a close-minded person who never updates beliefs
is the worst possible Receiver. Of course, other updating rules may be preferable to
Bayesian updating for Sender. A totally gullible person, who adopts the belief stated in
a signal realization without paying attention to the probability distribution generating
it, is best for Sender. How do more realistic updating rules compare, to Bayesian
updating and with each others?

Fix the set Ω of states of the world, and the common prior µ0. Suppose Ann uses the
updating rule µR, while Beth uses the updating rule µ̂R. Sender unambiguously prefers
Ann over Beth (or µR over µ̂R, denoted µR � µ̂R) if, for all action set A, all utility
functions (u, v), and all signal π̂, there exists a signal π such that his expected utility
when using π in the persuasion problem (Ω, µ0, A, (u, v), µR), is larger or equal than his
expected utility when using π̂ in the modified persuasion problem with µ̂R replacing
µR. The comparison is strict (µR � µ̂R) if, in addition, there exists ε > 0, (u, v), A,
and a signal π such that his expected utility when using π given µR in the persuasion
problem (Ω, µ0, A, (u, v), µR), is larger or equal than ε plus his expected utility when
using π̂ in the modified persuasion problem with µ̂R replacing µR.

What limits Sender in his information design problem is the set of distributions over
Sender-Receiver posterior pairs he can generate. Say that Ann is easier to persuade than
Beth if T (µ0, µ̂

R) ⊆ T (µ0, µ
R). The comparison is strict if the inclusion is strict, that

is, strictly more distributions over posterior pairs are achievable when facing Ann.
Section 2 suggests a close link between unambiguous preference comparisons and

being easier to persuade. A couple of subtleties arise though. Obviously, Sender un-
ambiguously prefers Ann over Beth if Ann is easier to persuade. However, the converse
need not hold and being strictly easier to persuade need not imply a strict prefer-
ence. This is because not all distributions over posterior pairs are critical for optimal
persuasion.

12As is the case, for instance, if the distortion function is continuous.
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Example 12. Suppose Receiver gets overwhelmed by, and stops paying attention to,
signals with too many realizations. Formally, µRs (ω;µ0, π) = µBs (ω;µo, π), if π has at
most K signal realizations, while µRs (ω;µo, π) = µ0(ω) for other signals π. Suppose
for the sake of this example that there happens to be fewer states than K: |Ω| ≤ K.
Clearly, persuasion is strictly easier with µB than µR, since distributions over posterior
pairs with more than K elements in the support are achievable when Receiver pays
attention to realizations of all signals. Remember that, given any signal and Bayesian
updating, Sender can achieve the same expected value using a signal with at most |Ω|
signal realizations. Hence, Sender does not strictly prefer µB over µR.13 It is easy then
to also construct a variant µ̂R of µR that Sender unambiguously strictly prefers over
µB, while T (µ0, µ̂

R) is not a subset of T (µ0, µ
B).

Say that the posterior ν ′ 6= µ0 is feasible for Ann (or given µR) if ν ′ belongs to
the support of some element of TR(µ0, µ

R), that is, if it arises with strictly positive
probability for some signal, when Receiver updates her beliefs according to µR. Other-
wise, it is said to be unfeasible for Ann. As we will argue in the proof of the following
proposition, if a posterior is feasible given µR, but not given µ̂R, then there exists a pair
of utility functions such that Sender gets a strictly higher value of persuasion with µR

instead of µ̂R. We are now ready to provide a fuller understanding of how unambiguous
preference comparisons relate to the notion of being easier to persuade.

Proposition 6. (a) Sender unambiguously prefers Ann over Beth if she is easier to
persuade;

(b) If Sender unambiguously prefers Ann over Beth, and at least one posterior is
feasible for Ann but not for Beth, then Sender unambiguously strictly prefers Ann
over Beth;

(c) If one posterior is feasible for Ann, but not for Beth, and another is feasible for
Beth, but not for Ann, then there is no unambiguous comparison between Ann
and Beth.

Example 9-10 (Continued). Notice that a Receiver suffering from correlation neglect
is easier to persuade than its Bayesian counterpart, since any distribution of Bayesian
posteriors can be achieved by unidimensional signals. Hence, µCN � µB by Proposition
6(a). Similarly, µAV G � µB. In fact, Levy et al. (2018b, Theorem 1) prove that Sender
can approach his first-best payoff under µCN by using signals with sufficiemtly many
components. Hence Sender unambiguously prefers µCN to essentially all alternative
updating rules. However, no such universal dominance holds for µAV G because the set
of distributions over posteriors in this case remains rather limited even if one allows
for any number of signal dimensions. Indeed, they must always satisfy the martingale

13Given Proposition 5, this example extends when replacing µB by any rule that systematically
distorts updated beliefs.
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property. 14

Unambiguous preference comparisons are demanding, as they must hold for all per-
suasion problems sharing the same original information structure (Ω, µ0). If no such
unambiguous comparison holds, a fuller understanding arises by focusing on smaller
classes of persuasion problems. We will consider the case where Sender’s utility is state
independent. The definitions of � and � can be adapted at once to reflect this addi-
tional restriction on Sender’s utility. The resulting relations allow to compare more up-
dating rules, but remain incomplete. Formally, Sender unambiguously prefers Ann over
Beth whatever his state-independent utility (or µR over µ̂R, denoted µR �∗ µ̂R) if, for all
(A, u, v) such that v is state independent, and all signal π̂, there exists a signal π such
that his expected utility when using π in the persuasion problem (Ω, µ0, A, (u, v), µR),
is larger or equal than his expected utility when using π̂ in the modified persuasion
problem with µ̂R replacing µR. The definition of � is adapted similarly.

Part (a) of Proposition 6 becomes a bit stronger, as Sender unambiguously prefers
Ann over Beth, whatever his state-independent utility, as soon as TR(µ0, µ̂

R) ⊆ TR(µ0, µ
R)

(comparing only feasible posteriors for Ann and Beth, instead of having an inclusion
in terms of Sender-Receiver posterior pairs). The astute reader will have noticed that
parts (b) and (c) were proved with a state-independent utility function for Sender, and
hence remain valid.

Proposition 6∗ If TR(µ0, µ̂
R) ⊆ TR(µ0, µ

R), then µR �∗ µ̂R. Furthermore, parts
(b) and (c) of Proposition 6 continue to apply with �∗ instead of �.

The next example illustrates Proposition 6∗.

Example 13 (Conservative Bayesian). It is easy to check that TR(µ0, µ
CBχ) is strictly

decreasing in χ, that is, more distributions over Receiver’s posteriors are feasible the
closer she is from updating rationally. By Proposition 6∗, we conclude that Sender
unambiguously (strictly) prefers smaller degrees of conservatism (that is, being closer
to rationality), whatever his state-independent utility.

Does this comparison extend to the whole class of Sender’s preferences? It may
come as a surprise that the answer is negative: there are intuitive persuasion problems
(with state-dependent utility, of course) where Sender prefers conservative Bayesian
updating over rationality.

Example 13 (Continued). A manager must decide whether to assign an employee

14By following the arguments developed in the rest of this section, the reader can easily check that
Sender is then indifferent between µB and µAVG when his utility is state-independent, but that he
may benefit from the discrepancy between µB and µAVG otherwise (implying that µAVG � µB). We
will see, for instance, that Bayesian and conservative Bayesian are not unambiguously comparable (see

Example 13 and Proposition 7 below). Yet µAVG � µCB
1
2 (simply adding to any signal a second

component that is uninformative).
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to a new venture, and if so, whether to assign Abe or Bob to it. Requirements in terms
of effort and qualification, as well as levels of profit, are uncertain. For the sake of this
example, we simply consider two equally-likely states, ω1 and ω2. The manager’s and
Abe’s payoffs are provided in Table 3 (as will be clear shortly, Bob’s payoffs are irrele-
vant). Abe gets a zero payoff if he is not picked, and the manager gets a zero payoff if
the new venture is not pursued. The manager’s payoff from the venture is positive in ω1

and negative in ω2, whatever the selected employee, but losses and gains are amplified
when picking Bob. When selected, Abe’s payoffs are perfectly aligned with those of his
manager. Abe is in charge of gathering preliminary information about the state to help
his manager decide what to do.

(a) Manager (Receiver) (b) Abe (Sender)

Table 3. Players’ Payoffs

Consider first the case of a rational manager. If hiring Bob was not an option, then
incentives would be perfectly aligned, and optimal persuasion would be fully informative.
However, this strategy is clearly sub-optimal in the presence of Bob, as the manager
would then either pick him, or no one. Instead, Abe picks the signal that generates
the posterior 0 with probability 3/8, and the posterior 4/5 (the threshold above which
the manager will pick Bob) with probability 5/8. Abe’s expected utility is 5/8 times
(4/5)− 2(1/5), or 1/4. Figure 1(a) depicts the situation.

(a) Rational Manager (b) Conservative Bayesian Manager

Figure 1. Optimal Persuasion
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Suppose instead the manager updates her beliefs conservatively, say with χ = 1/10.
Now Abe can use a signal that will more accurately reveal to his manager the state ω1,
without jeopardizing his chance of being selected over Bob. Optimal persuasion gen-
erates the Bayesian posterior 0 with probability 2/5, and the Bayesian posterior 5/6
(so that the manager’s incorrect updated belief is again precisely 4/5) with probability
3/5. Abe’s expected utility is 3/5 times (5/6)− 2(1/6), or 3/10. Figure 1(b) depicts the
situation. Thus Abe ends up strictly better off with a conservative Bayesian manager
(χ = 1/10) than with a rational manager (χ = 0).

The previous example shows how TR(µ0, µ̂
R) ⊆ TR(µ0, µ

R) does not imply that
Sender unambiguously prefers µR over µ̂R. Indeed what matters for such comparisons
are the distributions over Sender-Receiver posterior pairs generated by µR and µ̂R.
With this in mind, we come to the perhaps surprising result that most rules that
systematically distort updated beliefs are incomparable when Sender’s preference is
unrestricted. Though the conclusion holds even more generally, we focus on the large
class of invertible distortion functions (which encompasses all the examples in Section
4.1).

Proposition 7. Let µR and µ̂R be two distinct rules that systematically distort updated
beliefs. If the associated distortion functions are one-to-one, then neither µR � µ̂R, nor
µ̂R � µR.

Since Bayes rule also has an invertible distortion function (identity function), Propo-
sition 7 implies that in general whether Sender prefers a non-Bayesian Receiver who
systematically distorts updated beliefs over a Bayesian one depends on the class of
persuasion problems considered.

7 When Does Sender Benefit from Persuasion?

KG’s analysis highlights the following surprising fact. By designing the right experi-
ment, a sender can oftentimes nudge a receiver’s decision to her advantage, even though
the receiver is rational and aware of the sender’s intent to persuade.

A priori, one may have conjectured that profitable persuasion becomes only more
prevalent when Receiver does not update beliefs rationally. Yet, we understand by now
that mistakes in probabilistic inferences need not make persuasion easier. Thanks to
the previous section, we can say this: if µR � µ̂R and Sender benefits from persuasion
given µ̂R, then so does he given µR. A similar result holds when replacing � by �∗,
and restricting attention to state-independent utility for Sender. Given that � and �∗
are incomplete, more effort is required to understand circumstances where persuasion
is profitable.

In fact, we already have a characterization result: persuasion is profitable if and
only if [CAV (v̌)](µ0) > v̂(µ0, µ0) (see Proposition 1). However, while insightful when-
ever v̌ can be graphed to construct its concavification, checking this inequality can be
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challenging when there are more than three states. A similar issue arises in KG. To
address it, they propose a simpler condition that characterizes profitable persuasion
for almost all prior µ0 (using the fact that A is finite). We now show that this result
extends to updating rules that systematically distort updated beliefs, provided that the
distortion function is regular, that is, such that Dµ0 is continuous and Dµ0(µ0) = µ0.

As in KG, we say “Receiver’s preference is discrete at belief µ if Receiver’s ex-
pected utility from her preferred action â(µ) is bounded away from her expected utility
from any other action, i.e., if there is an ε > 0 such that ∀a 6= â(µ), Eµu(â(µ), ω) >
Eµu(a, ω)+ε.” This is copied verbatim from KG, as it corresponds to a joint restriction
on Receiver’s belief and utility, which has nothing to do with how Receiver updates her
beliefs. Clearly, Receiver’s preference is discrete at almost all belief µ (since A is finite,
a non-discrete preference requires indifference between at least two distinct actions).

We say there is information Sender would share (given the prior µ0 and the distortion
function Dµ0) if there is a belief ν such that v̌(ν) > v̂(ν, µ0). In words, if Sender had
in his possession private information in the form of a signal realization that led him
to believe ν, then he’d prefer sharing that information with Receiver (leading him to
believe Dµ0(ν)) rather than having him act based on the prior. This extends KG’s
property to reflect the fact that Receiver’s posterior is distorted. We can now prove the
following.

Proposition 8. Fix any updating rule that systematically distorts updated beliefs, with
a regular distortion function. The two following properties hold.

(a) If there is no information Sender would share at µ0, then Sender does not benefit
from persuasion.

(b) The converse hold if Receiver’s preference is discrete at the prior (which is gener-
ically true when A is finite): if there is information Sender would share, then Sender
benefits from persuasion.

We see that KG’s Proposition 2 is quite robust. While regularity is not needed for
part (a), we show in the Online Appendix (by means of counter-examples) that part (b)
does not extend to irregular distortion functions (and, a fortiori, more general updating
rules).

8 Receiver’s Action Varies with Expected State

When the state space is large, the standard concavification method has limited ap-
plicability. For this reason, KG (and subsequent papers including Gentzkow and Ka-
menica (2016) and Dworczak and Martini (2019)) extend their analysis to persuasion
problems where Sender’s preference is state-independent and Receiver’s optimal action
varies only with the expected state. In other words, there exists ṽ : R → R such that
v(â(ν ′)) = ṽ(Eν′(ω)), for all Receiver’s belief ν ′.

In this section, we establish that such techniques further extend to accommodate
updating rules that systematically distort updated beliefs with affine distortion func-
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tions.15 Indeed, we show next that Sender’s optimal signals can be found by analyzing
a modified problem where Receiver is rational, but her utility is distorted.

Proposition 9. Suppose µR systematically distorts updated beliefs, with an affine dis-
tortion function Dµ0. Then a signal is optimal in the original persuasion problem
(Ω, µ0, A, (u, v), µR) if, and only if, it is optimal in the Bayesian persuasion problem
(Ω, µ0, A, (ũ, v), µB), where ũ(a, ω) is the expected utility of action a under the distor-
tion of the Dirac probability measure δω: ũ(a, ω) = EDµ0 (δω)u(a, ·).

Since Sender’s utility remains unchanged when transforming the original problem
(Ω, µ0, A, (u, v), µR) into its fictitious variant (Ω, µ0, A, (ũ, v), µB), Sender’s expected
utility from the optimal signals coincides in both problems. The two problems are thus
identical for Sender, but for a small difference. The above result captures the best
Sender can achieve by using some signal, but of course he also has the option to use
no signal at all. This may be different from using an uninformative signal, as Dµ0(µ0)
need not equal µ0. For instance, being irrationally biased towards a cause, Receiver may
interpret uninformative evidence about its value as positive news. To account for this
possibility, we must keep in mind that Sender benefits from persuasion if, and only if,
his expected utility from the optimal signal identified in Proposition 9 is strictly larger
than v̂(µ0, µ0), Sender’s expected utility in the absence of persuasion. To summarize,
Sender’s maximal payoff in (Ω, µ0, A, (u, v), µR) is the maximum of v̂(µ0, µ0) and his
maximal payoff in (Ω, µ0, A, (ũ, v), µB).

As illustration, recall the distortion function in Example 1, Dχ,ν∗
µ0

(ν) = χν∗+(1−χ)ν,
is affine. Though somewhat limited, this class of updating rules is nonetheless rich
enough to gain insight into how mistakes in probabilistic inferences can impact outcomes
in applications. Let’s revisit for instance KG’s Example B in Section V.

Example 14 (Supplying Product Information). A firm (Sender) faces a single, risk
neutral consumer (Receiver) who decides whether to buy one unit of the firm’s product.
The state ω ∈ [0, 1] measures the match quality between the consumer’s preference
and the product, and represents her consumption utility. Her outside option utility is
u ∈ [0, 1], should she decide not to purchase. Therefore, she buys the product if, and
only if, Eν′ [ω] ≥ u, where ν ′ is her belief regarding ω. The firm and the consumer share
a common prior µ0 about ω which has full support and no atoms on [0, 1]. For the
problem to be interesting, we assume that Eµ0 [ω] < u (otherwise, the firm sells without
persuading). The firm can choose a signal π : [0, 1]→ ∆(S) to reveal some information
about the match quality ω (e.g., a trial version of the product or an advertisement with
certain details).

Let’s apply Proposition 9 to a consumer with Dχ,ν∗
µ0

. With 0 denoting ‘not buying’
and 1 denoting ‘buying’, Receiver’s modified utility is given by:

ũ(0, ω) = χEν∗ [u] + (1− χ)u = u

ũ(1, ω) = χEν∗ [ω
′] + (1− χ)ω

15That is, Dµ0(λν1 + (1− λ)ν2) = λDµ0(ν1) + (1− λ)Dµ0(ν2), for all λ ∈ [0, 1] and all beliefs ν1, ν2.
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for all ω ∈ [0, 1]. Persuasion in the original problem is equivalent to Bayesian persua-
sion with Receiver’s modified utility ũ. A strategically irrelevant re-parametrization of
ũ brings us back to a Bayesian version of the original problem where only the outside
option’s utility has been modified:

˜̃u(0, ω) =
u− χEν∗ [ω′]

1− χ
and ˜̃u(1, ω) = ω,

for all ω ∈ [0, 1].
Using the terminology introduced for Bayesian persuasion in KG’s Section IV, it

is easy to check that preferences are more aligned when the outside option’s value goes
down. Thus Sender’s optimal profit goes up when Eν∗ [ω] increases. Let’s now look at
the impact of changes in χ. Say that the updating bias is unfavorable to the product if
the Bayesian posterior is pulled in a direction that makes Receiver less likely to buy,
that is, if Eν∗ [ω] < u. In that case, Sender’s optimal profit goes down as χ increases,
and vice versa when the updating bias is favorable to the product. Two special cases are
worth noting. First, the consumer’s updating bias can be so unfavorable to the product
that, contrary to the rational case, she cannot be persuaded to buy in any way. Indeed,
the modified outside option value is larger than 1 when Eν∗ [ω] < u and 1 ≥ χ > 1−u

1−Eν∗ [ω]
.

Second, the consumer’s updating bias can be so favorable to the product that the firm
succeeds at selling by using an uninformative signal. This happens when Eµ0 [ω] is
larger or equal to the modified outside option value, that is, when Eν∗ [ω] > u and

1 ≥ χ ≥ u−Eµ0 [ω]

Eν∗ [ω]−Eµ0 [ω]
.

We now turn our attention to consumer’s welfare. Sobel (2013) makes the following
observation:

“Systematic evidence of behavioral biases will motivate different ways in
which opportunistic Senders can relax the Bayesian plausibility restriction
and take advantage of biased Receivers. It is not necessary that a cognitive
bias will make the Receiver worse off. It might be interesting to investigate
circumstances in which behavioral biases are not costly. When biases are
not costly, they would presumably survive evolutionary arguments designed
to eliminate non-optimizing decision rules.”

We investigate this idea in our example by computing how well the consumer fares on
average (in actual terms, not in terms of perceived utility). For this, we must know what
the optimal persuasion strategy is, which is doable thanks to Proposition 9 and Corollary
2 of Dworczak and Martini (2019). It is optimal to reveal whether ω is below or above

u∗ where E[ω|ω ≥ u∗] = u−χEν∗ [ω]
1−χ (remember that the revelation principle holds, and

hence two signal realizations are sufficient). With such a signal, the consumer’s actual

average payoff is Eµ0 [u1[ω<u∗] + ω1[ω≥u∗]] = u +
∫ 1

u∗
(ω − u)dµ0, which is maximized at

u∗ = u (coinciding with the first-best), increases below that threshold and decreases above
it. If the consumer’s updating bias is favorable to the product, then u∗ decreases with
χ, and the highest payoff is reached when χ = 0 (Bayesian updating). However, when
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the consumer’s updating bias is unfavorable to the product, her actual average payoff
increases with χ up to the first best when χ = E[ω|ω≥u]−u

E[ω|ω≥u]−Eν̄ [ω]
. Receiver over consumes

under optimal persuasion when she is rational (χ = 0) and an updating bias against
the product turns out to be beneficial, as it forces Sender to recommend buying only for
states above a larger threshold, which better aligns the consumer’s preference.

9 Extensions

9.1 Belief over Updating Rules

Suppose Sender is unsure about Receiver’s updating rule, and instead maximizes his
expected payoff given a probabilistic belief λ regarding µR. Each realization s of a
signal π now generates a distribution over posterior pairs: (µBs ( . ;µ0, π), µRs ( . ;µ0, π))
arises with probability λ(µR)

∑
ω π(s|ω)µ0(ω). As π varies, we obtain a set T (µ0, λ) that

generalizes the definition of T (µ0, µ
R). One can then adapt (2) by averaging payoffs over

all possible updating rules in the support of λ, which resembles the multiple-receivers,
public-information case in KG’s Section VI.B.

When focusing on rules that systematically distort updated beliefs, λ can be thought
of as a distribution over distortion functions. For instance, Sender may use Grether
(1980) to model Receiver’s inferences, along with a probabilistic belief regarding the
specific values of the parameters α and β. Interestingly, optimal persuasion value can
still be found by concavification in such cases, simply by adjusting Sender’s indirect
utility for Bayesian posteriors. Indeed, Sender’s optimization problem becomes:

V (µ0, λ) = sup
ρ Bayes-plausible

∑
ν∈ supp(ρ)

ρ(ν)vλ(ν)

where
vλ(ν) =

∑
Dµ0∈ supp(λ)

λ(Dµ0)v̌(ν|Dµ0)

is the expectation of the value function defined in (5).16 Proposition 1 extends, and
optimal persuasion requires at most |Ω| signal realizations (Proposition 5).

9.2 Robust Persuasion

Suppose Sender models Receiver’s probabilistic inferences using Bayesian updating as
a benchmark, but fears that she may make some limited mistakes. For instance, by not
making careful computations, Receiver’s perceived posteriors may be in the ballpark of,
but not always equal to, the correct posterior. To fix ideas, suppose Sender is confident
that Receiver’s posterior falls within distance ε of the Bayesian posterior ν, but is

16Recall that v̌ defined in (5) depends on the distortion function Dµ0
. Here we make such dependence

explicit since we are varying Dµ0
.
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concerned though that any posterior within the ball B(ν, ε) is possible. Sender may
then be interested in finding a signal that guarantees him a good profit whatever the
mistakes Receiver may make within those bounds. Hence Sender’s indirect utility for a
posterior ν is the infimum of his indirect utility for posteriors in its neighborhood, and
the ε-robust optimal persuasion value can be found by concavification of this function.
Indeed, Sender solves the following optimization problem:

V (µ0, ε) = sup
ρ Bayes-plausible

∑
ν∈ supp(ρ)

ρ(ν)vε(ν)

where
vε(ν) = inf

ν′∈B(ν,ε)
v̂(ν, ν ′).

With vε substituting v̌, our key simplifying results still apply. Effectively, B(·, ε) should
be viewed as a distortion correspondence.17 By selecting the worst posterior for Sender
in each set, to reflect the desire for a guaranteed payoff, it reduces to a distortion
function as in the rest of the paper.

Robustness has been a recent topic of interest in mechanism design, aiming to find
institutions guaranteeing good outcomes for a large class of model misspecifications.
The above can be seen as an analogous exercise in simple information design problems.
Because the information designer (Sender) faces a single agent (Receiver), discontinuity
issues arising in mechanism design (see Oury and Tercieux (2012)) are not a problem
here: vε converges to v as ε goes to 0 as soon as v̂ is continuous.

Robust persuasion has intuitive implications. Consider KG’s prosecutor-judge ex-
ample: the prosecutor wants a guilty verdict, but the judge chooses to convict only
when her belief of the defendant being guilty surpasses some threshold τ ∗ larger than
the prior (that is, conviction occurs only with persuasive evidence). Under optimal
Bayesian persuasion, signal realizations (evidence) either make the judge certain of in-
nocence, or bring her belief exactly at τ ∗. Indeed, it maximizes the conviction rate
by pooling the largest possible fraction of innocent defendants with the guilty while
keeping the judge willing to convict. This strategy, however, is very risky for the prose-
cutor, should he fear the judge’s probabilistic inferences might not always be perfectly
accurate. For ε-robustness, the prosecutor will reduce a bit the conviction rate by con-
servatively triggering a larger Bayesian posterior of τ ∗ + ε. Indeed, vε remains a step
function as in the Bayesian case, but with a threshold at τ ∗ + ε instead of τ ∗.
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Appendix

Proof of Proposition 2. For sufficiency, we start by fixing a full-support prior µ0 and let
Dµ0 be the function defined in the statement. Consider now any signal π and any signal
realization s. We must prove that µRs ( . ;µ0, π) = Dµ0(µBs ( . ;µ0, π)). To do this, we
apply the assumption for sufficiency to show that µRs ( . ;µ0, π) = µRs ( . ;µ0, π̂ν) where
ν = µBs ( . ;µ0, π). Notice that, by Bayes rule, π(s|ω) = 0 if and only if ν(ω) = 0, so by
definition of π̂ν , π̂ν(ŝ|ω) = 0 if and only if π(s|ω) = 0. Hence it remains to check that
π̂(ŝ|ω)
π(s|ω)

is constant over the set of ω’s such that both π(s|ω) > 0 and π̂(ŝ|ω) > 0. Notice
that

π̂ν(ŝ|ω)

π(s|ω)
=

ν(ω)

µ0(ω)π(s|ω)
min
ω′

µ0(ω′)

ν(ω′)
=

1∑
ω′′∈Ω π(s|ω′′)µ0(ω′′)

min
ω′

µ0(ω′)

ν(ω′)
,

which is indeed independent of ω.
For necessity, suppose that µR systematically distorts updated beliefs with distor-

tion functions (D̂µ0)µ0∈∆(Ω). Consider now some full-support prior µ0 and two signal-

realization pairs (π, s) and (π̂, ŝ) such that the likelihood ratio π̂(ŝ|ω)
π(s|ω)

is constant over

the set of ω’s for which π(s|ω) > 0 and π̂(ŝ|ω) = 0 whenever π(s|ω) = 0. We have
to prove that µRs ( . ;µ0, π) = µRŝ ( . ;µ0, π̂), or equivalently that D̂µ0(µBs ( . ;µ0, π)) =

D̂µ0(µBŝ ( . ;µ0, π̂)). To establish this last equality, we simply check that µBs ( . ;µ0, π) =
µBŝ ( . ;µ0, π̂). For the constant ratio condition to hold, it must be that, for each ω,
π(s|ω) > 0 if and only if π̂(ŝ|ω) > 0. If π(s|ω) = π̂(ŝ|ω) = 0, then both µBs (ω;µ0, π)
and µBŝ (ω;µ0, π̂) equal 0. If both π(s|ω) and π̂(ŝ|ω) are strictly positive, then

µBs (ω;µ0, π) =
π(s|ω)µ0(ω)∑

ω′∈Ω π(s|ω′)µ0(ω′)
=

π̂(ŝ|ω)µ0(ω)∑
ω′∈Ω π̂(ŝ|ω′)µ0(ω′)

= µBŝ (ω;µ0, π̂),

as desired. Since the necessary condition has been established, we know now from the
first part of the proof that the distortion functions Dµ0 defined in the statement can be

used instead, and hence D̂µ0 = Dµ0 .

Proof of Proposition 3. Given an arbitrary compact action set A, an arbitrary utility
function u(a, ω) for Receiver, and an arbitrary signal on Ω with a realization set S. let
Sa = {s|â(ν ′s) = a} for each a ∈ A, where ν ′s is Receiver’s posterior after observing
realization s. Define a straightforward signal with S ′ = A and π′(a|ω) =

∑
s∈Sa π(s|ω).

We want to show that a is also an optimal response to the realization a from π′. For
any a ∈ Sa
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µBa (ω;µ0, π
′) =

∑
s∈Sa µ0(ω)π(s|ω)∑

ω′
∑

s′∈Sa µ0(ω′)π(s′|ω′)

=
∑
s∈Sa

µ0(ω)π(s|ω)∑
ω′′ µ0(ω′′)π(s|ω′′)

∑
ω′′ µ0(ω′′)π(s|ω′′)∑

ω′
∑

s′∈Sa µ0(ω′)π(s′|ω′)

=
∑
s∈Sa

λsµ
B
s (ω;µ0, π)

where λs =
∑
ω′′ µ0(ω′′)π(s|ω′′)∑

ω′
∑
s′∈Sa µ0(ω′)π(s′|ω′) = τs∑

s′∈Sa τs′
.

By assumption, there exists {γs}s∈Sa such that

µRa (ω;µ0, π
′) = Dµ0(µBa (ω;µ0, π

′))

= Dµ0(
∑
s∈Sa

λsµ
B
s (ω;µ0, π))

=
∑
s∈Sa

γsDµ0(µBs (ω;µ0, π))

=
∑
s∈Sa

γsµ
R
s (ω;µ0, π)

so we have

â(µRa (·;µ0, π
′)) = arg max

a′∈A

∑
ω

u(a′, ω)µRa (ω;µ0, π
′)

= arg max
a′∈A

∑
s∈Sa

∑
ω

u(a′, ω)γsµ
R
s (ω;µ0, π)

Since for all s ∈ Sa, a maximizes
∑

ω u(a′, ω)µRs (ω;µ0, π), a should also maximize the
convex combination of those terms, so â(µRa (·;µ0, π

′)) = a. This proves the sufficiency.

Proof of Proposition 4. First, consider the case where µ0 is a convex combination of ν1

and ν2. If Dµ0(µ0) is not collinear with ν ′1 and ν ′2 (Case 1.1), we can find an action space
A, a Receiver’s utility function u(a, ω) and a signal π that induces ν ′1 and ν ′2 with S =
{s1, s2}, such that Sa = {s1, s2} for π, yet a 6= arg maxa′∈A

∑
ω u(a′, ω)µRa (·;µ0, π

′) =
arg maxa′∈A

∑
ω u(a′, ω)Dµ0(µ0)(ω) for the non-informative straightforward signal π′,

which is a contradiction to the revelation principle. If otherwise Dµ0(µ0) is collinear
with ν ′1 and ν ′2 (Case 1.2), then µ0 6= λν1 + (1− λ)ν2 and Dµ0(µ0) is not collinear with
ν ′1 (ν ′2) and ν∗ = Dµ0(λν1 +(1−λ)ν2). WLOG, assume µ0 is a convex combination of ν1

and λν1 + (1− λ)ν2, then we can choose a signal π with S = {s1, s2} where s1 induces
Receiver’s posterior ν ′1 and s2 induces ν∗ to get the same contradiction as in Case 1.1.
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When µ0 is collinear with ν1 and ν2 but not a convex combination of ν1 and ν2, we
can pick a ν3 collinear with ν1 and ν2 such that µ0 is a convex combination ν1 (ν2) and
ν3. If Dµ0(µ0) is not collinear with ν ′1 and ν ′3 (Case 2.1), then this is essentially the
same as Case 1.1. If Dµ0(µ0) is collinear with ν ′1 and ν ′3 but ν∗ is not collinear with ν ′1
and ν ′3 (Case 2.2.1), then this is essentially the same as Case 1.2. If both Dµ0(µ0) and
ν∗ are collinear with ν ′1 and ν ′3 (Case 2.2.2), then Dµ0(µ0) cannot be collinear with ν ′2
and ν ′3, so we are back at Case 1.1 with ν1 substituted by ν3.

Now suppose µ0 is not collinear with ν1 and ν2. Pick any point ν3 on the ray
that goes from λν1 + (1 − λ)ν2 through µ0 such that there exists a Bayes plausible

distribution of posteriors τ with supp(τ) = {ν1, ν2, ν3} and τ(ν1)
τ(ν2)

= λ
1−λ . If ν ′3 =

Dµ0(ν3) is not collinear with ν ′1 and ν ′2 (Case 3.1), then there exists a convex re-
gion in ∆(Ω) which contains ν ′1 and ν ′2 but not ν ′3 nor ν∗. Therefore, we can find
an action space A, a Receiver’s utility function u(a, ω) and a signal π with S =
{s1, s2, s3} where si induces νi and ν ′i for Sender and Receiver, such that Sa = {s1, s2}
for π yet a 6= arg maxa′∈A

∑
ω u(a′, ω)µRa (·;µ0, π

′) = arg maxa′∈A
∑

ω u(a′, ω)ν∗(ω), so
the revelation principle fails. If ν ′3 is collinear with ν ′1 and ν ′2, then we can find
an action space A, a Receiver’s utility function u(a, ω) and a signal π with S =
{s1, s2, s3}, such that Sa = {s1, s2, s3} for π, so π′ should reveal no information.
If Dµ0(µ0) is not collinear with ν ′1 and ν ′2 (Case 3.2.1), we can choose u such that
a 6= arg maxa′∈A

∑
ω u(a′, ω)µRa (·;µ0, π

′) = arg maxa′∈A
∑

ω u(a′, ω)Dµ0(µ0)(ω), which
contradicts the revelation principle. If otherwise Dµ0(µ0) is collinear with ν ′1 and ν ′2
(Case 3.2.2), then Dµ0(µ0) 6= ν ′3 cannot be collinear with ν ′3 and ν∗ while µ0 is a convex
combination of λν1 + (1 − λ)ν2 and ν3, so we can choose a signal π with S = {s1, s2}
where s1 induces Receiver’s posteriors ν∗ and ν ′3 and we are back at Case 1.2. This
finishes the proof.

Proof of Proposition 5. IfDµ0 is continuous, then v̌ is upper semicontinuous and bounded,
so the proof of Proposition 7 in KG (2009) follows. Since v̌ is bounded for all Dµ0 , the
proof of Proposition 9 in KG (2009) follows.

Proof of Proposition 6. As pointed out earlier, (a) is obvious. As for (b) and (c), we
simply prove that, should posterior ν ′ be feasible for Ann but not for Beth, there exists
A and (u, v) such that Sender’s persuasion value is strictly larger when facing Ann than
Beth. A similar argument applies when Ann’s and Beth’s roles are reversed. Suppose
first that ν ′(ω) < 1, for all ω. Consider then the action set A = {aω | ω ∈ Ω} ∪ {a∗}.
Sender has a state-independent utility function and cares only to have a∗: v(aω, ω

′) = 0
and v(a∗, ω) = 1 for all ω, ω′. Receiver’s utility is defined as follows: u(a∗, ω) = 0,
u(aω, ω) = 1 and u(aω, ω

′) = −ν ′(ω)/(
∑

ω′′ 6=ω ν
′(ω′′)) for all ω and all ω′ 6= ω. Notice

that, for all ω, Receiver’s expected utility of aω is zero should her belief be ν ′. For any
other belief ν ′′, there exists a state ω such that ν ′′(ω) > ν ′(ω), which implies that her
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expected utility of aω is strictly positive should her belief be ν ′′:∑
ω′

ν ′′(ω′)u(aω, ω
′) = ν ′′(ω)− (

∑
ω′ 6=ω

ν ′′(ω′))
ν ′(ω)

(
∑

ω′′ 6=ω ν
′(ω′′))

> 0.

Thus a∗ is optimal for Receiver if and only if her belief is ν ′. This implies that Sender
can achieve a strictly positive value of persuasion with Ann, but not with Beth. A
similar, simpler argument applies if ν ′(ω) = 1 for some ω: keeping a∗ and its associated
payoffs, simply define one additional action a that gives Sender a zero payoff, and
Receiver a payoff of 1 except for state ω, in which case her payoff is zero.

Proof of Proposition 7. Let Dµ0 (resp., D̂µ0) be the distortion function associated to
µR (resp., µ̂R). Since these two updating rules are distinct, there exists a probability
distribution ν such that ν ′ = Dµ0(ν) 6= D̂µ0(ν). We now construct a persuasion prob-
lem where Sender gets a strictly higher persuasion payoff when facing µR rather than
µ̂R. A similar construction provides an example where the comparison is reversed. If
ν ′ /∈ TR(µ0, µ̂

R), then the proof of Proposition 6 provides such a persuasion problem.
Suppose ν ′ ∈ TR(µ0, µ̂

R) and let ν̂ = (D̂µ0)−1(ν ′). Consider the same action set and
utility functions (A, u, v) as in the proof of Proposition 6, except for the following:
v(a∗, ω∗) = 1 and v(a∗, ω) = −x for all ω 6= ω∗, where ω∗ such that ν(ω∗) > ν̂(ω∗), and

x is any number strictly in between ν(ω∗)
1−ν(ω∗)

and ν̂(ω∗)
1−ν̂(ω∗)

. As in Proposition 6, Sender’s

payoff is zero whenever Receiver’s posterior is different from ν ′. Given µR, the rational
belief associated to that Receiver’s posterior is ν, in which case Sender gets a strictly
positive expected payoff. Things are different, however, when Receiver updates beliefs
according to µ̂R: the rational belief associated to it is now ν̂, in which case Sender gets
a strictly negative expected payoff. In that case, Sender’s optimal persuasion payoff is
zero, which is strictly inferior than what he gets when Receiver updates according to
µR.

Proof of Proposition 8. For the first part, suppose there is no information Sender would
share at µ0, then for any ν, v̌(ν) ≤ v̂(ν, µ0) = Eνv(â(µ0), ω). Given a signal π that
induces some τ , its value is∑

s∈S

τsv̌(µBs ) ≤
∑
s∈S

τs
∑
ω∈Ω

v(â(µ0), ω)µBs (ω)

=
∑
ω∈Ω

v(â(µ0), ω)
∑
s∈S

τsµ
B
s (ω)

=
∑
ω∈Ω

v(â(µ0), ω)µ0(ω)

= v̂(µ0, µ0).

Thus Sender does not benefit from persuasion.
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For the second part, since there is information Sender would share at µ0, v̌(νh) >
v̂(νh, µ0). As in KG, since Receiver’s preference is discrete at µ0, there exists δ > 0
such that all µ in a δ-ball around µ0 (denoted as Bδ), â(µ) = â(µ0). Dµ0(µ0) = µ0 and
its continuity at µ0 imply that there exists φ > 0, such that all µ in a φ-ball around
µ0 (denoted as Bφ), Dµ0(µ) ⊂ Bδ. Given µ0 is in the interior of ∆(Ω), there exists a
belief νl on the ray from νh through µ0 such that νl ∈ Bφ. Let µ0 = γνl + (1− γ)νh for
some 0 < γ < 1, then there exists some signal π that induces the distribution of joint
posteriors τ with τ(νl, Dµ0(νl)) = γ and τ(νh, Dµ0(νh)) = 1− γ. Therefore

Eτ [v̂(ν, ν ′)] = γv̌(νl) + (1− γ)v̌(νh)

> γv̂(νl, µ0) + (1− γ)v̂(νh, µ0)

=
∑
ω∈Ω

v(â(µ0), ω)[γνl(ω) + (1− γ)νh(ω)]

=
∑
ω∈Ω

v(â(µ0), ω)µ0(ω)

= v̂(µ0, µ0).

This finishes the proof.

Proof of Proposition 9. Given any ν ∈ Ω(∆), ν(A) =
∫
ω∈Ω

δω(A)dν(ω) for all (Lebesgue)
measurable set A ∈ Ω, where δω is the Dirac measure, so we can rewrite ν as an integral

ν =

∫
ω∈Ω

δωdν(ω).

If the distortion function Dµ0 is affine, i.e., Dµ0(λν1 + (1 − λ)ν2) = λDµ0(ν1) + (1 −
λ)Dµ0(ν2) for all λ ∈ [0, 1] and ν1 6= ν2 ∈ ∆(Ω), then

Dµ0(ν) = Dµ0

(∫
ω∈Ω

δωdν(ω)

)
=

∫
ω∈Ω

Dµ0(δω)dν(ω).

Define u′(a, ω) = EDµ0 (δω)u(a, ω′), then by Leadbetter, Cambanis, and Pipiras (2014)
Lemma 7.2.2,

EDµ0 (ν)u(a, ω′) =

∫
ω′∈Ω

u(a, ω′)dDµ0(ν)(ω′)

=

∫
ω∈Ω

(∫
ω′∈Ω

u(a, ω′)dDµ0(δω)

)
dν(ω)

=

∫
ω∈Ω

EDµ0 (δω)u(a, ω′)dν(ω)

= Eνu
′(a, ω).

Therefore, ǎ(ν) ≡ arg maxa∈AEνu
′(a, ω) = â(Dµ0(ν)). Sender’s modified payoff func-

tion v̌(ν) = Eνv(ǎ(ν)) is indeed his reduced form payoff function in the Bayesian
persuasion problem (Ω, µ0, A, (u

′, v), µB).
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