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Abstract

This paper provides a warning: a property in the spirit of the sure-
thing principle that may sound intuitive at first, and indeed standard
in classic models, is systematically violated when considering choices
that cannot be obtained through the maximization of a preference
ordering. Beyond choice theory, this observation also has relevant
implications for game theory, social choice, and mechanism design.

1 Introduction

This paper provides a warning: a property in the spirit of the sure-thing prin-
ciple that may sound intuitive at first, and indeed standard in classic models,
is systematically violated when considering choices that cannot be obtained
through the maximization of a preference ordering. This matters for at least
two reasons. First, advances in behavioral economics highlight how individ-
ual choices can systematically violate rationality. Second, even if individuals
are rational, decisions are oftentimes made by groups (e.g., households, com-
mittees, countries, etc.), and rationality need not be preserved. The warning
is not only of concern to choice theorists, but also has relevant implications
for game theory, social choice, and mechanism design.

We start with a couple of examples to provide some preliminary insight.

Example 1. A card will be drawn from a deck of black and red cards. A
couple won a contest, and can pick one of three bets to determine their prize.
Under bet 1, they win a wireless phone charger if the card is black, but nothing
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otherwise. Under bet 2, they win the wireless phone charger if the card is red,
but nothing otherwise. Under bet 3, they win a nice bottle of wine whatever
the card color. Tables below summarize the situation, and present the two
spouses’ utility functions.

Black Red
Bet 1 Charger ∅
Bet 2 ∅ Charger
Bet 3 Wine Bottle Wine Bottle

u1 u2

Charger 1 3
Wine Bottle 3 1

∅ 0 0

Which bet will the couple choose? They agree to proceed as follows: spouse 1
eliminates one bet, and spouse 2 selects her favorite among the two surviving
options. Notice that the couple selects bet 3 when they know the card is black,
as well as when they know the card is red. In other words, the couple would
select bet 3 ex-post whatever the color that comes up. In the spirit of the
sure-thing principle, one might then expect that the couple would pick bet 3
whatever the relative proportion of black cards in the deck. But this is wrong.
For instance, the couple selects bet 1 when the proportion of black cards is
strictly between 1/2 and 2/3.

While the previous example pertained to group choices, the next example
looks at a shortlisting method in the spirit of Manzini and Mariotti (2007)
to capture individual choices that need not be rational.

Example 2. As in the previous example, a black or red card will be selected
at random from a deck. This time an individual decides between two bets with
prizes in a set {x, y, z}. The decision-maker maximizes her preference over
the set of bets that are Pareto efficient according to two preliminary selection
criteria. Tables below depict the bets as well as the individual’s preference
(u) and selection criteria (s1 and s2).

Black Red
Bet 1 x y
Bet 2 z z

s1 s2 u
x 0 3 2
y 3 0 2
z 1 1 3

He picks bet 2 if he knows the state is black (x and z are not Pareto com-
parable according to criteria s1 and s2, and he prefers z over x). Similarly,
he picks bet 2 if he knows the state is red. Since he’d pick bet 2 whatever the
card color, one may expect him, in the spirit of the sure-thing principle, to
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pick that same bet whatever the proportion p of black cards in the deck. But
this is wrong again. Applying expected utility, we see that only bet 1 will be
in the individual’s shortlist when p is strictly between 1/3 and 2/3.

The sure-thing principle is quite standard. Indeed, it does hold quite
pervasively under the rational benchmark model (e.g., for any preference
ordering consistent with first-order stochastic dominance). We formalize a
related, choice-based property in the spirit of the above examples, see Prop-
erty P below. In view of the multitude of collective choice rules (e.g., Borda,
egalitarianism, plurality, tournaments, (relative) utilitarianism, etc.), and
the multitude of individual choice functions capturing a variety of behavioral
biases, is behavior in Examples 1 and 2 a peculiarity of the rules studied
there? Contributions at the intersection of behavioral economics and choice
theory often focus on problems involving deterministic outcomes. Thus an-
other, related question arises in that context: are there extensions of these
individual choice functions to the larger domain of choice over risky prospects
that respect a choice-based version of the sure-thing principle?

These questions are addressed in Section 2. We will see in particular that
Examples 1 and 2 are the rule rather than the exception when it comes to
the variety of choice functions one might consider. Indeed, similar issues
arise for any ‘welfarist’ social choice rule (Theorem 2), and any choice func-
tion violating of rationality on deterministic outcomes (Theorem 1). But
our choice-based variant of the sure-thing principle can be compatible with
violations of rationality provided that rationality is preserved over determin-
istic outcomes. Considering choices over monetary lotteries, for instance, any
choice function (rational or not) that never selects a lottery that is strictly
first-order stochastically dominated by a feasible alternative satisfies Prop-
erty P (Theorem 3).

Beyond choice theory, our observations have implications in game theory
and mechanism design. Under rationality, a player’s strategy is dominant if
it is a best response whatever its belief about its opponents’ actions. But
optimality is typically checked only against opponents’ pure strategies. This
is fine when restricting attention to expected utility (or any preference or-
dering satisfying first-order stochastic dominance). Overlooking probabilistic
beliefs is invalid when accommodating violations of rationality (Theorem 4).
In mechanism design, we will encouter social choice rules that may seem
strategy-proof because participants would select truth-telling whatever their
opponents’ reports, but are not implementable in dominant strategy because
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players are uncertain about others’ reports. Looking at the case of serial
dictatorship, we will point out that a mechanism designer should favor the
dynamic allocation procedure over its static variant because it eliminates un-
certainty regarding available items when players make their choices. Finally,
we will see that the notion of ex-post equilibrium can fail to produce a robust
solution to behavioral games of incomplete information: while a strategy pro-
file may be a Nash equilibrium in choices (as in de Clippel (2014)) in each
ex-post game of complete information, uncertainty about others’ types (and
hence actions) may lead a player to unilateraly deviate.

To summarize, one should exercise caution, and avoid misleading intuition
gleaned from experience with more standard frameworks when incorporating
bounded rationality or group choices in models involving risky prospects.

2 Framework and Main Results

Let Ω be a (finite) set of states of the world, and O be a (finite) set of relevant
outcomes. An act is a map that associates an outcome to each state of the
world. A lottery is a probability distribution over O. A choice function c
associates to each (finite) set L of lotteries a subset c(L). Since outcomes are
degenerate lotteries, a choice function also defines choices over subsets of O.
Though arguments hold more generally, the restriction of c on subsets of O
is assumed to be single-valued. This restriction is rational if there exists a
preference ordering � on O such that c(S) = arg max� S, for each subset S of
O. The states’ relative likelihoods are captured by a probability distribution
p ∈ ∆(Ω). Assuming state-independence, as we do throughout the paper,
means that only lotteries associated to acts matter to the decision-maker.
Given any finite set A of acts, let Lp(A) be the set of lotteries `p(a) – “a(ω)
obtains with probability p(ω)” – obtained by varying a ∈ A.

In the spirit of the sure-thing principle, we investigate the following prop-
erty on choice functions over risky prospects:

Property P Let A be a set of acts, and let a ∈ A. If a(ω) = c(A(ω)) for
each ω ∈ Ω, then c(Lp(A)) = {`p(a)} for all p ∈ ∆(Ω).

If the decision-maker knows that the state is ω, then picking an act amounts
to choosing an outcome within A(ω). Now suppose that the act a has the
unique property of delivering her chosen outcome in each state ω. This is a
very stringent property that often does not apply as an act may provide the
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chosen outcome is some state but rarely in all states. Also, notice that at
most one act can have that property since c is single-valued over subsets of
outcomes. Given state-independence, picking an act from A given p amounts
to picking a lottery from Lp(A). Property P requires that lottery to be `p(a),
indeed the one associated to act a. At first this seems reasonable because
a delivers the outcome he wants to pick whatever the state realization. Yet
this property is violated as soon as the restriction of c to deterministic out-
comes is not rational. In particular, none of the many choice functions over
deterministic outcomes discussed in the recent literature at the intersection
of behavioral economics and choice theory extend to problems involving risk
while satisfying our choice-based analogue of the sure-thing principle.

Theorem 1. If c satisfies Property 1, then it is rational over deterministic
outcomes.

Proof. If c is not rational, then there exist a choice problem T ⊆ X and
x ∈ T distinct from c(T ) such that c(T ) 6= c(T \ {x}). Let Ω′ be a nonempty
strict subset of Ω, and consider the following acts:

ω ∈ Ω′ ω ∈ Ω \ Ω′

a c(T ) c(T \ {x})
a′ c(T \ {c(T )}) c(T \ {x})
a′′ c(T \ {x}) c(T )
a′′′ x c(T )
ay y y

for each y ∈ T \ {x, c(T ), c(T \ {x})} (if any). Let A be the set of all acts
appearing on the table. Then A(ω) = T for each ω ∈ Ω′, and A(ω′) = T \{x}
for each ω ∈ Ω\Ω′. Let p ∈ ∆++(Ω) be such that p(Ω) = p(Ω\Ω′) = 1/2. By
Property P, c(Lp(A)) = `p(a) = 1

2
c(T )⊕ 1

2
c(T \ {x}). Let Â = A \ {a}. Then

Â(ω) = T \{c(T )} for each ω ∈ Ω′, and Â(ω) = T \{x} for each ω ∈ Ω\Ω′. By
Property P, c(Lp(Â)) = `p(a′) = 1

2
c(T \{c(T )})⊕ 1

2
c(T \{x}). A contradiction

arises then from the fact that Lp(A) = Lp(Â) and c(T ) 6= c(T \ {c(T )}).

Comparing Property P with Savage’s Sure-Thing Principle The
sure-thing principle was defined by Savage in the context of choice under un-
certainty. A first point of departure is that we take beliefs (either objective or
subjective) as given. A second point of departures is that Savage’s condition
applies to all partitions of Ω, while no restriction is imposed under Property

5



P when that partition is not fully revealing the state. More importantly,
Savage assumes at the outset that individuals are rational, while we explore
a choice-based version of the property that applies to any choice function. In-
terestingly, Savage (1972, page 39)’s justification for the sure-thing principle
is in fact phrased in terms of choices, not preferences.

A businessman contemplates buying a certain piece of property.
He considers the outcome of the next presidential election relevant
to the attractiveness of the purchase. So, to clarify the matter
for himself, he asks whether he would buy if he knew that the
Republican candidate were going to win, and decides that he would
do so. Similarly, he considers whether he would buy if he knew
that the Democratic candidate were going to win, and again finds
that he would do so. Seeing that he would buy in either event, he
decides that he should buy, even though he does not know which
event obtains, or will obtain, as we would ordinarily say.

Since preference maximization and choices are one and the same in Sav-
age’s framework, he could have written this justification either way. But it
is perhaps telling that the story does sound reasonable expressed in choices
and seemingly independently of how these choices are made. Yet the present
paper shows that, contrary to intuition, the property is most often violated
without preference maximization.

Necessity of Rationality for Utility-Based Social Choice Having
established that there is no way to extend irrational choice functions over
deterministic outcomes to risky pospects while satisfying Property P, we
investigate in this subsection and the next whether there are irrational choice
functions over risky prospects satisfying Property P (which thus would have
to be rational over deterministic outcomes). The answer is negative when
performing utility-based social choice.

Most of social choice theory is welfarist, meaning that judgements are con-
ducted by relying on realized utilities at available options. Say the universal
set of options in a given problem is O, and i’s utility function over lotteries is
given by ui : ∆(O) → R.1 Let u = (u1, . . . , un) be the profile of such utility
functions. The social choice rule r(O,u), associating a nonempty subset to any

1It could be expected utility, but it does not have to be; any function will do.
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set L ⊆ ∆(O) of lotteries,2 could depend on these primitives, but a further
simplification is usually made. One starts from a choice function c defined
over finite subsets of utility profiles, compute the set

u(L) = {(u1(`), . . . , un(`))|` ∈ L}

of utility profiles achievable via lotteries in L, and then select from L all the
lotteries that generates utility vectors in c(u(L)). The rule in Example 1,
and the many rules mentioned at the bottom of page 2 proceed this way.
Indeed, most of social choice theory is welfarist this way. To formalize this
notion of welfarism, we think of a social choice rule as being first defined for
any problem (O, u) where O is a finite set of outcomes, and u is a profile of
utility functions (one for each individual in N) defined on O.

Definition 1. The social choice rule r is utility-based if there exists a choice
function c associating to each finite set S of utility profile a nonempty subset
c(S) ⊆ S such that for all problems (O, u) and all finite sets of lotteries
L ⊆ ∆(O), r(O,u)(L) = {` ∈ L|u(`) ∈ c(u(L))}.

Theorem 2. Suppose that r is utility-based and satisfies Property P, that is,
r(O,u) satisfies Property P for all problems (O, u). Then r is rational, that is,
r(O,u) is rational for all problems (O, u).

Proof. Let c be the choice function associated to r in Definition 1. For any
two utility vector x, y in RN , say

x � y if c({x, y}) = {x}.

We start by proving that � is an ordering and that

c(U) = arg max
�

U, (1)

for each finite subset U of RN . It is easy to check that � is complete,
since r(O,u) is single-valued over sets of deterministic outcomes, whatever
the combination (O, u). Next, for transitivity, consider three utility vectors
x, y, z such that x � y and y � z. Let then O = {a, b, d}, u(a) = x, u(b) = y

2As before, r(O,u) is assumed to be single-valued when L contains only deterministic
outcomes.
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and u(d) = z. Since r(O,u) satisfies Property 1, there exists by Theorem 1 an
ordering �(O,u) on {a, b, c} such that

r(O,u)(S) = arg max
�(O,u)

S,

for all subset S of {a, b, d}. By definition of c, r(O,u)({a, b}) = c({x, y}).
Hence, a �(O,u) b if, and only if, x � y. Similarly, a �(O,u) d if, and only
if, x � z, and b �(O,u) d if, and only if, y � z. Since x � y and y � z,
we have that a �(O,u) b and b �(O,u) d. By transitivity of �(O,u), it follows
that a �(O,u) d, which in turn implies that x � z, as desired for transitivity
of �. As for (1), let U = {x1, . . . , x|U|} be a finite subset of RN , let now
O = {a1, . . . , a|U|} and (u1, . . . , un) be utility functions such that u(ak) = xk,
for each k = 1, . . . , |U|. By a similar reasoning as above, we know by Theorem
1 that there exists an ordering �(O,u) on O such that

r(O,u)(S) = arg max
�(O,u)

S, (2)

for all S ⊆ O, and
a �(O,u) a

′ ⇔ u(a) � u(a′), (3)

for all a, a′ ∈ O. We have:

c(U) = u(r(O,u)(O)) = u(arg max
�(O,u)

O) = arg max
�
{u(a)|a ∈ O} = arg max

�
U,

where he first equality corresponds to Definition 1, the second equality follows
from (2), and the third one from (3).

Now fix any problem (O, u) and any two lotteries `, `′ ∈ ∆(O). Say that
` ∼∗ `′ if u(`) = u(`′), and ` �∗ `′ if u(`) � u(`′). It is easy to check that
�∗ is complete and transitive, since � is an ordering on RN . Finally, let
L ⊆ ∆(O) be any finite set of lotteries. Then

r(O,u)(L) = {` ∈ L|u(`) ∈ c(u(L))} = {` ∈ L|u(`) ∈ arg max
�

u(L)} = arg max
�∗

L,

where the first equality corresponds to Definition 1, the second equality fol-
lows from the first part of the proof, and the last equality follows from the
definition of �∗.

Notice, for instance, how the social choice rule defined in Example 1 is in
fact rational over the deterministic outcomes ∅, Charger, Wine Bottle. But
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the procedure applied to other utility profiles is irrational, which can be seen
for instance when considering choice over lotteries in that example: when
choosing between the three bets with 3/5 of black cards, the couple selects
the first bet; but they pick the third bet instead when dropping bet 2, an
irrelevant alternative.

Satisfying Property 1 without Rationality Theorem 1 establishes that
c must be rational over deterministic outcomes. Are there irrational choice
functions satisfying Property 1 while their restriction over deterministic out-
comes is rational? For concreteness, suppose that outcomes are monetary
payoffs and that choices are obtained by payoff maximization in the absence
of risk.

Even then, Property 1 need not be satisfied. Consider, for instance, a
“cautious investor comparing alternative portfolios first eliminates those that
are too risky relative to others available, and then ranks the surviving ones
on the basis of expected returns” (Manzini and Mariotti (2007, page 1825)).
To formalize this, suppose that the investor computes each lottery’s coeffi-
cient of variation (standard deviation divided by the mean), and eliminates
those with a coefficient that is strictly above average (within the set of avail-
able lotteries). Consider then a first investment paying $1, 500 whatever
the state, and a second investment paying $1, 510 if the state belongs to
∅ 6= Ω′ ⊂ Ω and $1, 520 otherwise. While the investor is rational over de-
terministic outcomes, Property 1 is violated since the investor overlooks the
second investment whenever he places strictly positive probability on both
Ω′ and its complement. As the next result shows, this violation of Property
1 is attributable to a violation of first-order stochastic dominance, or more
precisely its extension to choice functions that need not be rational.

Definition 2. The choice function c is consistent with first-order stochastic
dominance if, for each set of lotteries L over monetary amounts, there is no
lottery ` ∈ L that first-order stochastically strictly dominates c(L).

Theorem 3. If c is consistent with first-order stochastic dominance, then c
satisfies Property 1.

Proof. Let A be a set of acts, and let a ∈ A. Suppose that a(ω) is the
maximal monetary payoff in A(ω), for each ω ∈ Ω. Then, for all p ∈ ∆(Ω),
`p(a) first-order stochastically strictly dominates all lotteries in Lp(A) distinct
from `p(a), and hence c(Lp(A)) = {`p(a)}, as desired.
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The above theorem means that we can find many examples of irrational
choice functions over monetary lotteries satisfying Property 1. For any choice
function c, let ĉ be the modified choice function that selects, from any set L
of monetary lotteries, the lottery c(L̂), where L̂ is the subset of lotteries that
are not first-order strictly dominated by an alternative in L. It follows from
the above result that ĉ satisfies Property 1.

3 Beyond Choice Theory

Dominant Strategies Switching to interactive decision-making, a rational
strategic-form game specifies for each player i ∈ N a finite set Si of strategies,
a preference ordering �i over outcomes in O, and an outcome function f :
S → O where S = ×i∈NSi is the set of strategy profiles. A standard notion
is that of a dominant strategy, oftentimes defined as follows: strategy s∗i is
dominant for player i if f(s∗i , s−i) �i f(s) for all s ∈ S such that f(s∗i , s−i) 6=
f(s).

As discussed throughout the paper, players may use choice functions that
are not compatible with preference maximization, either because of behav-
ioral biases or because players are groups instead of individuals. The notion
of a game easily extends: a behavioral strategic-form game is obtained simply
by changing each i’s preference ordering �i by her choice function ci in the
definition. It is tempting then to consider the following definition of domi-
nant strategy. As it will appear inadequate (too weak), strategies satisfying
it will be called “seemingly dominant.”

Definition 3. Strategy s∗i is seemingly dominant for i if

ci({f(s)|si ∈ Si}) = {f(s∗i , s−i)},

for all s−i ∈ S−i.

If i expects others to pick s−i, then the opportunity set of outcomes
she faces when picking her own strategy is {f(s)|si ∈ Si}. Suppose she’d
pick o from that set, which happens to be precisely the outcome she gets
when picking s∗i . For s∗i to be seemingly dominant, this property must hold
whatever s−i. This is the natural extension of the property of dominance one
checks in rational games.

But players’ beliefs about others’ strategies need not be deterministic.
For a strategy to be dominant, the desired property is really that it would be
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selected whatever the player’s belief about her opponents’ strategies. This
is inconsequential in standard rational games (that is, with expected utility
or any preference consistent with first-order stochastic dominance), as opti-
mality against each pure strategy guarantees optimality againt opponents’
correlated strategies. Given Theorem 1, however, one should be suspicious
that seemingly dominant strategies need not be dominant when taking into
account that players’ beliefs need not be deterministic. We start by intro-
ducing some notations: given a belief p ∈ ∆(S−i), let `p(si) be the lottery
that selects f(s) with probability p(s−i) and let Lp

i = {`p(si)|si ∈ Si} be the
opportunity set of lotteries that i faces when picking her strategy.

Definition 4. Strategy s∗i is dominant for i if ci(L
p
i ) = {`p(s∗i )} for all

p ∈ ∆(S−i).

In games, one can think of opponents’ strategy combinations as states
of the world. Then, the proof of Theorem 1 can be adapted to show that a
lack of rationality over deterministic outcomes necessarily breaks down the
justification for paying attention only to opponents’ pure strategies. Instead,
one must use the full definition of a dominant strategy, considering any belief
over opponents’ correlated strategies.

Theorem 4. Let i be a player. If c is not rational over deterministic out-
comes, then there exists a behavioral strategic-form game where i’s choice
function is c and i has a seemingly dominant strategy which is not dominant.

Proof. Suppose, by contradiction, that in all games, a seemingly dominant
strategy for player i must be dominant. Consider then a first two-player
game G derived from the table in the proof of Theorem 1, where Si =
{a, a′, a′′, a′′′, ay}, the opponent’s strategy set is {Ω′,Ω \ Ω′}, and the out-
come function is defined as in the table (replacing c by ci). Following the
argument in the proof of Theorem 1, a is seemingly dominant for player i
in G. By our hypothesis, it is dominant as well, and hence ci(L

p) = {`p(a)}
for all mixed-strategy p of i’s opponent. Consider now the game Ĝ derived
from G by eliminating a from Si. Following the argument in the proof of
Theorem 1, a′ is seemingly dominant for player i in Ĝ. By our hypothesis,
it is dominant as well, and hence ci(L̂

p) = {ˆ̀p(a′)} for all mixed-strategy p
of i’s opponent. As in the proof of Theorem 1, Lp = L̂p and `p(a) 6= ˆ̀p(a′),
hence the contradiction.
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Mechanism Design Though typically defined for rational individuals, se-
rial dictatorship extends naturally to any allocation problem where players
are endowed with choice functions. Player 1 moves first, and is free to pick
any one item in a set X; she picks c1(X). Player 2 moves next, and is free to
pick any one item from among those that remain; she picks c2(X \ {c1(X)}).
The procedure goes on like that until everyone has received an item, or all
items have been allocated.

This dynamic allocation method performs well even in more realistic cir-
cumstances where players’ choice functions are their private information.
Formally, it implements by backward induction the serial dictatorship social
choice rule, rSD, which associates to any profile of choice functions the allo-
cation one would obtain by running serial dictatorship with reported choice
functions. In fact, players are not even required to form expectations about,
let alone correctly anticipate, future actions since the item a player gets is
independent of subsequent players’ choices. Having observed past moves –
the choices of players with lower indices – a player faces no uncertainty about
her opportunity set of items when making a choice.

In the special case of rational players, this naturally implies that re-
porting one’s true choice functions is a dominant strategy in the associated
strategic-form of the dynamic serial dictatorship game. Put it differently,
rSD is strategy-proof and truth-telling is a dominant strategy in the direct
mechanism defined by rSD. Suppose now players may have more complex
choice functions. Truth-telling remains an adequate choice whatever others’
reports. Indeed, a player’s opportunity set, obtained by varying its report, is
the set of items not allocated to players with smaller indices based on their
fixed reports. One could think that rSD is thus implementable in dominant
strategy over any domain of choice functions.

But this is wrong because one has not considered situations where players
are unsure about others’ reports. As should be clear by now, a willingness
to report the truth against deterministic reports need not survive when con-
sidering probabilistic beliefs. The next example illustrates the issue. With
a single player corresponding to a group whose choices might be irrational,
serial dictatorship ceases to be implementable in dominant strategies (not
using the direct mechanism, nor any other mechanism!).

Example 3. There are four items, X = {a, b, d, e}, and four players, N =
{1, 2, 3, 4} (one item each). Each player other than 2 is rational. Her type en-
codes her strict Bernoulli function over X; all orderings are possible. Player
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2, on the other hand, is the couple we encountered in Example 1. Its type en-
codes their choice function over lotteries of items. For extreme clarity, let’s
make a very small departure from rationality. The two spouses may fully
agree on how to rank items and lotteries, in which case their joint choices
following Example 1’s procedure is rational. Allowing for any common rank-
ing, we get a set of types comparable to those for players 1, 3 and 4. There
is, however, one additional type to consider where the spouses’ preferences
disagree. For that type t∗2, Bernoulli utilities are

u1 u2

a 1 1
b 2 2
d 5 3
e 3 6

A mechanism simply specifies for each individual i a finite set Mi of pos-
sible messages and an outcome function g : M → O where M = ×i∈NMi is
the set of message profiles and O is the set of allocations of items to indi-
viduals. Suppose there is such a mechanism implementing rSD in dominant
strategies, with i’s dominant strategy m∗i associating to each type ti a mes-
sage m∗i (ti). Let’s consider in particular a type ta1 which ranks a top, and
a type tb1 which ranks b top. For implementation, g has to allocate d to
player 2 for the message combination (m∗1(t

a
1),m

∗
2(t
∗
2), ·, ·) (whatever players

3 and 4’s messages). Indeed, player 1 must get item a since she reported
her dominant-strategy message for a type that ranks a top, player 2 can get
any of the three remaining items by reporting its dominant strategy-message
associated to a rational preference that ranks it top, and player 2 chooses d
out of that set (with spouse 1 first eliminating e, and spouse 2 then choosing
d out of {b, d}). Similarly, g has to allocate d to player 2 for the message
combination (m∗1(t

b
1),m

∗
2(t
∗
2), ·, ·). But suppose now the spouses believe it is

equally likely that player 1 reports m∗1(t
a
1) or m∗1(t

b
1). Let p be any belief over

M−2 with that feature. By the previous argument, `p(m∗2(t
∗
2)) is simply d for

sure. Other lotteries in Lp(m∗2(t
∗
2)) include 1

2
a⊕ 1

2
e (using for 2 a dominant

strategy message for a rational preference that ranks a top and e next) and
1
2
b⊕ 1

2
e (using for 2 a dominant strategy message for a rational preference that

ranks b top and e next). But notice that, at t∗2, spouse 2 ranks both 1
2
a⊕ 1

2
e

and 1
2
b⊕ 1

2
e above d. Given that spouse 1 can eliminate only one option from

Lp(m∗2(t
∗
2)), player 2 with type t∗2 won’t pick `p(m∗2(t

∗
2)) from Lp(m∗2(t

∗
2))), and

hence rSD is not dominant-strategy implementable.

13



Thus, to implement rSD the mechanism designer should favor the dy-
namic mechanism over its static reduction (and over any static mechanism)
if she doubts the players’ rationality, because the former has the virtue of
eliminating uncertainty players face when making a choice. While the added
uncertainty is strategically inconsequential when players are expected utility
maximizers, we understand from Theorem 1 that this ceases to be the case
with more complex choice functions. Li (2017) also suggest that the dynamic
mechanism is preferable to implement rSD, but for a very different reason.
In his setting, players are rational and only deterministic outcomes must be
considered. The added information provided by the dynamic mechanism is
then preferable in his setting – giving rise to a mechanism that is not just
strategy-proof, but in fact ‘obviously strategy-proof’ – because players may
be confused when assessing the consequences of their strategies.

Given the prevalence of behavioral biases, and of the oft-overlooked fact
that players may really be groups (e.g. households, admission boards, etc.)
instead of individuals, it seems important to revisit under this light the mech-
anism design literature (e.g., in the matching literature) that often relies on
strategy-proofness static mechanisms. Even the very premise of participants
reporting preferences in a direct mechanism may be wrong since their choices
may be incompatible with preference maximization. We hope that future
work will explore this question theoretically and empirically.

Ex-Post Equilibria Aside from mechanism design, Example 3 also high-
lights an issue when generalizing the notion of ex-post equilibrium to bound-
edly rational choices. Consider the incomplete-information behavioral game
associated to rSD. A strategy s∗i for player i specifies which type to report
as a function of its true type.

Assume first that players maximize expected utility. The strategy profile
s∗ forms an ex-post equilibrium if, for each type profile t, (s∗i (ti))i∈N forms
a Nash equilibrium in the complete-information, ex-post game associated to
t. This may seem strange at first: why focus on ex-post games when the
problem is to solve games of incomplete information? Its raison d’être is
to provide a robust solution to games of incomplete information, as ex-post
equilibria are Bayesian Nash equilibria independently of the players’ belief
hierarchies consistent with their types.

But establishing this robustness relies on the fact that expected utility
satisfies the sure-thing principle. Without it, ex-post equilibria may fail to
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be robust, as is the case in Example 3. To see this, first consider a reasonable
extension of Nash equilibrium to general choice functions. Keeping rational
expectations, a strategy profile forms a Nash equilibrium in choices (as used
in de Clippel (2014)) if, for each player, the equilibrium outcome belongs
to his choice set when considering all outcomes he can generate through
unilateral deviations. Given any type profile, reporting one’s true type in
the corresponding ex-post behavioral game induced by rSD is clearly a Nash
equilibrium in choices. But player 2 would not pick truth-telling within
its opportunity set when others are truth-telling, and it believes player 1
is equally likely to be of type ta1 or tb2. The reasoning is similar to the one
developed in Example 3. Even though truth-telling is selected in each ex-post
game, in the absence of uncertainty about player 1’s action, player 2 opts
against it when uncertain about player 1’s type (player 1’s choices violate
Property P).
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