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Abstract

It has long been argued that there is a mismatch between the general motivation provided

for Nash’s (1950) axioms and their actual mathematical content because they are phrased in

the space of joint (Bernoulli) utilities. Alternatively, it is easy to rephrase these axioms in an

economic environment so as to match their intuitive meaning, but Nash’s proof then applies

only if one adds a cardinal welfarist axiom requiring that the solution of two problems that

happen to have the same image in the space of joint utilities for some linear representa-

tion of von Neumann/Morgenstern preferences, must coincide in that space. Attemps so far

at recovering Nash’s uniqueness result without the cardinal welfarist axiom have not been

successful, in that they all rely on the introduction of a non-straightforward axiom. The

purpose of this paper is to show that the straightforward formulation of the arguments un-

derlying Nash’s axioms does in fact characterize his solution on a natural economic domain.

A similar result holds for Kalai and Smorodinsky’s (1975) characterization of their solution

if and only if the domain contains multiple goods. The non-welfarist characterization of the

Nash solution is shown to extend to a larger class of preferences that accommodate some

forms of non-expected utility.
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1. INTRODUCTION

Axioms in bargaining theory can be interpreted as systematic formalizations of reasonable

arguments that one could plausibly hear in real-life situations.1 Suppose that a couple just

reached a compromise regarding where to spend their next vacation. Right before booking the

ski trip they agreed upon, they learn that the resort in the Bahamas they considered earlier as

a possible alternative, is in fact fully booked. Oftentimes this additional information will not

change the couple’s plans. Indeed, they decided not to go to the Bahamas anyway, and the ski

∗This paper supercedes a preliminary version that circulated under the title “Axiomatic Bargaining on Eco-
nomic Environments with Lotteries” (see de Clippel (2009)). Financial support from the National Science Foun-
dation (grant SES-0851210) and the Deutsche Bank through the Institute for Advanced Study is gratefully
acknowledged.
†Brown University, Department of Economics, Providence, Rhode Island - declippel@brown.edu.
1Axioms are sometimes interpreted differently. For instance, they could capture testable implications of a

specific bargaining model one has in mind. I will not follow these possible alternative interpretations here.
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trip they agreed upon remains feasible. The systematic formalization of this kind of argument

leads to the classical property of independence of irrelevant alternatives (IIA). Other classical

axioms, such as efficiency and anonymity when bargainers have equal bargaining abilities, can

be justified on similar grounds. The best results in axiomatic bargaining theory then reach

surprising conclusions, proving mathematically that there is a unique way of resolving the

bargainers’ conflictual preferences in a way that is consistent with the systematic application of

a few basic principles.

Nash’s (1950) result is often considered as the most famous example of such achievement.

Using linear representations of von Neumann-Morgenstern preferences over lotteries, he showed

that maximizing the product of the bargainers’ Bernoulli utility functions is the only solution

that is compatible with properties of IIA, symmetry, efficiency, and scale covariance. Did he

really? The theorem of course is correct, but the way Nash phrases his axioms involves more

than a simple systematization of reasonable arguments as discussed in the previous paragraph.

Indeed his model is phrased in the space of joint utilities. For instance, the fact that the set

of feasible utility profiles is smaller in a first problem compared to a second does not imply

that the two problems are related through a reduction of the set of feasible agreements with

fixed von Neumann/Morgenstern preferences, as should be in order for IIA to be consistent

with the underlying argument it aims to capture. The reader is referred to Roemer (1986-88)

or Rubinstein et al. (1992) for more thorough discussions of the shortcomings associated with

phrasing axioms in the space of joint utilities. The question is then the following. Is there a

way to recover Nash’s surprising uniqueness result with the natural formulation of the informal

arguments that usually motivate his axioms in an environment that involves explicit economic or

social outcomes and von Neumann/Morgenstern preferences? Attempts so far tend to indicate

that this is impossible, in the sense that an additional non-straightforward axiom is needed (see

the discussion of the related literature below), thereby raising doubts as to whether the central

role played by the Nash solution in bargaining theory is truly justified. The primary purpose of

the present paper is to provide a natural economic framework and a new argument to answer

the question positively.

The set of bargaining problems over which axioms apply is an intrinsic part of any charac-

terization result. If, for instance, one were to consider a single problem in isolation, then axioms

that relate the solution of different problems, such as IIA, would be vacuous. A bargaining

problem for most of this paper will be any (compact) set of pairs of bundles (one bundle for

each of the two bargainers), and a pair of selfish von Neumann-Morgenstern preferences over

lotteries that select feasible bundles. Disagreement is assumed to result in the null bundle for

both bargainers. This domain seems both natural in view of the existing literature in other

subfields of economic theory (combining economic outcomes as modeled in general equilibrium

with von Neumann/Morgenstern preferences that play a central role in non-cooperative games),

and in line with Nash’s (1950) own account of what underlies bargaining problems (cf. his

description of an ‘anticipation’ and the example he presents at the end of his paper).

The natural meaning of Nash’s axioms can easily be captured by properties phrased in
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our explicit economic environment, but his arguments would then require the addition of a

cardinal2 ‘welfarist’ axiom restricting the solution by imposing that two problems that happen

to have the same image in the space of joint utilities for some linear representation of the

bargainers’ von Neumann/Morgenstern preferences, must have the same solution in that space.

Unfortunately, this additional mathematical property hardly qualifies as an axiom because it

is unclear what reasonable argument it systematizes. In fact it is even difficult to understand

what it entails. Theorem 1 below establishes that natural analogues of Nash’s original axioms

do in fact characterize his solution in our economic environment with lotteries. In other words,

the cardinal welfarist axiom turns out to be redundant on that domain.

This result comes as a surprise in perspective of the related literature where Nash’s unique-

ness result seems to be derivable only at the cost of an additional non-straightforward axiom that

replaces or is a remnant of the cardinal welfarist axiom. Roemer (1988) reconstructs bargaining

theory on economic environments without lotteries by showing that a property of “consistency

with respect to additional dimensions” (CONRAD) is equivalent to his notion of welfarism.

Valenciano and Zarzuelo (1997) elaborate on a feature of Rubinstein et al.’s (1997) symmetry

axiom to characterize the cardinal welfarist axiom in terms of a property of invariance with re-

spect to isomorphic transformations (see their ISO axiom, their Theorem 4, and the discussion

in their Section 6). The use of this or Roemer’s property constitute an improvement over the

cardinal welfarist axiom in that they are phrased in terms of underlying preferences with no

mention to specific utility representations. Unfortunately, it is not clear whether they are any

easier to interpret or any more appealing as axioms. Roemer goes as far as to conclude that

his reconstruction of bargaining theory via CONRAD demonstrates “the lengths to which one

must go to preserve the axiomatic characterization of the standard bargaining mechanisms on

economic environments” (Roemer (1988), page 30). Yet the complexity of one reconstruction

does not necessarily imply that there are no more straightforward alternative routes, as my

result shows. A superficial reading of Rubinstein et al. (1992) would make one think that their

result already achieved the same objective as mine. After all, they prove in Proposition 2* that

the Nash solution is the only one which satisfies axioms of Symmetry, EFF and IIA on another

reasonable economic domain. Yet looking into what the axioms require beyond their labels,

one realizes that their symmetry axiom does not follow from an idea of anonymity or from an

assumption of equal bargaining abilities as usually understood.3 It entails significantly more

2Welfarism broadly means that utility possibility sets should provide enough information to solve problems.
Note though that there are as many notions of welfarism as there are interpretations of utilities. For instance,
even though von Neumann-Morgenstern preferences can be represented by linear utility functions, there is no
reason a priori to focus on such representations when formulating the welfarist axiom. Expected utility theory is
indeed an ordinal theory of preference over lotteries. The Nash solution satisfy the welfarist property with respect
to cardinal representations of von Neumann/Morgenstern preferences, but not with respect to the larger class
of ordinal representations (see de Clippel (2009, Section 5) for more details). Hence the terminology of cardinal
welfarism.

3Notice also that their axiom of IIA does not match its usual interpretation in terms of changes in the set of
feasible agreements, but instead involves changes in preferences. This dimension has been discussed in subsequent
results by Hanany (2007) and Hanany and Gal (2007).
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than that.4 As a first example, consider a problem where two bargainers can share $1. The

first bargainer is risk-averse, and evaluates lotteries with possible outcomes according to the

expected utility criterion with a Bernoulli function u1(o1) =
√
o1, for each o1 ∈ [0, 1]. The sec-

ond bargainer, on the other hand, is risk-loving, and evaluates lotteries with possible outcomes

according to the expected utility criterion with a Bernoulli function u2(o2) = 1 −
√

1− o2, for

each o2 ∈ [0, 1]. Rubinstein et al.’s symmetry axiom (in combination with EFF) prescribes to

divide the dollar by giving a fourth to the first bargainer and three fourth to the second. Why?

Because it is a fixed-point of the map φ : O → O, where O = {o ∈ [0, 1]2|o1 + o2 ≤ 1} and

φ(o) = (2 − o2 − 2
√

1− o2, 2
√
o1 − o1), for each o ∈ O, which happens to have the properties

that 1) φ(φ(o)) = o, for each o ∈ O, and 2) µ �i ν is equivalent to φ(µ) �j φ(ν), for both

i = 1, 2 and j 6= i, and for each pair µ, ν of lotteries defined on O, with φ(µ) and φ(ν) being the

lotteries that deliver φ(o) with probability µ(o) and ν(o) respectively. Does this encompass a

reasonable restriction? Unfortunately Rubinstein at al.’s informal justification for their symme-

try axiom (see page 1175) isn’t helpful, since they merely observe that the image of problems

for which similar isomorphisms exist, appear to be symmetric in the space of joint utilities,

for some linear representations of the underlying von Neumann-Morgenstern preferences, and

then that their axiom amounts to require the solution to fall on the 450-line in that space.

In other words, their justification – “the above formulation of SYM is essentially the same as

Nash’s original symmetry axiom” – is entirely welfarist.5 As such, their result only establishes

two facts as far as the discussion on welfarism is concerned:6 1) cardinal welfarism need not

be imposed on all problems, but only on those whose image is symmetric in the space of joint

utilities for some linear representations of the preferences, and 2) cardinal welfarism on those

problems can be phrased entirely in terms of the underlying preferences with no reference to

specific representations.7 Of course, the absence of an explanation as to why Rubinstein et al.’s

axiom captures an argument that is reasonable in bargaining, does not mean that there isn’t

one. Perhaps it is just a mathematical difficulty of truly understanding what an isomorphism

means. There are reasons to believe otherwise. Consider an elementary problem where the

4Though not in relation to the discussion on welfarism, variants of Rubinstein et al.’s (1992) symmetry axioms
have been proposed by Grant and Kajii (1995) and Hanany and Gal (2007). All the examples in the discussion
to follow to their notions as well.

5Rubinstein et al. (1992) define their axioms on a larger class of preferences that allows for some forms of
non-expected utility (also discussed later on in the present paper). Although the Nash solution satisfies their
symmetry axiom on that larger class, they restrict it to apply only over von Neumann/Morgenstern preferences. A
plausible explanation is that their informal justification for the axiom does not carry over to non-expected utility
preferences, as they don’t admit linear representations. This is another hint that they don’t have an informal
justification for their symmetry axiom that is independent of Nash’s original cardinal welfarist formulation. It
turns out that cardinal welfarism can in fact be defined on that larger class of preferences, because they admit
representations that are linear on simple lotteries that involve only one outcome in addition to the disagreement
point, as highlighted by Grant and Kajii’s (1995) reformulation of Rubinstein et al. (1992). Grant and Kajii
introduce a variant of Rubinstein et al.’s symmetry axiom, which is required on the whole domain, as the cardinal
welfarist justification now goes through beyond von Neumann/Morgenstern preferences.

6Rubinstein et al. contains another contribution, which is to extend the Nash solution and its axiomatic
characterization to larger domains of preference with possibly non-expected utility. A similar extension is also
feasible on my economic domain - see Section 5.

7Valenciano and Zarzuelo’s (1997) characterization of welfarism discussed earlier in this paragraph can be seen
as an elaboration on that second point.
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only feasible agreements are lotteries over three basic outcomes: 1) the null bundle for both

bargainers, 2) a bundle x for the first bargainer and 0 for the second, and 3) a bundle y for

the second bargainer and 0 for the first. Rubinstein et al. symmetry axiom (together with

EFF) imposes that the solution must be the lottery that chooses (x, 0) and (0, y) with prob-

ability 1/2 each, independently of x and y.8 Let’s call this particular case of Rubinstein et

al.’s symmetry axiom a property of “equal probability in elementary problems” (EPEP). Is it

reasonable to require this as part of an axiom? Surprisingly Rubinstein et al. themselves argue

earlier in their paper that it isn’t, when discussing the axiom of invariance to positive affine

transformations on domains comprising problems with different sets of alternatives (cf. page

1174, where x = $1 and y = $1000). They did not realize that their symmetry axiom has in fact

the exact same immediate implication. There are more reasons to believe that EPEP does not

qualify as a systematic formalization of reasonable arguments. Indeed, elementary bargaining

problems have already been discussed independently by Roth (1979, pages 67-70) and Roemer

(1996, Section 2.5). Roth reports experimental findings showing that subjects do not generally

agree on the half-half lottery in experiments where the two prizes x and y are different. Roemer

provides introspective/normative arguments against the half-half outcome. My contribution is

to bring to light the fact that EPEP and more generally cardinal welfarism appear as unavoid-

able consequences of the straightforward reformulation of Nash’s axioms in a natural economic

environment with lotteries. Hence it is incorrect to understand arguments against EPEP or

welfarism in general as new reasons to reject Nash’s axiomatic system as justification for his

solution. Alternatively, if one finds this set of axioms as a meaningful systematic application of

arguments one may hear in real-life bargaining situations, then one must logically accept EPEP

and welfarism. Violations of EPEP would then be a mistake, much in the same way that Savage

considered a mistake his own violation of the independence axiom when subject to the Allais

paradox. It remains an open question to know whether subjects might change their behavior

in experimental studies as those reported by Roth (1979), if they were to fully understand the

logical arguments developed in the present paper.

IIA is the axiom that has most often been criticized in Nash’s model. Although it is un-

deniable that arguments along the lines of IIA are heard in real-life bargaining, it is not clear

that they are systematically followed. Suppose for instance that the set of feasible outcomes

O′ is obtained from a larger set O by removing exclusively alternatives that are very favorable

to the first bargainer. In such cases, the second bargainer may have a valid argument against

IIA, because the reduction from O to O′ seems to place the first bargainer in a weaker position.

The main alternative cardinal welfarist solution that emerged from this criticism was proposed

by Kalai and Smorodinsky (1975). They propose to replace IIA by a property of monotonicity

8In Rubinstein et al.’s notations, apply their symmetry axiom to the bargaining problem with X = ∆(O),
where O = {(0, 0), (x, 0), (0, y)}. Any lottery in ∆(X) can be reduced into a lottery on ∆(O), in which case
there is a unique way to rank marginals when preferences satisfy first-order stochastic dominance: more weight
on the non-zero bundle is better. The symmetry function from X to X associates to any lottery µ ∈ ∆(O) the
lottery that picks (x, 0) with probability µ(0, y), and (0, y) with probability µ(x, 0). The efficient fixed-point of
that “symmetry function” is the lottery in X that picks (x, 0) and (0, y) with probability 1/2 each.
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that applies only when the bargainers’ utopia points remain unchanged.9 In Section 4, I in-

vestigate whether the straightforward economic reformulation of their axioms does characterize

their solution. I show that it does if and only if the domain is rich enough in the sense that

bargaining may involve two goods or more. I show in Section 5 that my non-welfarist character-

ization of the Nash solution extends to a larger class of preferences that allow for some forms of

non-expected utility, that is similar to the class introduced by Grant and Kajii (1995). Again,

the main innovative feature compared to their, or Rubinstein et al.’s (1992), result is the use of

a symmetry axiom that matches its intuitive meaning. The related literature, more specifically

Roemer (1988), is further discussed in Section 6.

2. BASIC MODEL

Let L be the set of goods. A bargaining problem will first be characterized by a compact subset10

O of RL+ × RL+ describing feasible outcomes. An agreement is a simple11 lottery defined on O.

Bargainers are assumed to be selfish, and hence the relevant lottery for i, when µ ∈ ∆(O) is

agreed upon, is its marginal µi, where a bundle x ∈ RL+ occurs with probability
∑

o∈O|oi=x µ(o).

Let also Oi denote the projection of O on the i-component, i.e. the set of bundles x ∈ RL+ for

which there exists o ∈ O such that oi = x. The second component characterizing a bargaining

problem is i’s preference relation �i defined on ∆(Oi). The bargainers’ preferences are assumed

to be strictly increasing (i.e. o �i o′ whenever o ≥ o′ and o 6= o′), and of the von Neumann-

Morgenstern (vN-M) type, meaning that they are complete, transitive, continuous, and satisfy

the usual independence axiom (see e.g. Fishburn (1970, chapter 8) and references therein). The

bargainers receive no good if they fail to reach an agreement, and I assume throughout the paper

that they can agree to implement the disagreement outcome, i.e. (0, 0) ∈ O. I also assume that

there exists µ ∈ ∆(O) such that µi �i 0, for both i = 1, 2. Otherwise, the problem is trivial to

solve by applying an argument of efficiency. A solution Σ associates to each bargaining problem

(O,�1,�2) a nonempty subset of ∆(O).

3. NASH

Nash’s axioms can easily be rephrased in this economic context so as to match their usual

intuitive interpretation, contrary to their classical formulation in the space of joint Bernoulli

utilities. The following axioms are assumed to hold for each bargaining problem (O,�1,�2).

Pareto Indifference (PI) If µ and ν both belong to Σ(O,�1,�2), then µ1 ∼1 ν1 and µ2 ∼2 ν2.

Exhaustivity (EX) Let ν ∈ ∆(O) and µ ∈ Σ(O,�1,�2). If µ1 ∼1 ν1 and µ2 ∼2 ν2, then

ν ∈ Σ(O,�1,�2).

9Kalai and Smorodinsky’s property of monotonicity implies a weak form of IIA that applies only when the
bargainers’ utopia points remain unchanged, thereby addressing to some extent the criticism formulated against
IIA.

10O can be finite or infinite. All the results of the paper remain true if one restricts the domain to bargaining
problems with a finite set O of outcomes.

11i.e. with finite support.
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Efficiency (EFF) If µ ∈ Σ(O,�1,�2), then there does not exist ν ∈ ∆(O) such that νi �i µi
for both i ∈ {1, 2}, and νi �i µi for some i ∈ {1, 2}.

Symmetry (SYM) Let O∗ = {(x, y) ∈ RL+×RL+|(y, x) ∈ O}. For each µ ∈ ∆(O), let µ∗ ∈ ∆(O∗)

be the lottery defined as follows: µ∗(x, y) = µ(y, x), for each (x, y) ∈ O∗. If O = O∗ and �1=�2,

then µ ∈ Σ(O,�1,�2) if and only if µ∗ ∈ Σ(O,�1,�2).

Independence of Irrelevant Alternatives (IIA) If µ ∈ Σ(O,�1,�2), O′ ⊆ O, µ ∈ ∆(O′),

and �′i coincides with �i on ∆(O′), for both i = 1, 2, then µ ∈ Σ(O′,�′1,�′2).

PI requires that the solution provides a unique answer to each bargaining problem, meaning

formally that the solution is essentially single-valued. There can be multiple lotteries in the

solution of a problem only if both bargainers are indifferent between all of them. Nash imposed

this type of restriction in the very definition of a solution, by focusing on functions instead

of correspondences. I prefer to formulate it as an explicit axiom, drawing attention to the

fact that unicity in the space of utilities does not necessarily imply unicity in the underlying

economic environment. EX is the dual property: if both bargainers are indifferent between

a contract in the solution and an alternative feasible contract, then this alternative contract

should also belong to the solution.12 EFF guarantees that the solution makes the most out

of the feasibility constraints faced by the two bargainers: there is no alternative contract that

would make both of them at least as well off, and at least one of them strictly better off.

By Symmetry, if a problem is symmetric, in the sense that the set of feasible outcomes is

symmetric and the two bargainers’ preferences coincides on the marginal distributions, then

the symmetric image of any lottery in the solution should also be a solution. Anonymity,

requiring that the solution does not depend on the identity of the bargainers, is perhaps more

intuitive: Σ(O∗,�2,�1) = {µ∗|µ ∈ Σ(O,�1,�2)}, for each bargaining problem (O,�1,�2).

Anonymity sounds intuitively appealing if both bargainers have equal bargaining abilities, and

immediately implies SYM. As for IIA, suppose that the bargainers recognize that the lottery

µ ∈ ∆(O) is a reasonable agreement for the problem (O,�1,�2). Suppose now they learn that

less alternatives are available, in that they must agree on a lottery over O′ ⊆ O, but that µ is

still feasible, i.e. µ ∈ ∆(O′). It is then assumed that the bargainers will recognize that µ′ is a

reasonable agreement for the problem (O′,�′1,�′2) as well, where (�′1,�′2) is the restriction of

(�1,�2) to ∆(O′).

Theorem 1 There exists a unique solution Σ that satisfies PI, EX, EFF, SYM, and IIA. It is

12EX is the only axiom which is not a direct non-welfarist analogue of one of Nash’s explicit axioms or assump-
tions. It captures the commonly accepted idea that once a problem has been solved in Nash’s welfarist setting,
then any agreement that leads to the utilities in the welfarist solution is a reasonable compromise. Yet it could
be termed an “hidden assumption” of Nash’s construction, as cardinal welfarism has been called in the past. The
difference though is that EX applies for a fixed problem, and what it entails is clear. Note that all the papers
discussing welfarism in bargaining so far have assumed EX one way or another without much discussion. Roemer
(1988) restricts his analysis to “full correspondences” (see page 6). Rubinstein et al. (1992) rule out the difficulty
in their very definition of a bargaining problem by assuming that there is a one-to-one correspondence between
outcomes and utility pairs (see their condition (v) on page 1173). Valenciano and Zarzuelo (1997) need to amend
their ISO axiom in order to prove their main theorem by applying it to preference-based indifference classes in
the outcome space.
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computed as follows:

Σ(O,�1,�2) = arg max
µ∈∆(O)

(U1(µ)− U1(0))(U2(µ)− U2(0)),

where Ui : ∆(RL+)→ R is any13 linear representation of the vN-M preferences �i (i = 1, 2).

The solution derived from the axioms in Theorem 1 is simply the reformulation of the

Nash bargaining solution in our economic environment. It will thus be denoted by ΣN in the

remainder of the paper. Observe that the use of linear representations of the preferences follows

from the axioms, instead of being assumed in the model and the axioms themselves.14 The proof

of Theorem 1 can be found in the Appendix. The rest of this section is devoted to showing the

independence of the axioms. The solution that picks all the Pareto efficient lotteries satisfies all

the axioms except PI. It is also possible to construct non-welfarist solutions that satisfy all the

axioms except PI. Consider for simplicity the case L = 1, and the solution that coincides with the

Nash solution in all problems, except on elementary problems, in which case the solution contains

the Nash solution plus the lottery that picks x with probablity x
x+y and y with probability y

x+y ,

when O = {(0, 0), (x, 0), (0, y)}. The modified Nash solution that selects deterministic outcomes

in ΣN whenever possible, i.e. Σ̃N (O,�1,�2) = ΣN (O,�1,�2) ∩O, if this set is nonempty, and

Σ̃N (O,�1,�2) = ΣN (O,�1,�2), otherwise, satisfies all the axioms except EX. The solution

that systematically picks (0, 0) satisfies all the axioms except EFF. Weighted Nash solutions

satisfy all the axioms except SYM. It is also possible to find a non-welfarist solution with this

property. Consider for simplicity the case L = 1. For each set O of feasible outcomes, let xi(O)

be the maximal feasible payment that i could receive. If x1(O) is larger or equal to x2(O),

then the solution picks the outcome o such that o1 = x1(O) and o2 is maximal among all the

outcomes with that property. Otherwise the solution picks the outcome o such that o2 = x2(O)

and o1 is maximal among all the outcomes with that property. The solution satisfies all the

axioms except SYM. The Kalai-Smorodinsky solution, studied in the next section, satisfies all

the axioms except IIA. Of course, there are also numerous non-welfarist solutions with that

property. For instance, for each set O of outcomes, let αi(O) = maxo∈O
∑

l∈L o
l
i. Then the

Nash solution weighted by (α1(O), α2(O)) satisfies all the axioms except IIA.

4. KALAI-SMORODINSKY

I start by redefining the Kalai-Smorodinsky solution and the property of conditional mono-

tonicity in my economic framework:

ΣKS(O,�1,�2) = arg max
µ∈∆(O)

min
i=1,2

Ui(µ)− Ui(0)

maxν∈∆(O) Ui(ν)− Ui(0)
, (1)

13 If two different sets of linear utility functions (U1, U2) and (V1, V2) represent (�1,�2), then there exists
α ∈ R2

+ and β ∈ R2 such that Ui = αiVi+βi, for i = 1, 2. Hence arg maxµ∈∆(O)(U1(µ)−U1(0))(U2(µ)−U2(0)) =
arg maxµ∈∆(O)(V1(µ)− V1(0))(V2(µ)− V2(0)), and the solution is thus well-defined.

14Obviously, “Scale Invariance” is not part of the axioms in Theorem 1, since this property made sense only in
Nash’s cardinal welfarist model.
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where (U1, U2) is any15 linear representation of the vN-M preferences (�1,�2).

Conditional Monotonicity (C-MON) Let (O,�1,�2) be a bargaining problem, and (O′,�′1
,�′2) be a larger bargaining problem O, in the sense that O ⊆ O′, and �′i coincides with �i on

∆(Oi), for both i = 1, 2. If there is no µ′ ∈ ∆(O′) such that either µ′1 �1 µ1, for all µ ∈ ∆(O),

or µ′2 �2 µ2, for all µ ∈ ∆(O), then for all µ ∈ Σ(O,�1,�2) there exists µ′ ∈ Σ(O′,�1,�2)

such that µ′1 �1 µ1 and µ′2 �2 µ2.16

Theorem 2 ΣKS is the only solution that satisfies PI, EX, EFF, SYM, and C-MON if and

only if L ≥ 2.

The proof that ΣKS is the only solution that satisfies PI, EX, EFF, SYM, and C-MON when

L ≥ 2 can be found in the Appendix. The next example shows that there exists non-welfarist

solutions that satisfy the natural reformulation of Kalai-Smorodinsky’s axioms in my economic

environment when L = 1.

Example 1 Consider the reformulation of the solutions characterized by Peters and Tijs (1985)

in my non-welfarist model. Let φ : [1, 2] → conv{(1, 0), (0, 1), (1, 1)} that is continuous, non-

decreasing and such that φ(1) = (1/2, 1/2) and φ(2) = (1, 1). The function φ thus determines

a monotonic curve in the subset conv{(1, 0), (0, 1), (1, 1)} of the utility space. Let then Σφ be

the solution that associates to each bargaining problem (O,�1,�2) the set of lotteries λ that are

Pareto optimal and such that (U∗1 (λ), U∗2 (λ)) = φ(U∗1 (λ)+U∗2 (λ)), where U∗i is the unique linear

representation of �i such that U∗i (0) = 0 and maxo∈O U
∗
i (oi) = 1. Suppose that L = 1, and

let x and y be the two positive real numbers such that U∗1 (x) = U∗2 (y) = 1. Consider then the

monotonic curve in the triangle conv{(1, 0), (0, 1), (1, 1)} that starts at (1/2, 1/2), and follows a

direction parallel to the vector ( x1
x1+y1

, y1

x1+y1
) until it reaches an edge of the triangle, in which

case it continues until (1, 1) on that edge. Let ψ be the functional description of that curve, i.e.

ψ(t) is the intersection of the curve with the line u1 +u2 = t, for each t ∈ [1, 2]. It is not difficult

to check that Σψ is well-defined, and satisfies the axioms listed in Theorem 2, but is different

from ΣKS.

I now discuss the independence of the axioms appearing in Theorem 2. The solution

that picks all the Pareto efficient lotteries satisfies all the axioms except PI. The modified

Kalai-Smorodinsky solution that selects deterministic outcomes in ΣKS whenever possible,

i.e. Σ̃KS(O,�1,�2) = ΣKS(O,�1,�2) ∩ O, if this set is nonempty, and Σ̃KS(O,�1,�2) =

ΣKS(O,�1,�2), otherwise, satisfies all the axioms except EX. The solution that systematically

picks (0, 0) satisfies all the axioms except EFF. Weighted Kalai-Smorodinsky solutions satisfy

all the axioms except SYM. The Nash solution, studied in the previous section, satisfies all

the axioms except IIA. Of course, there are also numerous non-welfarist solutions with that

property, including for instance the one introduced when discussing the independence of IIA in

Theorem 1.

15See Footnote 13.
16The Kalai-Smorodinsky solution also satisfies a stronger monotonicity property requiring that µ′ �1 µ and

µ′ �2 µ, for all µ ∈ Σ(O,�1,�2) and all µ′ ∈ Σ(O′,�1,�2), and Theorem 2 is a fortiori true with this stronger
version of C-MON. Notice also that this stronger monotonicity property implies PI.
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5. NON-EXPECTED UTILITY

I now consider a larger class of bargaining problems to accommodate some forms of non-expected

utility, as initiated by Rubinstein et al. (1992), and further extended and clarified by Grant and

Kajii (1995). As before, a bargaining problem is a triplet (O,�1,�2), where O is a compact

subset of RL+×RL+ describing feasible outcomes, and �i describes bargainer i’s preferences over

∆(Oi). In order to present the assumptions made on preferences, I introduce some notation.

Given a lottery µ ∈ ∆(O), and a number p ∈ [0, 1], pµ will denote the compound lottery where

µ is implemented with probability p and (0, 0) prevails with probability 1− p. Preferences are

still assumed to be strictly increasing, in the sense oi �i o′i whenever oi ≥ o′i and oi 6= o′i.

The disagreement point (0, 0) is also assumed to be feasible, i.e. (0, 0) ∈ O, and there exists

µ ∈ ∆(O) such that µi �i 0, for both i = 1, 2. The new feature is that preferences, though still

complete, transitive, and continuous, are not required to be of the von Neumann-Morgenstern

type. Instead, I will assume that they satisfy first-order stochastic dominance, and that there

exists ui : ∆(Oi) → R such that pλ �i qµ if and only if ui(λ)p ≥ ui(µ)q, for each p, q ∈ [0, 1],

and each λ, µ ∈ ∆(Oi). Some form of convexity will also be required: for both i ∈ {1, 2}, there

exists oi ∈ Oi that is a best outcome for i (i.e. oi � x, for each x ∈ Oi), and such that

(∀µ, ν ∈ ∆(O))(∀p1, p2, q1, q2 ∈ [0, 1])(∃λ ∈ ∆(O)) :

µ1 ∼1 p1o
1, µ2 ∼2 p2o

2, ν1 ∼1 q1o
1 and ν2 ∼2 q2o

2 ⇒ λ1 �1
p1 + q1

2
o1 and λ2 �2

p2 + q2

2
o2.

With these assumptions, for any lottery µ ∈ ∆(O) and either i ∈ {1, 2}, there exists a unique

real number, call it Ui(µi), such that µi ∼i Ui(µi)oi. Obviously Ui represents bargainer i’s

preferences, in the sense that µi � νi if and only if Ui(µi) ≥ Ui(νi), for each µ, ν ∈ ∆(O).17

With our assumptions on preferences, Ui is linear in probabilities on elementary compound

lotteries that pick either a lottery in ∆(Oi) or 0, but not necessarily on all lotteries in ∆(Oi).

Let then

U(O,�1,�2) = {v ∈ R2|∃µ ∈ ∆(O) : v1 ≤ U1(µ1) and v2 ≤ U2(µ2)}.

The convexity assumption imposed on bargaining problems guarantee that U(O,�1,�2) is a

convex subset of R2
+.

The notion of a solution, and the axioms presented in Section 2, remain unchanged, except

that they are now defined on our larger class of bargaining problems.

Theorem 1’ Let Σ be a bargaining on the larger class of bargaining problems considered in this

section. Then Σ satisfies PI, EX, EFF, SYM, and IIA on that larger class of problems if and

only if

Σ(O,�1,�2) = {µ ∈ ∆(O)|(U1(µ1), U2(µ2)) ∈ arg max
v∈U(O,�1,�2)

v1v2}. (2)

The proof of Theorem 1’ is available in the Appendix. Whether Theorem 2 also extends to the

larger domain of this section remains an open question.

17It is easy to check that Ui does not depend on the choice of the optimal oi, if multiple such choices exist.
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The conditions defining a bargaining problem are direct analogues of those proposed by

Grant and Kajii (1995) as a weakening of the original conditions proposed by Rubinstein et

al. (1992). A relevant difference, though, is that Grant and Kajii apply these conditions to a

(large) set of deterministic outcomes, while I apply them to lotteries over a (possibly small) set of

deterministic outcomes. The next example shows that the bargaining problem they considered

as an illustration of the richness of their expanded domain also belongs to the domain I consider

in this section.

Example 2 Consider the case L = 1, and a bargaining problem with the set of outcomes

O = {x ∈ R2
+|x1 + x2 ≤ 1}. For any lottery µ with finite support in [0, 1], let (xk(µ))Kk=1 be the

increasing sequence where x1(µ) = 0 and {xk(µ)|2 ≤ k ≤ K} is the set of non-zero outcomes

that come with positive probability under µ. Then define i’s utility for µ as follows:

Vi(µ) =

K−1∑
k=1

(xk+1(µ)− xk(µ))(

K∑
j=k+1

µ(xj))
αi ,

for each i ∈ {1, 2}, where αi is any given parameter strictly larger than 1. Let then �i be the

preference over defined ∆(Oi) derived from Vi. I now prove that any such (O,�1,�2) qualify as

a bargaining problem, as defined in this section. First-order stochastic dominance is obviously

verified. Next notice that Vi(pµ) = pαiVi(µ), for any p ∈ [0, 1] and any µ ∈ ∆(Oi). Hence

pµ �i qν if and only if p(Vi(µ))1/αi ≥ q(Vi(ν))1/αi, and i’s preference indeed admits a linear

representation on elementary compound lotteries that involve 0 and any lottery in ∆(Oi) (taking

ui = V
1/αi
i ). Finally, consider µ, ν ∈ ∆(O) and p1, p2, q1, q2 such that µ1 ∼1 p1o

1, µ2 ∼2 p2o
2,

ν1 ∼1 q1o
1 and ν2 ∼2 q2o

2. Requiring the parameters α1, α2 to be larger than 1 is equivalent to

assume that the two bargainers are risk-averse (see Chew et al. (1987, Theorem 1, p. 374)). If

(x1, x2) and (y1, y2) denote the expected values of µ and ν respectively, then Vi(xi) ≥ Vi(µi) and

Vi(xi) ≥ Vi(νi), or xi ≥ pαii oi and yi ≥ qαii oi. Let then λ be the lottery that picks (x1+y1

2 , x2+y2

2 )

for sure. We have:

Vi(λi) =
1

2
(xi + yi) ≥

1

2
(pαii + qαii )oi ≥ (

1

2
(pi + qi))

αioi = Vi(
1

2
(pi + qi)o

i),

thereby showing that the convexity assumption is satisfied as well, and that (O,�1,�2) does

indeed qualify as a bargaining problem.

6. FURTHER COMPARISON WITH THE RELATED LITERATURE

This section is devoted to a more detailed comparison of Theorems 1 and 2 with Roemer’s

(1988) results. A first difference between our two approaches is that I do not aim at char-

acterizing welfarism, but instead observe that natural reformulations of Nash’s and Kalai and

Smorodinsky’s axioms imply it in my model (when L ≥ 2 in the latter case). My ‘reconstruc-

tion’ is thus more successful, but also less ambitious, since the fact that the cardinal welfarist

property is redundant for these two axiomatic systems does not imply that it will be in others
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(and indeed we already observed, for instance, that it is not redundant in the case of Kalai and

Smorodinsky’s axioms when L = 1). It is also important to recognize the role played by the

domain of definition of solutions when formulating axiomatic results. Particularly, the Nash

bargaining solution would not be uniquely characterized in Roemer’s paper if CONRAD was

dropped. Here are the main differences between our two papers regarding the definition of a

bargaining problem. First, instead of restricting attention to economic problems that result from

all the possible reallocations of some collective endowment to be shared, my domain includes

bargaining problems build on any compact set of bundles. A stark consequence of Roemer’s

assumption is that every solution satisfies IIA in his framework, since an efficient allocation

cannot remain feasible if the total endowment to distribute diminishes. Second, bargainers

can use lotteries to reach an agreement in my model, and these lotteries are evaluated via von

Neumann-Morgenstern ordinal preferences. Roemer, instead, endows the bargainers with a con-

cave utility function defined over a set of deterministic contracts. Thus his theory is still rooted

in a notion of utility that is not ordinally invariant (as an increasing transformation of a concave

function is not necessarily concave). Third, my reasoning works for any fixed number of goods

(including the interesting case of only one good), while Roemer’s argument depends crucially

on the possibility of adding goods, thereby considering a framework with a variable (possibly

infinite) number of goods. Fourth, Roemer include the bargainers’ preferences over unfeasible

outcomes in the description of a bargaining problem. By analogy, this would mean in my frame-

work that �i is defined over ∆(RL+) instead of ∆(O). My reformulation of Nash’s axioms do not

characterize uniquely his solution in that alternative model. Here is indeed an alternative class

of solutions satisfying them, inspired by Pazner and Schmeidler’s (1978) concept of egalitarian

equivalence.

Example 3 Let (O,�1,�2) be a bargaining problem with �1 and �2 defined over ∆(RL+) instead

of ∆(O), and let d ∈ RL++. For each µ ∈ ∆(O), let αdi (µ) be the unique real number such that

i is indifferent between the lottery µ and receiving αdi (µ)dl units of each good l, for sure. Let

α̂d(µ) be the vector in R2
+ obtained by rearranging the components of αd(µ) increasingly. The

egalitarian equivalent solution Σd
EE is obtained by maximizing α̂d according to the lexicographic

order. It is not difficult to check that Σd
EE satisfies PI, EX, AN, EFF, and IIA. Notice that

multiplying d by a scalar does not change the solution. There is thus a unique egalitarian equiv-

alent solution when L = 1, the vector α(µ) determining the certainty equivalent of µ for both

bargainers. The solution varies with the direction d when L ≥ 2.

Restricting preferences to be defined over feasible outcomes is standard in economic theory.

The concept of (pure or mixed-strategy) Nash equilibrium, for instance, does not depend on

preferences over unfeasible outcomes. The assumption is standard in bargaining theory as well,

cf. Rubinstein et al. (1992) and Valenciano and Zarzuelo (1997), for instance. Also, it is satis-

fied by any solution that is justified by the Nash program, in the sense of coinciding with the

subgame-perfect Nash equilibrium outcome of some non-cooperative bargaining procedure de-

fined over feasible agreements. The interested reader is referred to de Clippel (2009) for a more
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thorough discussion of the property of independence with respect to preferences over unfeasible

alternatives.

Taking into account these four main differences, I believe that my framework is closer to

Nash’s (1950) original construction of a bargaining problem, starting with explicit economic

bundles instead of his more abstract notion of ‘anticipation.’

I conclude the paper with yet one more illustration, in complement to those given in the

Introduction, that Rubinstein et al.’s (1992) symmetry axiom entails more than an argument of

anonymity, or of equal outcome when bargainers have equal bargaining ability. Indeed, notice

that replacing their symmetry axiom by SYM or an anonymity property does not characterize

the Nash solution in most problems in their framework. Consider for instance the case L = 1, and

consider a set O = {o ∈ R2
+|λ1o1 + λ2o2 = 1}, for some λ ∈ R2

++. If λ1 6= λ2, then O∗ 6= O, and

SYM remains silent. The solution that picks o∗ independently of the bargainers’ preferences

thus satisfies SYM, as well as Rubinstein et al.’s axioms of efficiency and independence over

irrelevant alternatives, for any o∗ ∈ R2
+ such that λ1o

∗
1 +λ2o

∗
2 = 1. Their characterization result

does not hold even when λ1 = λ2, and thus O = O∗, if one uses SYM instead of their stronger

welfarist-related version of it. Fix o∗ ∈ R2
++ such that λ1o

∗
1 + λ2o

∗
2 = 1. The solution that

picks o∗ for any pair (�1,�2) such that �1 6=�2 on ∆([0,min{o1, o2}), and (1/2, 1/2) otherwise,

provides an example.
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APPENDIX

Proof of Theorem 1

The fact that ΣN satisfies the axioms follows from the usual properties of the Nash bargaining

solution defined in the space of joint Bernoulli utilities. I will thus focus on proving uniqueness.

Let Σ be a solution that satisfies the axioms, and let (O,�1,�2) be a bargaining problem. We

have to prove that Σ(O,�1,�2) = ΣN (O,�1,�2). Given that Σ satisfies PI, it is sufficient to

show that ΣN (O,�1,�2) ⊆ Σ(O,�1,�2). Let thus µ∗ ∈ ΣN (O,�1,�2). The next few steps

show that µ∗ ∈ Σ(O,�1,�2), as desired.

Step 1 Let o1 be an element of O that is maximal for 1 (o1
1 � o′1, for each o′ ∈ O), let o2

be an element of O that is maximal for 2 (o2
2 � o′2, for each o′ ∈ O), let (U1, U2) be two

linear representations of (�1,�2) such that U1(0) = U2(0) = 0 and U1(o1
1) = U2(o2

2) = 1,

let (σ∗1, σ
∗
2) = (U1(µ∗1), U2(µ∗2)), and let U(O,�1,�2) = {(U1(µ1), U2(µ2))|µ ∈ ∆(O)}. Then

U(O,�1,�2) is included in the triangle with extreme points (0, 0), (2σ∗1, 0), and (0, 2σ∗2).

Proof: Let

V = {x ∈ R2|x ≥ (0, 0) and x1x2 ≥ σ∗1σ∗2}.

The sets U(O,�1,�2) and V are both convex, and U(O,�1,�2) ∩ V = {σ∗}. The separating

hyperplane theorem implies that18

U(O,�1,�2) ⊆ {x ∈ R2|x1

σ∗1
+
x2

σ∗2
≤ 2},

because the gradient of the function x1x2 at σ∗ is proportional to (σ∗2, σ
∗
1). �

Step 2 Notice that σ∗1 ≥ 1/2, by convexity of U(O,�1,�2) (which follows from the linearity of

U1 and U2). If σ∗1 = 1/2, then read the rest of the proof with x = o1. Otherwise, pick a bundle

x that is larger and different from o1, and define �′1 as the following preference ordering on

∆(O1 ∪ {x}):
µ1 �′1 ν1 if and only if U ′1(µ1) ≥ U ′1(ν1)

for each µ1, ν1 ∈ ∆(O1 ∪ {x}), where

U ′1(µ1) = 2µ1(x)σ∗1 + (1− µ1(x))U1(µ1|¬x),

for each µ1 ∈ ∆(O1 ∪{x}), where µ1|¬x is the lottery on O1 derived by Bayesian updating from

µ1 when conditioning on the fact that the outcome is different from x. Similarly, σ∗2 ≥ 1/2, by

convexity of U(O,�1,�2). If σ∗2 = 1/2, then read the rest of the proof with y = o2. Otherwise,

18Notice that both σ∗1 and σ∗2 must be strictly positive since there exists µ ∈ ∆(O) such that µ1 �1 0 and
µ2 �2 0, by definition of a bargaining problem.
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pick a bundle y that is larger and different from o2, and define �′2 as the following preference

ordering defined on ∆(O2 ∪ {y}):

µ2 �′2 ν2 if and only if U ′2(µ2) ≥ U ′2(ν2),

for each µ2, ν2 ∈ ∆(O2 ∪ {y}), where

U ′2(µ2) = 2µ2(y)σ∗2 + (1− µ2(y))U2(µ2|¬y),

for each µ2 ∈ ∆(O2∪{y}), where µ2|¬y is the lottery on O2 derived by Bayesian updating from µ2

when conditioning on the fact that the outcome is different from y. Let O′ = O∪{(x, 0), (0, y)}.
Then (O′,�′1,�′2) is a bargaining problem.

Proof: It is straightforward to check that O′ inherits from O the property of compactness, that

�′i inherits from �i the quality of being a von Neumann/Morgenstern preference, and that there

exists µ′ ∈ ∆(O′) such that µ′1 �′1 0 and µ′2 �′2 0, since there exists µ ∈ ∆(O) such that µ1 �1 0

and µ2 �2 0. �

Step 3 Let µ ∈ Σ(O′,�′1,�′2). Then U ′1(µ1) = U ′1(µ′1) and U ′2(µ2) = U ′2(µ′2), for all µ′ ∈
Σ({(0, 0), (x, 0), (0, y)}, ·, ·).19

Proof: Following Step 1, and the definitions of U ′1 and U ′2, notice that

U(O′,�′1,�′2) = {(U ′1(ν), U ′2(ν))|ν ∈ ∆(O′)}

coincides with the triangle whose extreme points are (0, 0), (2σ∗1, 0), and (0, 2σ∗2). By EFF, there

exists α ∈ [0, 1] such that U ′1(µ1) = 2ασ∗1 and U ′2(µ2) = 2(1−α)σ∗2. EX implies that the lottery

that gives (x, 0) with probability α, and (0, y) with probability 1− α belongs to Σ(O′,�′1,�′2).

IIA implies that this lottery also belongs to Σ({(0, 0), (x, 0), (0, y)}, ·, ·). We have thus found

one lottery µ′ ∈ Σ({(0, 0), (x, 0), (0, y)}, ·, ·) such that U ′1(µ1) = U ′1(µ′1) and U ′2(µ2) = U ′2(µ′2).

The result then follows by PI. �

Step 4 Σ({(0, 0), (x, 0), (0, y)}, ·, ·) = {α(x, 0)⊕ (1− α)(0, y)}, for some α ∈]0, 1[.20

Proof: By EFF, any lottery in Σ({(0, 0), (x, 0), (0, y)}, ·, ·) must give (x, 0) with some proba-

bility α, and (0, y) with probability 1 − α. The difficult part is to show that the solution is

strictly individually rational, i.e. α is different from both 0 and 1. Suppose, to the contrary

of what we want to prove, that Σ({(0, 0), (x, 0), (0, y)}, ·, ·) = {x} (a similar argument applies

19There is only one preference satisfying first-order stochastic dominance, and a fortiori of the von Neu-
mann/Morgenstern type, when defined over 0 and a non-zero bundle. To save on notations, I omit to write
the unique pair of preferences when looking at the bargaining problem whose feasible outcomes are (0, 0), (x, 0),
or (0, y).

20For each pair o, o′ in O, and each α ∈ [0, 1], αo⊕ (1−α)o′ stands for the lottery that picks o with probability
α and o′ with probability 1− α.
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if Σ({(0, 0), (x, 0), (0, y)}) = {y}). Let’s show that this leads to a contradiction by considering

four different cases:21

Case 1: y = x

In that case, PI and SYM imply that α = 1/2, and we are done.

Case 2: y > x

Let for instance Ū2 be the utility function defined as follows on {0, x, y}:

Ū2(0) = 0, Ū2(x) = 1/2, Ū2(y) = 1,

and let �̄2 be the associated von Neumann/Morgenstern preference defined over ∆({0, x, y}).
Efficiency implies that any lottery ν in Σ({(0, 0), (x, 0), (0, x), (0, y)}, ·, �̄2) must place positive

weights on (x, 0) and (0, y) only. By IIA, this lottery will also belong to Σ({(0, 0), (x, 0), (0, y)}, ·, ·),
which is equal to {(x, 0)}. Hence ν must pick (x, 0) for sure, but then applying IIA again implies

that Σ({(0, 0), (x, 0), (0, x)}, ·, ·) = {(x, 0)}, which contradicts the combination of PI and SYM.

Case 3: x > y

Let x′ << x, let y′ << y, let Ū1 be the utility function defined as follows on {0, x′, x}:

Ū1(0) = 0, Ū1(x′) = 1/4, Ū1(x) = 1,

let �̄1 be the associated von Neumann/Morgenstern preference defined over ∆({0, x′, x}), let

Ū2 be the utility function defined as follows on {0, y′, y}:

Ū2(0) = 0, Ū2(y′) = 3/4, Ū2(y) = 1,

and let �̄2 be the associated von Neumann/Morgenstern preference defined over ∆({0, y′, y}).
Let ν be a lottery in Σ({(0, 0), (x, 0), (0, y), (x′, y′)}, �̄1, �̄2). Since the lottery 1

4(x, 0)⊕ 3
4(0, y)

leads to the same expected utilities (under (Ū1, Ū2)) for both players than the outcome (x′, y′),

there must exists a lottery ν ′ in ∆({(x, 0), (0, y)}) such that Ūi(ν
′) = Ūi(ν), for both i ∈

{1, 2}. EX implies that ν ′ ∈ Σ({(0, 0), (x, 0), (0, y), (x′, y′)}, �̄1, �̄2). IIA implies that ν ′ ∈
Σ({(0, 0), (x, 0), (0, y)}, ·, ·) = {(x, 0)}. Hence Ū1(ν) = Ū1(ν ′) = 1 and Ū2(ν) = Ū2(ν ′) = 0, or ν

must be the lottery that picks (x, 0) for sure. IIA implies that Σ({(0, 0), (x, 0), (x′, y′)}, �̄1, ·) =

{(x, 0)}.
Consider now Ū ′2, the utility function defined as follows on {0, y′, x}:

Ū ′2(0) = 0, Ū ′2(y′) = 3/4, Ū ′2(x) = 1,

let �̄′2 be associated von Neumann/Morgenstern preference defined over ∆({0, y′, x}). Let ρ be

a lottery in Σ({(0, 0), (x, 0), (0, x), (x′, y′)}, �̄1, �̄′2). Since the lottery 1
4(x, 0) ⊕ 3

4(0, x) leads

to the same expected utilities (under (Ū1, Ū
′
2)) for both players than the outcome (x′, y′),

21It is perhaps a good place to emphasize that utility functions are defined in all the proofs so as to lead to
valid preferences, One has to be careful in particular to avoid decreasing functions.
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there must exists a lottery ρ′ in ∆({(x, 0), (0, x)}) such that Ūi(ρ
′) = Ūi(ρ), for both i ∈

{1, 2}. EX implies that ρ′ ∈ Σ({(0, 0), (x, 0), (0, x), (x′, y′)}, �̄1, �̄′2). IIA implies that ρ′ ∈
Σ({(0, 0), (x, 0), (0, x)}, ·, ·) = {1

2(x, 0) ⊕ 1
2(0, x)} by PI, SYM and EFF. Notice that 1

3(x, 0) ⊕
2
3(x′, y′) gives the same expected utility (under (Ū1, Ū

′
2)) to both players than this last lottery,

and hence 1
3(x, 0)⊕ 2

3(x′, y′) ∈ Σ({(0, 0), (x, 0), (0, x), (x′, y′)}, �̄1, �̄′2), by EX. IIA implies that
1
3(x, 0) ⊕ 2

3(x′, y′) ∈ Σ({(0, 0), (x, 0), (x′, y′)}, �̄1, ·). This, combined with the conclusion from

the previous paragraph, contradicts PI.

Case 4: x and y are not comparable

Let Ū2 be the utility function defined as follows on {0, x, y}:

Ū2(0) = 0, Ū2(x) = Ū2(y) = 1,

and let �̄2 be the associated von Neumann/Morgenstern preference defined over ∆({0, x, y}).
Efficiency implies that any lottery ν in Σ({(0, 0), (x, 0), (0, x), (0, y)}, ·, �̄2) must place positive

weights on (x, 0), (0, x), and (0, y) only. For any such lottery, there exists another lottery

ν ′ in ∆({(x, 0), (0, y)}) such that both bargainers are indifferent between ν and ν ′. EX im-

plies that ν ′ ∈ Σ({(0, 0), (x, 0), (0, x), (0, y)}, ·, �̄2). By IIA, this lottery will also belong to

Σ({(0, 0), (x, 0), (0, y)}, ·, ·), which is equal to {(x, 0)}. Hence ν must pick (x, 0) for sure, but

then applying IIA again implies that Σ({(0, 0), (x, 0), (0, x)}, ·, ·) = {(x, 0)}, which contradicts

the combination of PI and SYM. �

Step 5 Σ({(0, 0), (x, 0), (0, y)}) = {1
2(x, 0)⊕ 1

2(0, y)}.

Proof: By Step 4, we know that Σ({(0, 0), (x, 0), (0, y)}) = {α(x, 0) ⊕ (1 − α)(0, y)}, for some

α ∈]0, 1[. We have to show that α = 1/2. This follows trivially from PI and SYM if y = x.

Suppose thus that y 6= x. Hence there exists π ∈ RL++ such that π · x > π · y or π · y > π · x.22 I

will assume that the former inequality holds - a similar argument applies in the other case. Let

β ∈]0,min{α, 1 − α}[, let a ∈ RL++ be such that π · a = (1 − β)π · y, and let b ∈ RL++ be such

that π · b = βπ · y. Let also U ′′1 : {0, a, b, x} → R and U ′′2 : {0, a, b, y} → R be defined as follows:

U ′′1 (0) = U ′′2 (0) = 0, U ′′1 (a) = U ′′2 (a) = π · a, U ′′1 (b) = U ′′2 (b) = π · b, U ′′1 (x) = U ′′2 (y) = π · y.

Let �′′1 be the von Neumann/Morgenstern preference defined on ∆({0, a, b, x}) associated

with the Bernoulli function U ′′1 , and �′′2 be the von Neumann/Morgenstern preference defined

on ∆({0, a, b, y}) associated with the Bernoulli function U ′′2 .23 Consider now a lottery ν in

Σ({(0, 0), (x, 0), (0, y), (a, b), (b, a)},�′′1,�′′2). EFF implies that ν((0, 0)) = 0. For any γ ∈ [0, 1],

both agents are indifferent given (�′′1,�′′2) between their marginal of the lottery that gives (a, b)

with probability γ and (b, a) with probability 1 − γ, and their marginal of the lottery that

gives (x, 0) with probability β + γ − 2βγ and (0, y) with probability 1 − β − γ + 2βγ. Hence

both bargainers must be indifferent between their marginal of ν and their marginal of some lot-

tery in ∆({(x, 0), (0, y)}). This lottery must belong to Σ({(0, 0), (x, 0), (0, y), (a, b), (b, a)},�′′1
22The proof might be easier to understand at first when L = 1, in which case π can be normalized to 1.
23It is easy to check that �′′1 and �′′2 are necessarily strictly increasing given our definition of U ′′1 , U

′′
2 , and the

fact that π · x > π · y.
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,�′′2), by EX, and IIA implies that it also belong Σ({(0, 0), (x, 0), (0, y)}, ·, ·). PI thus im-

plies that the lottery that gives (0, y) with probability α and (x, 0) with probability 1 − α

belongs to Σ({(0, 0), (x, 0), (0, y), (a, b), (b, a)},�′′1,�′′2). Both bargainers are indifferent given

(�′′1,�′′2) between their marginal of this last lottery and their marginal of the lottery that gives

(b, a) with probability α−β
1−2β and (a, b) with probability 1−α−β

1−2β (these are well-defined prob-

abilities because β < min{α, 1 − α} < 1/2). EX implies that this new lottery belongs to

Σ({(0, 0), (x, 0), (0, y), (a, b), (b, a)},�′′1,�′′2), and hence also to Σ({(0, 0), (a, b), (b, a)},�′′′1 ,�′′′2 ),

by IIA, where �′′′i is the restriction of �′′i to ∆({0, a, b}). Notice that �′′′1 coincides with �′′′2 on

∆({0, a, b}). SYM and PI imply that the only element of Σ({(0, 0), (a, b), (b, a)},�′′′1 ,�′′′2 ) is the

lottery that puts an equal weight on (a, b) and on (b, a). Hence α−β
1−2β = 1/2, or α = 1/2. �

Step 6 µ∗ ∈ Σ(O,�1,�2).

Proof: Steps 3 and 5 imply that U ′1(µ) = σ∗1 = U ′1(µ∗) and U ′2(µ) = σ∗2 = U ′2(µ∗), and hence

µ∗ ∈ Σ(O′,�′1,�′2), by PI. IIA implies that µ∗ ∈ Σ(O,�1,�2), as desired. �

Proof of Theorem 2

The fact that ΣKS is not the only solution satisfying the axioms when L = 1 has already been

shown in the main text (cf. Example 1). The fact that ΣKS satisfies the axioms follows from

the usual properties of the Kalai-Smorodinsky solution defined in the space of joint Bernoulli

utilities. I will thus focus on proving uniqueness. Let Σ be a solution that satisfies the axioms,

and let (O,�1,�2) be a bargaining problem. We have to prove that Σ(O,�1,�2) = ΣKS(O,�1

,�2). Given that Σ satisfies PI, it is sufficient to show that ΣKS(O,�1,�2) ⊆ Σ(O,�1,�2).

Let λ∗ ∈ ΣKS(O,�1,�2). The next few steps show that λ∗ ∈ Σ(O,�1,�2), as desired.

Step 1 Let (U1, U2) be two linear representations of (�1,�2). Then

U1(λ∗1)− U1(0)

maxµ∈∆(O) U1(µ1)− U1(0)
=

U2(λ∗2)− U2(0)

maxµ∈∆(O) U2(µ2)− U2(0)
. (3)

Proof: Suppose on the contrary that one of the two ratios, let’s say the one on the left-hand

side, is strictly smaller than the other one. Let x be an element of O such that U1(x) =

maxµ∈∆(O) U1(µ1). Then the lottery that picks x with probability ε, and λ∗ with probability

1− ε, guarantees a larger minimal ratio if ε is small enough, thereby contradicting the fact that

λ∗ ∈ ΣKS(O,�1,�2). This establishes equation (3). �

Step 2 Let ρ denote the common number defined in (3). If ρ = 1, then ΣKS(O,�1,�2) co-

incides with the Pareto frontier, and coincides with Σ(O,�1,�2), since Σ satisfies EFF. It

will thus be assumed throughout the rest of the proof that ρ < 1. There exist x, y, x̄, ȳ in RL++

such that x̄ << x, ȳ << y, and (x̄, ȳ) ∈ Σ(O′,�′1,�′2) implies that λ∗ ∈ Σ(O,�1,�2), where
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O′ = {(0, 0), (x̄, ȳ), (x, 0), (0, y)} and �′1 (resp. �′2) is the preference ordering on ∆(O′1) (resp.

∆(O′2)) derived via expected utility from the following utility function U ′1 (resp. U ′2):

U ′1(0) = U ′2(0) = 0, U ′1(x̄) = U ′2(ȳ) = ρ, U ′1(x) = U ′2(y) = 1.

Proof: The classical Tietze theorem guarantees that any continuous function on a compact

subset of RL+ can be extended into a continuous function defined on RL+. Strict increasingness can

be preserved too (see Husseinov (2010), Corollary 2). Let thus Ū1 : RL+ → R and Ū1 : RL+ → R
be two continuous strictly increasing functions such that Ū1 coincides with U1 on O1 and Ū2

coincides with U2 on O2. Let o1 ∈ O1 be such that U1(o1) = maxµ∈∆(O) U1(µ1). Let x′

be an element on the diagonal that falls above o1. Monotonicity implies that x′ �1 µ1, for

all µ ∈ ∆(O). Continuity of Ū1 implies that there exist a convex combinations between 0

(the worst element of O) and x′ whose associated (extended) utility is equal to U1(o1). Let’s

call x this new bundle (x might belong to O1, or not - it does not matter). Since U1(λ∗) <

U1(x), there exists a convex combination between x and 0 whose associated (extended) utility

is equal to U1(λ∗). Let’s call x̄ this new bundle (again, x̄ might belong to O1, or not - it

does not matter). A similar construction leads to y and ȳ. Clearly, x << x̄ and y << ȳ, Ū1

restricted to {0, x̄, x} is another linear representation of �′1, and Ū1 restricted to {0, x̄, x} is

another linear representation of �′1. Suppose now that (x̄, ȳ) ∈ Σ(O′,�′1,�′2). Let �̄1 be the

von Neumann/Morgenstern preference on ∆(O1 ∪ {x̄, x}) derived via expected utility from Ū1

restricted to O1∪{x̄, x}. Let �̄2 be the von Neumann/Morgenstern preference on ∆(O2∪{ȳ, y})
derived via expected utility from Ū2 restricted to O2∪{ȳ, y}. C-MON applies. Notice that there

is no lottery in ∆(O ∪ {(x̄, ȳ), (x, 0), (0, y)}) that strictly Pareto dominates (x̄, ȳ). PI implies

that (x̄, ȳ) ∈ Σ(O ∪ {(x̄, ȳ), (x, 0), (0, y)}, �̄1, �̄2). C-MON also applies when moving from O to

O ∪ {(x̄, ȳ), (x, 0), (0, y)}. Notice that the set of utilities remain the same when adding (x̄, ȳ),

(x, 0), and (0, y) to O. So any lottery in Σ(O,�1,�2) must generate the same utilities as (x̄, ȳ)

under (Ū1, Ū2). Since λ∗ generates the same utilities as well, EX implies that λ∗ ∈ Σ(O,�1,�2),

as desired. �

Step 3 There exist ξ, ξ̄ in RL++ such that ξ̄ << ξ, and (ξ̄, ξ̄) ∈ Σ(O′′,�′′,�′′) implies that

λ∗ ∈ Σ(O,�1,�2), where O′′ = {(0, 0), (ξ̄, ξ̄), (ξ, 0), (0, ξ)} and �′′ is preference ordering on

∆({0, ξ̄, ξ} derived via expected utility from the following utility function U ′′:

U ′′(0) = 0, U ′′(ξ̄) = ρ, U ′′(ξ) = 1.

Proof: Let x, x̄, y, ȳ as in Step 2. Let ε be a strictly positive number, and let ξ be the vector in

RL defined as follows:

(∀l ≥ 3) : ξl = min{xl, yl},

ξ1 =
1

1− ε2
[y1 − ε2x1 + ε(y2 − x2) + ε

L∑
i=3

(yi − ξi)− ε2
L∑
i=3

(xi − ξi)],
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ξ2 =
1

1− ε2
[ε(x1 − y1) + x2 − ε2y2 + ε

L∑
i=3

(xi − ξi)− ε2
L∑
i=3

(yi − ξi)].

Let ξ̄ be the vector derived by applying the same equations to (x̄, ȳ). It is easy to check that

all the components of both ξ and ξ̄ are strictly positive and that ξ >> ξ̄, if ε is chosen small

enough. Indeed, the limit of ξ̄1 (resp. ξ̄2) when ε tends to zero is ȳ1 > 0 (resp. x̄2 > 0), the

limit of ξ1 − ξ̄1 (resp. ξ2 − ξ̄2) when ε tends to zero is y1 − ȳ1 > 0 (resp. x2 − x̄2 > 0), and the

inequalities regarding the other components are obvious. Straightforward algebra also allows to

show that

ξ1 + ε
L∑
l=2

ξl = y1 + ε
L∑
l=2

yl and ξ̄1 + ε
L∑
l=2

ξ̄l = ȳ1 + ε
L∑
l=2

ȳl

ξ2 + ε

L∑
l=1,l 6=2

ξl = x2 + ε

L∑
l=1,l 6=2

xl and ξ̄2 + ε

L∑
l=1,l 6=2

ξ̄l = x̄2 + ε

L∑
l=1,l 6=2

x̄l.

In other words, ξ (resp. ξ̄) has been chosen in the intersection of the hyperplane of normal

(1, ε, . . . , ε) that goes through y (resp. ȳ) and the hyperplane of normal (ε, 1, ε, . . . , ε) that goes

through x (resp. x̄). Hence ξ is not comparable to either x or y, and ξ̄ is not comparable to

either x̄ or ȳ. Consider then the utility functions U ′′′1 : O′1 ∪ O′′1 → R and U ′′′2 : O′2 ∪ O′′2 → R
defined as follows:

U ′′′1 (0) = U ′′′2 (0) = 0, U ′′′1 (x̄) = U ′′′1 (ξ̄) = U ′′′2 (ȳ) = U ′′′2 (ξ̄) = ρ,

U ′′′1 (x) = U ′′′1 (ξ) = U ′′′2 (y) = U ′′′2 (ξ) = 1.

Let �′′′1 and �′′′2 be the associated von Neumann/Morgenstern preferences defined on ∆(O′′1)

and ∆(O′′2) respectively. Notice that if µ1 �′′′1 ξ̄ and µ2 �′′′2 ξ̄, then µ1 ∼′′′1 ξ̄ and µ2 ∼′′′2 ξ̄, for

each µ ∈ ∆(O′ ∪O′′). We also have that x̄ ∼′′′1 ξ̄ and ȳ ∼′′′2 ξ̄. C-MON and EX thus imply that

(x̄, ȳ) ∈ Σ(O′∪O′′,�′′′1 ,�′′′2 ) if (ξ̄, ξ̄) ∈ Σ(O′′,�′′,�′′). Similarly, C-MON implies that any lottery

in Σ(O′,�′1,�′2) must also belong to Σ({(0, 0), (O′∪O′′,�′′′1 ,�′′′2 ). Hence (x̄, ȳ) ∈ Σ(O′,�′1,�′2),

and Step 2 allows us to conclude that λ∗ ∈ Σ(O,�1,�2). �

Step 4 λ∗ ∈ Σ(O,�1,�2).

Proof: Let µ ∈ Σ(O′′,�′′,�′′). EFF implies that µ((0, 0)) = 0. AN implies that µ∗ ∈ Σ(O′′,�′′

,�′′). PI implies that µ((ξ, 0)) = µ((0, ξ)). Notice that ρ ≥ 1/2. If ρ = 1/2, then then

both bargainers are indifferent between (ξ̄, ξ̄) and the lottery that gives (ξ, 0) and (0, ξ) with

equal probabilities. There are multiple lotteries in Σ(O′′,�′′,�′′), and EX implies that (ξ̄, ξ̄) ∈
Σ(O′′,�′′,�′′). If ρ > 1/2, then EFF implies that µ((ξ, 0)) = µ((0, ξ)) = 0, and one concludes

again that (ξ̄, ξ̄) ∈ Σ(O′,�′′,�′′). Step 3 thus implies that λ∗ ∈ Σ(O,�1,�2), as desired. �
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Proof of Theorem 1’

Given the usual properties of the Nash solution in the space of joint utilities, it is easy to

check that the extended Nash solution defined in (2) satisfies the axioms listed in Theorem 1’

(PI follows from the fact that U(O,�1,�2) is convex). I will thus focus on proving uniqueness.

Let Σ be a solution that satisfies the axioms, and let (O,�1,�2) be a bargaining problem. As

for the proof of Theorem 1, it is sufficient to prove that the extended Nash solution to the

problem (O,�1,�2) is included in Σ(O,�1,�2). All the steps in the proof of that Theorem and

their proofs, excepts for Step 2, apply immediately to our extended domain as well, using the

representations (U1, U2), as defined in Section 5, instead of the linear representations of the two

von Neumann/Morgenstern preferences previously. Notice particularly how Steps 3 to 5 apply

whenever the domain simply contains von Neumann/Morgenstern preferences. I will thus focus

on establishing Step 2, whose statement remains unchanged, except again for using the utility

representations defined in Section 5, which accommodate some forms of non-expected utility.

It is easy to check that �′1 (resp. �′2) inherits from �1 (resp. �2) the properties of first-

order stochastic dominance, and the existence of a linear representation when comparing simple

compound lotteries that involve a lottery in ∆(O1 ∪ {x}) (resp. ∆(O2 ∪ {y})) and 0. Let

O′ = O ∪ {(x, 0), (0, y)}. It remains to check the convexity condition for (O′,�′1,�′2) to qualify

as a bargaining problem. Notice that x and y are best outcomes for 1 and 2 respectively in

(O′,�′1,�′2). Let thus µ, ν ∈ ∆(O′) and p1, p2, q1, q2 ∈ [0, 1] be such that µ1 ∼′1 p1x, ν1 ∼′1 q1x,

µ2 ∼′2 p2y, ν2 ∼′2 q2y. Notice that

U ′1(µ1) = 2µ(x, 0)σ∗1+(1−µ(x, 0))U1((µ|¬(x, 0))1) = 2µ(x, 0)σ∗1+(1−µ(x, 0)−µ(0, y))U1((µ|O)1),

where µ|O is the lottery derived from µ by Bayesian updating if one knows that the outcome

will belong to O (the first equality follows from the definition of U ′1, while the second follows

from the fact that U1 is linear on simple compound lotteries that involve 0 and a lottery in

∆(O)). Similarly, we have:

U ′1(ν1) = 2ν(x, 0)σ∗1 + (1− ν(x, 0)− ν(0, y))U1((ν|O)1),

U ′2(µ2) = 2µ(0, y)σ∗2 + (1− µ(x, 0)− µ(0, y))U2((µ|O)2),

U ′2(ν2) = 2ν(0, y)σ∗2 + (1− ν(x, 0)− ν(0, y))U2((ν|O)2).

Let

α =
1

2σ∗1

U ′1(µ1) + U ′1(ν1)

2

β =
1

2σ∗2

U ′2(µ2) + U ′1(ν2)

2
.
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Hence α+ β is equal to

µ(x, 0) + µ(0, y) + ν(x, 0) + ν(0, y)

2
+

1− µ(x, 0)− µ(0, y)

2
[
U1((µ|O)1)

2σ∗1
+
U2((µ|O)2)

2σ∗2
]

+
1− ν(x, 0)− ν(0, y)

2
[
U1((ν|O)1)

2σ∗1
+
U2((ν|O)2)

2σ∗2
],

which is no larger than 1, since both U1((µ|O)1)
2σ∗1

+ U2((µ|O)2)
2σ∗2

and U1((µ|O)1)
2σ∗1

+ U2((µ|O)2)
2σ∗2

are no larger

than 1, given that U(O,�1,�2) ⊆ {x ∈ R2| x1
σ∗1

+ x2
σ∗2
≤ 2} (see Step 1 in the proof of Theorem

1). Consider then the lottery λ that gives (x, 0) with probability α, (0, y) with probability β,

and (0, 0) with probability 1 − α − β. We have: λ1 ∼′1 αx = p1+q1
2 x and λ2 ∼′2 βy = p2+q2

2 y,

since U ′1(µ1) = 2σ∗1p1, U ′1(ν1) = 2σ∗1q1, U ′2(µ2) = 2σ∗2p2, and U ′2(ν2) = 2σ∗2q2. This establishes

the convexity condition for (O′,�′1,�′2), and concludes this proof. �
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