
Online Appendix

This appendix presents further results and technical details for Bounded Ra-
tionality and Limited Datasets (by Geoffroy de Clippel and Kareen Rozen).
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A Our Methodology Applied to Additional Theories
We introduce additional theories in Section A.1, and show in Section A.2
how their empirical content can be captured by generalized SARP conditions,
that is, the existence of an acyclic relation that satisfies a set of restrictions
inferred from choices. Such results thus mirror those presented in Section 3
of the paper for Limited Attention and Categorization/Rationalization. In
Section A.3, we show that, for all these additional theories, restrictions are
elementary, and that making a valid guess in each step of the enumeration is
easy. As a consequence of our results in the paper, all these theories can thus
be tested through enumeration in a way that is roughly as easy as rationality.

A.1 Additional Theories

Order Rationalization (CFS13) is simply the variant of Rationalization where
the preference is required, in addition, to be an ordering.

Under Consistent Reference Points, the DM views one alternative in each
choice problem as his reference, and picks the best alternative according to
his reference-dependent preference ordering. Reference points are assumed to

1



be consistent in the following sense: if x is the reference point in a choice
problem S, then x remains the reference point in subsets of S containing
x. This theory is essentially equivalent to Rubinstein and Salant’s theory of
Triggered Rationality, where the most salient alternative triggers the rationale
used to make a choice.1 It can also be seen as capturing a form of Ariely,
Lowenstein and Prelec’s ‘coherent arbitrariness’.2

The class of Minimal Consideration theories extends rational choice by
bounding from below the number of options considered. Theories in this class
are indexed by a function k that associates to each problem S an integer
between 1 and |S|. The DM uses an ordering P to pick the best element in
his consideration set Γ(S), which must contain at least k(S) elements. The
function k, which fixes a theory, limits the extent of a DM’s ‘mistakes.’ If
k(S) = |S|−1 for all S, then the DM always picks from the top two options in
a choice problem; if k(S) = d(1 − α)|S|e for all S, then the DM always picks
from the top α-percentile. Theories in this class can also capture a DM who
becomes overwhelmed in large choice problems, with k(S) decreasing in |S|.

A.2 Testable Implications via Generalized SARP Conditions

We start by studying the testable implications of Order Rationalization. As
in Rationalization, the choice from a set is also considered in subsets. Thus y
is revealed preferred to x, denoted y �∗OR x, if y is chosen in the presence of
x, which itself is the choice from a superset.3 Let ROR(cobs) be the collection
of restrictions that y is ranked above x for any x, y with y �∗OR x. The next
result shows that CFS13’s full-data characterization of Order Rationalization
in terms of the acyclicity of �∗OR extends to limited datasets.

1Rubinstein, Ariel and Yuval Salant (2006), Two Comments on the Principle of Revealed
Preference, mimeo. In addition, studying choice from lists, Rubinstein and Salant [Theoret-
ical Economics, 1, 3 (2006)] propose a model (their Example 4) where the DM’s preference
depends on the first element presented. Consistent Reference Points can be seen as the case
where the list is unknown, or subjectively determined.

2Ariely, D., G. Loewenstein, and D. Prelec. (2003), ‘Coherent Arbitrariness’: Stable
Demand Curves Without Stable Preferences, Quarterly Journal of Economics, 118, 73–106.

3This revealed preference is identified by CFS13 when D = P(X).
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Proposition 6. The observed choice function cobs is consistent with Order
Rationalization if and only if there is an acyclic relation satisfying ROR(cobs).

We now turn our attention to Consistent Reference Points. Since the DM’s
reference point satisfies IIA, it can be interpreted as maximal for a ‘salience
ordering’ �REF . If x is the reference point in a choice problem, then it remains
the reference point in smaller problems containing it; and the DM’s choices
in those problems all arise from maximizing the same preference ordering �x.
For any choice problem S and any x ∈ S, we say that a �∗S,x b if cobs(R) = a

for some R ⊆ S that contains b and x. This is the revealed preference under
the supposition that x is the DM’s reference point in S. Observe that when
�∗S,x is cyclic, then x cannot be the reference point in S, and therefore cannot
be the most salient alternative in S. Let RREF be the following collection of
restrictions on �REF : for each S ∈ P(X) and x ∈ S such that �∗S,x is cyclic,
there is y ∈ S \ {x} with y �REF x.

Proposition 7. The observed choice function cobs is consistent with Consistent
Reference Points if and only if there is an acyclic relation satisfying RREF .

Interestingly, the proof reveals that it is without loss of generality to require
that if x is preferred to y when the reference point is y, then x is also preferred
to y when the reference point is x.4

To understand the testable implications of Minimal Consideration theories,
we start by fixing a theory in this class, which is described by a given function
k : P(X)→ N. If the DM picks x from S, then there must exist at least k(S)−1

alternatives in S that are inferior to x. These restrictions are summarized
by Rk = {(cobs(S), TS) | S ∈ D}, where TS denotes the set of subsets of
S \ {cobs(S)} with exactly k(S)− 1 elements.

Proposition 8. For each k : P(X) → N, the observed choice function cobs

is consistent with k-Minimal Consideration if and only if there is an acyclic
relation satisfying Rk.

The proofs of Propositions 6-8 appear in Section A.4 below.
4Such a reference effect is related to status quo bias; see Tversky and Kahneman [The

Quarterly Journal of Economics, 106, 1039 (1991)] and Masatlioglu and Ok [Journal of
Economic Theory, 121, 1 (2005)].
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A.3 Enumeration

In this section, we apply Proposition 4 from the paper with Propositions 6-8
to show that testing each of the theories discussed in this appendix is roughly
as easy as testing rationality.

For Order Rationalization and Minimal Consideration theories, one sees
that Proposition 4 applies since, for any cobs, all the restrictions in ROR(cobs)

and Rk(cobs) are elementary. Thus, in each case, the existence of an acyclic
relation satisfying the restrictions can be tested using a path-independent
enumeration procedure. The associated guess correspondences derived from
(6) can be written as GOR(S) = {x ∈ S | If x �∗OR y then y 6∈ S} and
Gk(S) = {x ∈ S | For all R ∈ D, if x = cobs(R) then |R \ S| ≥ k(R) − 1}, 5

and hence it is easy to determine whether a valid guess exists in each step.
Strictly speaking, restrictions associated to Consistent Reference Points

are not elementary, but become elementary when reversed. Formally, let
R∗REF (cobs) be the following set of restrictions on a relation O: for each
S ∈ P(X) and x ∈ S such that �∗S,x is cyclic, there is y ∈ S \ {x} with xOy.
Existence of an acyclic relation satisfying R∗REF (cobs) is equivalent to the ex-
istence of an acyclic relation satisfying RREF (cobs) (simply by reversing the
relation). Restrictions in R∗REF (cobs) are elementary, and hence Proposition 4
applies once again. Thus consistency can be checked using a path-independent
enumeration procedure. The associated guess correspondence derived from (6)
can be written as GREF (S) = {x ∈ S | �∗S,x is acyclic},6 and hence it is easy
to determine whether a valid guess exists in each step.

A.4 Proofs

Proof of Proposition 6 Necessity was given earlier. For sufficiency, sup-
pose there is an acyclic relation satisfying ROR, and let P be a transitive com-

5Indeed, there exists T ∈ TR such that S ∩ T = ∅ if and only if one can find k(R) − 1
elements that are in R but not S.

6To see whether x ∈ GREF (S), first note that it suffices to check only those restrictions
(x, {y}y∈R\{x}) corresponding to R ⊆ S (as there trivially exists y ∈ R \ {x} such that
S ∩ {y} = ∅ when R * S). Next, if �∗R,x is cyclic for some R ⊂ S, then so is �∗S,x, and of
course there is no y ∈ S \ {x} such that S ∩ {y} = ∅.
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pletion (hence P still satisfies ROR). Define the filter ΨP as in Lemma 1 (using
P for O). CFS13 (Section 4.1) show that a filter is the set of rationalizable
elements for some rationales {Rk}k. Let c be the choice function arising from
(P, {Rk}k) under the theory. For any S ∈ D, we show c(S) = cobs(S). Suppose
otherwise; then ΨP (S) contains at least two elements, and c(S) must be the
observed choice from some T ∈ D with S ⊂ T . This implies cobs(S) �∗OR c(S).
But then cobs(S)Pc(S), contradicting P -maximality of c(S) in ΨP (S).

Proof of Proposition 7 Necessity was given earlier. For sufficiency, sup-
pose an acyclic relation satisfying RREF exists, and let �REF be a transi-
tive completion (hence �REF still satisfies RREF ). Let xi denote the i-th
maximal element according to �REF . For each i, let �xi

be a transitive
completion of �∗Xi,xi

. Such a completion exists, because xi being �REF -
maximal in Xi = {xi, xi+1, . . . , xn} implies �∗Xi,xi

is acyclic. The choice func-
tion c : P(X)→ X generated by these primitives will now be shown to coincide
with cobs on D. Take any S ∈ D. Let k be the smallest index such that xk ∈ S.
Then S ⊆ Xk. By definition of �xk

, cobs(S) �xk
y for all y ∈ S \{cobs(S)}.

Proof of Proposition 8 Necessity was given earlier. For sufficiency, sup-
pose an acyclic relation satisfying Rk exists, and let P be a transitive com-
pletion (P still satisfies Rk). Let Γ(S) be the (weak) P -lower contour set of
cobs(S) for S ∈ D, and Γ(S) = S otherwise. The choice function obtained by
maximizing P over Γ clearly extends cobs. Since P satisfies Rk, for any S ∈ D
there exists T ∈ TS with k(S)− 1 elements such that cobs(S)Px for all x ∈ T .
The condition |Γ(S)| ≥ k(S) thus holds for S ∈ D (it is trivial for S 6∈ D).

B Complexity Results

Proposition 9. The classic SAT problem is reducible in polynomial time into
the problem of determining whether observed choices are consistent with Lim-
ited Attention.

Proof. Fix an instance of SAT with a set L of literals and a set C of clauses.
Consider the abstract set of options X that contains all literals and their
negations, all clauses, plus three options denoted x, y, and z. Let Lc denote
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the set of literals in clause c and let the literal ¯̀ denote the negation of literal
`. Construct the following observed choice function:

S cy xz yz cxz xyz `¯̀x `¯̀xz `¯̀y cyLc

cobs(S) y x z z y ` x ¯̀ c

for all c ∈ C and all ` ∈ L. Applying Proposition 2, cobs is consistent with
Limited Attention if and only if there is an acyclic relation O on X such that:

(i) yOx, from cobs({y, z}) = z and cobs({x, y, z}) = y.

(ii) xOz, from cobs({`, ¯̀, x}) = ` and cobs({`, ¯̀, x, z}) = x.

(iii) For all c ∈ C: zOc, from cobs({x, z}) = x and cobs({c, x, z}) = z.

(iv) For all ` ∈ L: `Ox or ¯̀Oy, from cobs({`, ¯̀, x}) = ` and cobs({`, ¯̀, y}) = ¯̀.

(v) For all c ∈ C, there exists ` ∈ Lc such that cO`, from cobs({c, y}) =

y and cobs({c, y} ∪ Lc) = c.

(vi) For all ` ∈ L and c ∈ C, xO` or xO`′ or zOc, from cobs({c, x, z}) =

x and cobs({`, ¯̀, x, z}) = x.

Note that (vi) is redundant in view of (ii). These conditions are exhaustive,
since we have used all the pairs R,R′ ∈ D which cause a WARP violation.

We show SAT has a truthful assignment if and only if there exists an
accylic relation O satisfying (i)-(v). Suppose SAT has a truthful assignment.
We construct an ordering O by putting the false literals (in any order) at the
top of the ordering; then y; then x; then z; then the clauses; and then the true
literals (in any order). It is easy to check that O satisfies (i) to (v). Conversely,
suppose an acyclic relation satisfying (i)-(v) exists, and let O be a transitive
completion. We construct an assignment for SAT: if xO` then ` is true; if xO ¯̀

then ` is false; and if both `Ox and ¯̀Ox, then assign ` an arbitrary value. This
is well-defined since, by (i) and (iv), it cannot be that both xO` and xO ¯̀. By
(v), for all c ∈ C, there exists ` ∈ Lc such that cO`. Combined with (ii)-(iii),
we conclude ` is true. Hence the assignment is truthful for SAT.

Proposition 10. The classic SAT problem is reducible in polynomial time
into the problem of determining whether observed choices are consistent with
psychological filter theory.
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Proof. Fix an instance of SAT with a set L of literals and a set C of clauses.
Consider the abstract set of options X that contains all literals and their
negations, all clauses, plus options denoted w, w′, w′′, x, y, and one option zc
for each clause c. Let V be the sets of variables defining the literals, let Lc be
the set of literals appearing in clause c, and let ¯̀be the negation of the literal
`. Construct the following observed choice function:

S cx cy czc `c vx vy v̄x v̄y wx xzc cxy wxzc

cobs(S) x y c c x v v̄ y w zc c x

S vwxy vw′′xy v̄w′′xy v̄w′xy czcLc

cobs(S) x y x y zc

for all c ∈ C, all v ∈ V , and all ` ∈ Lc.
We show that SAT has a truthful assignment if and only if there exist a

filter Ψ and a relation P that generates a choice function c which coincides
with cobs on D. Suppose first that SAT has a truthful assignment. First we
pick a relation P such that yPx, xPw′′, yPw′′, and zcP`, for each clause c and
true literal ` in c, and aPb, for all a, b ∈ X such that cobs({a, b}) = a. Next we
consider the enumeration of the elements in X that starts with w′′; followed by
all true literals (in any order); followed by all clauses (in any order); followed
by x, y, w, and w′ (in that order); followed by zc for each clause c (in any
order); followed by all literals and their negations that did not already appear
(in any order). For each choice problem R, let Ψ(R) be the set containing the
first element in the enumeration that belongs to R plus any element a ∈ R

such that a = cobs(S) for some S ∈ D containing R. It is easy to check that
Ψ is a filter. It remains to show that the choice function generated by (Ψ, P )

coincides with cobs on D. This follows by definition of P on pairs. By definition
of Ψ, we have Ψ({c, x, y}) = {c} and Ψ({w, x, zc}) = {x}, and hence c = cobs

on these two choice problems as well. For each variable v, Ψ({v, w, x, y}) = {x}
or {v, x} depending on whether v comes after or before x. In either case, the
choice is x since xPv. For each variable v, Ψ({v̄, w′′, x, y}) = {w′′, x} and
Ψ({v, w′′, x, y}) = {w′′, y}. The choices are x and y, respectively, since xPw′′
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and yPw′′. For each variable v, Ψ({v̄, w′, x, y}) = {x, y} or {v̄, y} depending
on whether v̄ comes after or before x. In either case, the choice is y since yPx
and yP v̄. Finally, for each clause c, Ψ({c, zc} ∪ Lc) contains zc and a true
literals appearing in c. By definition of P , c({c, zc} ∪ Lc) = zc, as desired.

Conversely, suppose the filter Ψ and relation P generate a choice function
c which coincides with cobs on D. We can assume without loss of generality
that the DM pays attention to both options in each pair under Ψ, so that aPb
if and only if c({a, b}) = a for all a, b ∈ X. We construct an assignment for
SAT as follows. Consider the enumeration of X defined by x1 = c(X) and
xk = c(X \ {x1, . . . , xk−1}), for all k ≥ 2. Say a literal is true if it appears
before both x and y. (It need not be that every literal or its negation is true,
but that will not matter.) We show it is impossible to have both a literal and
its negation true. Suppose, on the contrary, that there is a variable v such
that both v and v̄ come before both x and y in the enumeration. Assume
that c({x, y}) = x so that xPy (a similar reasoning applies in the other case
where yPx). From the corresponding pairwise choices, we infer v̄Px and yP v̄.
Notice that x, y ∈ Ψ({v̄, x, y}) since x is picked out of {v̄, w′′, x, y} and y is
picked out of {v̄, w′, x, y}. Also, v̄ ∈ Ψ({v̄, x, y}) since v̄ is picked from the set
consisting of elements of X that succeed v̄ in the enumeration. We reach a
contradiction since P is cyclic over {v̄, x, y} and all three receive attention.

Given this well-defined truth assignment, we check that all clauses in SAT
are satisfied. Let c be a clause. Since x is picked out of {w, x, zc}, but also
zcPx and wPx, x must precede both w and zc in the enumeration. Otherwise,
the first element in {w, x, zc} appearing in the enumeration is the first element
in {w, zc} in the enumeration. That element must be paid attention when
choosing from {w, x, zc}, contradicting that x is picked. Similarly, c precedes
both x and y in the enumeration since c is picked out of {c, x, y}, xPc and yPc.
From c({c, zc}∪Lc) = zc and cPzc, we conclude that c is not the first element
of that choice problem to appear in the enumeration. If zc comes first, then zc
precedes c. This would contradict the fact that c precedes x and x precedes
zc. Hence, one of the literals in Lc appears first, and precedes c. That literal
is true since c precedes x and y. The assignment is thus truthful for SAT.
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