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Abstract

This paper studies the core of combined games, obtained by summing different coalitional games when
bargaining over multiple independent issues. It is shown that the set of balanced transferable utility games
can be partitioned into equivalence classes of component games to determine whether the core of the com-
bined game coincides with the sum of the cores of its components.
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1. Introduction

The broad subject of the paper is the study of bargaining and cooperation when multiple issues
are at stake. We have two complementary objectives in mind:

1. Identify conditions under which negotiating over different issues separately is equivalent to
negotiating over these issues simultaneously;

2. Identify situations in which combining issues reduces conflict in bargaining.
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We use games in coalitional form, a classical model to study cooperation, to tackle these two
questions. The coalitional function specifies for each coalition the surplus to be shared should its
members cooperate. The simplicity of this reduced-form approach, making no direct reference to
the underlying social or economic alternatives, comes at a cost. Indeed, relating the cooperative
opportunities associated to different issues to the cooperative opportunities of the combined is-
sues is possible in this framework only if the different issues are independent. In such cases, the
coalitional function associated to the combined issues is simply the sum of the coalitional func-
tions associated to each issue taken separately. Spillovers are certainly an important feature of
multi-issue bargaining, and further analysis of nonwelfarist models is needed to understand their
implication. The present paper illustrates that bargaining over multiple issues may have relevant
implications even in the absence of such spillovers.

Multi-issue bargaining was of central importance to Professor Shapley when studying values
for games in coalitional form, as illustrated by his motivation for the additivity axiom: “The
third axiom (“law of aggregation”) states that when two independent games are combined, their
values must be added player by player” (Shapley, [27, page 309]).

Put differently, additivity implies that the outcome of multi-issue negotiations does not depend
on the agenda chosen by the negotiators. Whether issues are discussed separately or “packaged”
in different ways does not affect the result of the negotiation. In Professor Shapley’s view, this
agenda independence is a natural requirement to impose on a solution concept.

However, the Shapley value is the only solution concept for which additivity is posited as
an axiom. Other solution concepts, whether they are based on alternative axiomatizations, like
the Nash bargaining solution, or more positive considerations, like the core, do not satisfy this
property of agenda independence. In this paper, we focus attention on the core primarily because
of its importance in economic theory. Other solution concepts are briefly discussed in Section 5.

It is well known that the core is superadditive (see for example, Peleg’s [20] axiomatization
of the core), so that the core of the combination of two games is always larger than the sum
of the core of the two components. Intuitively, by combining two negotiation processes, and
forcing players to make coalitional objections on the issues simultaneously, it is easier to sustain
an imputation than when players can make separate objections on the two issues. Hence, the
specific question we tackle in this paper is the following: For which pairs of games is the core of
the combination of the two games exactly equal to the sum of the core of the component games?
This offers a formal statement to the first objective listed at the beginning of the paper.

Our main result shows that the core of the sum of two games v and w is equal to the sum of the
cores of v and w if and only if the extreme points of the cores of v and w are defined by the same
set of coalitional constraints. Because the latter property defines an equivalence relation among
games, we conclude that the set of all balanced transferable utility games can be partitioned
into equivalence classes such that the core of the combination of two games is equal to the sum
of the cores of the components if and only if the two games belong to the same class. One of
these equivalence classes (where the extreme points are determined by any increasing sequence
of coalitions) is the set of convex games introduced by Shapley [29]. Hence, the combination
of two convex games does not result in an expansion of the set of core allocations. By contrast,
whenever two games v and w are taken from two different equivalence classes, the core of the
combined game is strictly greater than the sum of the core of its components. When v and w are
close, a simple continuity argument shows that the difference between the core of v + w and the
sum of the cores of v and w is small. In other cases, the difference can be extremely large, as the
dimension of the core of v + w may exceed the dimension of the sum of the cores (for example,
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even when the cores of v and w are singletons, the core of v + w may be a set of full dimension
in the set of imputations).

To the best of our knowledge, the only previous studies of the additivity of the core in the
cooperative game theoretic literature are due to Tijs and Branzei [30]. They identify three sub-
classes of games on which the core is additive (including the class of convex games). Our results
complement and extend their analysis by showing that in fact the entire set of balanced games
can be partitioned into subclasses on which the core correspondence is additive. The literature
on noncooperative games has paid more attention to simultaneous, multi-issue bargaining. In a
two-player setting, Fershtman [12] and Busch and Hortsmann [4] extend Rubinstein’s [26] alter-
nating offers game to a multi-issue setting, where players bargain over each issue in a predefined
sequence. They show that the equilibria of this multi-issue bargaining differ considerably from
the single-issue model. In later contributions to this literature, Bac and Raff [1], Inderst [15] and
In and Serrano [14] allow players to endogenously choose on which issue to bargain, and show
that players have an incentive to manipulate strategically the agenda. Issue linkage has also been
studied in noncooperative games representing international negotiations across countries. It has
long been argued that combining negotiations over different dimensions (trade, protection of the
environment) may have beneficial effects (see for example Carraro and Siniscalco, [5]). Conconi
and Perroni [7] propose a model of issue linkage and evaluate this argument using a parame-
terized model of international trade and environmental negotiations. Issue linkage also appears
implicitly in the literature on mergers in Industrial Organization (e.g. Perry and Porter [22] and
Farrell and Shapiro [11]). In order to be profitable, a merger must involve two dimensions — both
a cost and a market dimensions — and result in cost synergies as well as market concentration.

As an exact characterization of situations where the core of a combined game equals the
sum of the cores of its components, our main result is also useful to determine when combining
issues reduces conflict (cf. the second objective listed in the first paragraph), namely when the
core of the sum of games is strictly larger than the sum of their separate cores. Perhaps even more
interestingly, it is easy to construct examples where the core of the sum of two games with an
empty core is nonempty. In such cases, bargaining over each component would lead to an impasse
or to partial cooperation, but efficiency can be recovered (on both components) by combining the
issues. Unfortunately, our characterization of the set of games for which the core is additive does
not carry over to games with empty cores. The binary relation associating two games v and w

whose combination has an empty core is not transitive. This is easily understood: for two games
v and w to be such that the combined game v + w has an empty core, it is sufficient that one
of the balanced1 collections of coalitions has a worth exceeding the worth of the grand coalition
in both games v and w. Now consider a triple of games v,w, z. The worth of the balanced
collection C may exceed the worth of the grand coalition in both v and w and the worth of the
balanced collection D may exceed the worth of the grand coalition in both w and z. However, v

and z may very well not share any balanced collection whose worth exceeds the grand coalition,
and be such that the core of v + z is nonempty. Put differently, for a game to be unbalanced,
one only requires one of the balanced collection to have a greater worth than the grand coalition,
so that the set of games with empty cores is not defined by a set of linear inequalities, and is in
fact typically not convex. In spite of this, it is possible identify a convex subset of the class of
unbalanced games which has the following property: for any game in that class, the combination
of this game with any other game with empty core also has an empty core. Intuitively, this subset

1 As in Bondareva [3] and Shapley [28] — the reader is reminded of the formal definition in Section 2.



Author's personal copy

F. Bloch, G. de Clippel / Journal of Economic Theory 145 (2010) 2424–2434 2427

contains those games which are hardest to “balance” with other games, and may create the more
difficulties in negotiations. The interested reader is referred to the working paper version of this
article (Bloch and de Clippel [2, Section 4]).

The rest of the paper is organized as follows. In the next section, we recall the standard defini-
tions of coalitional games and the core. In Section 3, we analyze the combination of games with
nonempty cores. We state and prove our main characterization result. In Section 4, we illustrate
the result by looking at four-player symmetric games. Section 5 contains our final remarks and
conclusions.

2. Preliminaries

Let N be a set of players. A cooperative game is described by a coalitional function v which
assigns to every nonempty subset S of N a real number, v(S), called the worth of the coalition.
Games will be assumed to be superadditive: v(S ∪ T ) � v(S) + v(T ), for any two disjoint coali-
tions S and T . We denote the set of all such n-player games by Γ (n). A game is convex if the
players’ marginal contributions are nondecreasing: v(S ∪ {i}) − v(S) � v(T ∪ {i}) − v(T ), for
each pair (S,T ) of coalitions such that S ⊆ T .

An imputation is a vector x ∈ �N that is feasible, efficient, and individually rational:∑
i∈N xi = v(N) and xi � v({i}), for each i ∈ N . The core of a cooperative game v is the set

of payoff vectors x ∈ �N that are feasible when all the players cooperate, and which cannot be
improved upon by any coalition:

∑
i∈N xi � v(N) and

∑
i∈S xi � v(S) for each coalition S. Let

A be the (2n − 1) × n matrix encoding coalitional membership: AS,i = 1 if i ∈ S and AS,i = 0 if
i /∈ S, for each coalition S and each player i. Then,

C(v) =
{
x ∈ �N

∣∣∣ ∑
i∈N

xi = v(N), Ax � v

}
.

This rewriting highlights the fact that the core is a bounded convex polyhedron defined by
a system of linear inequalities. As any such set, the core is characterized by its set of extreme
points — points which cannot be obtained as convex combinations of other points in the set.
Equivalently, a payoff vector x is an extreme point of the core of v if there exists a collection
(Sk)

n
k=1 of coalitions such that

∑
i∈Sk

xi = v(Sk), for each k, and these n equations are linearly
independent.

The system of linear inequalities defining the core may be inconsistent, in which case the core
is empty. Bondareva [3] and Shapley [28] proposed a characterization of games with nonempty
core based on balanced collections of coalitions. A collection (Sk)

K
k=1 of coalitions is balanced if

there exists a collection (δk)
K
k=1 of real numbers between 0 and 1 (called balancing weights) such

that
∑

k|i∈Sk
δk = 1, for each i ∈ N . A game v is balanced if and only if

∑
k δkv(Sk) � v(N), for

each balanced collection (Sk)
K
k=1 of coalitions and each collection (δk)

K
k=1 of balancing weights.

The core of a game v is nonempty if and only if the game v is balanced. The set of all balanced
superadditive n-player games is denoted β(n).

3. Combining balanced games

In this section, we consider two balanced, superadditive games v and w and investigate con-
ditions under which the core of v + w is equal to the sums of the cores of v and w. We show
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that the set of transferable utility games can essentially2 be partitioned into equivalence classes
of games, such that the core of the combined game is equal to the sum of the cores of the com-
ponent games if and only if the two component games belong to the same class. We will prove
this statement as a corollary to a general result on convex polyhedra.

We define an equivalence relation between two bounded convex polyhedra P(A,b) = {x ∈
�N | Ax � b} and P(A,b′) = {x ∈ �N | Ax � b′} if the extreme points of the two polyhedra are
defined by the same constraints. To gain some intuition, we consider the simpler and generic3

case where every extreme point of P(A,b) and P(A,b′) is characterized by exactly N equalities.
If P(A,b)+P(A,b′) = P(A,b+b′), then any extreme point of P(A,b+b′) can be decomposed
as the sum of two elements of P(A,b) and P(A,b′). These vectors have to be extreme points of
the polyhedra P(A,b) and P(A,b′), and furthermore neither P(A,b) nor P(A,b′) can possess
additional extreme points. This shows that, whenever P(A,b) + P(A,b′) = P(A,b + b′), the
extreme points of P(A,b) and P(A,b′) must be defined by the same constraints. To prove the
converse statement, we need to show that, when extreme points are defined by the same con-
straints, P(A,b + b′) ⊂ P(A,b) + P(A,b′) (the other inclusion being always trivially true).
This is proven by using duality theory, and proving that the support function of the convex set
P(A,b + b′) is everywhere below the sum of the support functions of P(A,b) and P(A,b′).4

The equivalence relation described in the previous paragraph captures most of the cases where
the additivity property holds, but not all. The general result states that P(A,b) + P(A,b′) =
P(A,b + b′) if and only if one can construct sequences of bk and b′k converging to b and b′
such that P(A,bk) and P(A,b′k) are equivalent for all k. Applying this lemma to the core of
cooperative games, we obtain the following result.

Proposition. Consider the equivalence relation R on β(n), where vRw if and only if the extreme
points of C(v) and C(w) are defined by the same constraints. Then C(v) + C(w) = C(v + w)

if and only if there exist two sequences of games vk and wk in β(n) that converge to v and w

respectively, and such that vkRwk , for all k. In the generic case where exactly n coalitional
constraints are binding at each extreme point of the core of both v and w, we have that C(v) +
C(w) = C(v + w) if and only if vRw.5

The proposition is a direct corollary of a more general result on the sum of convex polyhedra
that we state and prove in the next lemma. For each positive integers M and N , let AM,N be the
set of couples (A,b), where A is an (M × N)-matrix and b is an M-vector such that P(A,b) =
{x ∈ �N | Ax � b} is nonempty and bounded. For each extreme point of P(A,b), let Me(A,b) be
the set of binding constraints at e, i.e. Me(A,b) = {m ∈ {1, . . . ,M} | Ame = bm}. Two vectors b

and b′ are equivalent (given A), b ∼ b′, if there exists a bijection f between the set of extreme
points of P(A,b) and the set of extreme points of P(A,b′) such that Me(A,b) = Mf (e)(A,b′),
for each extreme point e of P(A,b).

2 This statement only holds for generic games, as discussed below.
3 If P(A,b) has an extreme point with more than N binding inequalities, then at least one of these equations can be

written as a linear combination of the other equations, which implies that b satisfies at least one affine equation and is
thus contained in a hyperplane, a nongeneric feature.

4 See Rockafellar [25, Section 13, p. 112] for a description of support functions and their usefulness in duality theory.
5 For each set S of coalitions, the set of games in β(n) that have an extreme point of the core for which the set of binding

constraints is exactly S forms a convex cone in R2n−1. The equivalence classes defined by R are thus the intersection of
convex cones, and thus form cones as well.
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Lemma 1. Let (A,b) and (A,b′) be two elements of AM,N , for some integers M and N . The
two following properties are equivalent:

1. P(A,b + b′) = P(A,b) + P(A,b′).
2. There exist two sequences (bk)k∈N and (b′k)k∈N in �N such that (bk)k∈N converges to b,

(b′k)k∈N converges to b′, (A,bk) and (A,b′k) belong to AM,N , and bk ∼ b′k for each k ∈ N.

The proof of Lemma 1 itself requires another lemma.

Lemma 2. Let α be a strictly positive real number, and let (A,b) and (A,b′) be two elements of
AM,N , for some integers M and N . If P(A,b+b′) = P(A,b)+P(A,b′), then P(A,αb+b′) =
P(A,αb) + P(A,b′).

Proof of Lemma 2. It is always true that P(A,αb) + P(A,b′) ⊆ P(A,αb + b′). So we have
to prove the other inclusion. We first assume that α > 1. Let x be an element of P(A,αb + b′).
Consider the correspondence F : P(A,b′) → 2P(A,b′) defined as follows:

F(y′) =
{
z′ ∈ P(A,b′)

∣∣∣ (∃z ∈ P(A,b)
)
: z + z′ = x − y′

α
+ y′

}
,

for each y′ ∈ P(A,b′). Observe that A(
x−y′

α
+ y′) � b + b′ (the total coefficient of y′, α−1

α
, is

positive because α > 1). Hence F is nonempty valued. It is easy to check that it is also convex-
valued, and has a closed graph. Kakutani’s fixed point theorem implies that there exists y′ in
P(A,b′) such that y′ ∈ F(y′). Hence x−y′

α
∈ P(A,b), and x = (x − y′) + y′ ∈ P(A,αb) +

P(A,b′).
Suppose now that α < 1. We have: P(A,αb) + P(A,b′) = αP (A,b) + αP (A, b′

α
) =

α[P(A,b) + P(A, b′
α
)] = αP (A,b + b′

α
) = P(A,αb + b′). The penultimate equality follows

from the previous paragraph. The other equalities are straightforward. �
Proof of Lemma 1. (1 ⇒ 2) For each k ∈ N, let bk = k

k+1b + 1
k+1b′ and b′k = 1

k+1b + k
k+1b′.

Notice that if ek is an extreme point of P(A,bk), then there exists a unique extreme point x of
P(A,b) and a unique extreme point x′ of P(A,b′) such that ek = k

k+1x + 1
k+1x′. In addition,

Mek (A,bk) = Mx(A,b) ∩ Mx′(A,b′). Indeed, if ek is an extreme point of P(A,bk), then there
exists a set L of N independent lines such that ALek = bk

L. By Lemma 2, there exist x ∈ P(A,b)

and x′ ∈ P(A,b′) such that ek = k
k+1x + 1

k+1x′. It must be that ALx = bL and ALx′ = b′
L. So x

and x′ are the unique vectors in P(A,b) and P(A,b′) whose weighted sum coincides with ek .
It must also be that x and x′ are extreme points of P(A,b) and P(A,b′), respectively. Finally,
Amek = bk

m if and only if Amx = bm and Amx′ = b′
m (the necessary condition follows from the

fact that x ∈ P(A,b) and x′ ∈ P(A,b′)). Conversely, observe that if there exists an extreme point
x of P(A,b) and an extreme point x′ of P(A,b′) such that Mx(A,b) ∩ Mx′(A,b′) contains N

independent lines, then k
k+1x + 1

k+1x′ is an extreme point of P(A,bk). A similar argument holds

to show that 1
k+1x + k

k+1x′ is an extreme point of P(A,b′k).
For each extreme point ek of P(A,bk), let f (ek) be the vector 1

k+1x + k
k+1x′, where x is

the unique extreme point of P(A,b) and x′ is the unique extreme point of P(A,b′) such that
ek = k

k+1x + 1
k+1x′. The previous paragraph implies that f (ek) is an extreme point of P(A,b′k).

It also implies that f is a bijection, and that Mek (A,bk) = Mf (ek)(A,b′k), for each extreme point
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ek of P(A,bk). We thus have established Condition 2, since (bk)k∈N converges to b, and (b′k)k∈N
converges to b′.

(2 ⇒ 1) Consider the correspondence φ associating to any vector b the nonempty bounded
convex polyhedron P(A,b). Because λP (A,b) + (1 − λ)P (A,b′) ⊆ P(A,λb + (1 − λ)b′), the
graph of φ is convex, and by Corollary 9.2.3 in Peleg and Sudhölter [21], the correspondence φ is
lower hemi continuous. Because P(A,b) is defined by a set of inequalities, the correspondence φ

is clearly upper hemi continuous, and hence fully continuous. A simple limit argument thus
implies that we will be done with the proof of the sufficient condition after showing that P(A,b+
b′) ⊆ P(A,b)+P(A,b′) for each pair (b, b′) of M-vector such that b ∼ b′. It is always true that
P(A,b) + P(A,b′) ⊆ P(A,b + b′). So we have to prove the other inclusion.6

Recall that, for any p in the barrier cone of a convex set C, the support function of C is
defined by

σC(p) = sup
x∈C

p · x
and that a convex set is fully characterized by its support function so that C ⊆ D if and only
if σC(p) � σD(p) for all p in the barrier cone of C and D (Rockafellar [25, Corollary 13.1.1,
p. 113]).

Let Q = P(A,b), Q′ = P(A,b′) and Q∗ = P(A,b + b′). Because the polyhedra Q,Q′,Q+
Q′ and Q∗ are bounded, their barrier cones are identical and equal to �n. We will show

σQ∗(p) � σQ+Q′(p) for all p ∈ �n.

First note that σQ+Q′(p) = σQ(p) + σQ′(p) (Rockafellar [25, p. 113]), so it suffices to show
that σQ∗(p) � σQ(p) + σQ′(p), which will follow from LP duality.

Let x be an extreme point solution to the problem: Maximize p · z subject to Az � b. Obvi-
ously such a solution exist. Let I = Mx(A,b) denote the set of constraints satisfied with equality
at the extreme point x. Applying LP duality, there exists a vector y ∈ �M (a solution to the LP
dual) such that:

Amx = bm for each m ∈ I,

Amx > bm for each m ∈ M \ I,

ym � 0 for each m ∈ I,

ym = 0 for each m ∈ M \ I,

AT y = p,

and σQ(p) = b · y. Since b ∼ b′, there exists an extreme point x′ of Q′ for which the pair (x′, y)

satisfies precisely the same conditions when b is replaced with b′ and x is replaced with x′.
Applying LP duality again, it follows that y also solves the dual to the problem maximize p · z
subject to Az � b′ and σQ′(p) = b′ · y.

Now consider the dual of the problem: Maximize p · z subject to Az � b + b′. Clearly, y is
feasible for the dual, and since σQ∗(p) is the optimal value of that dual problem,

σQ∗(p) � (b + b′) · y = σQ(p) + σQ′(p),

concluding the proof. �
6 We thank the associate editor for providing a shorter argument to prove this inclusion, applying the duality principle

of linear programming. The interested reader will find an alternative inductive argument that does not require any prior
knowledge of linear programming in Bloch and de Clippel [2].
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4. Four-player symmetric games

We illustrate the partition of the set of balanced games into equivalence classes by considering
normalized four-player symmetric games — N = {1,2,3,4}, v(N) = 1 and v({i}) = 0, for each
i ∈ N . Let v2 denote the value of two-player coalitions and v3 the value of three-player coalitions.
Superadditivity requires that v2 ∈ [0,1/2] and v3 ∈ [v2,1].

We characterize (up to a permutation) the different categories of extreme points, and the con-
ditions on the games for which those extreme points belong to the core. We restrict attention to
the generic case where each extreme point is characterized by a set of three coalitions (in ad-
dition to N ) for which the inequalities are binding. By superadditivity, we can restrict attention
to coalitions which have a nonempty intersection — if two coalitions S and T with S ∩ T = ∅
are used, this must imply that v(S ∪ T ) = v(S) + v(T ), a nongeneric condition. Furthermore,
we only have to consider collections of coalitions for which the conditions are independent. This
leaves us with the following possible extreme points:

E1 Coalitions {1}, {1,2}, and {1,2,3} lead to the extreme point (0, v2, v3 − v2,1 − v3).
This vector belongs to the core if and only if v3 � 2v2 and 1 � 2v3 − v2.

E2 Coalitions {1}, {1,2}, and {1,3} lead to the extreme point (0, v2, v2,1 − 2v2). This
vector belongs to the core if and only if v2 � 1

3 and 2v2 � v3.
E3 Coalitions {1}, {1,2,3}, and {1,2,4} lead to the extreme point (0,2v3 − 1,1 − v3,

1 − v3). This vector belongs to the core if and only if v3 � 2
3 and 2v3 � v2 + 1.

E4 Coalitions {1,2}, {1,3}, and {1,2,3} lead to the extreme point (2v2 − v3, v3 − v2, v3 −
v2,1 − v3). This vector belongs to the core if and only if 2v2 � v3 and v2 + 1 � 2v3.

E5 Coalitions {1,2}, {1,3}, and {1,4} lead to the extreme point ( 3v2−1
2 , 1−v2

2 , 1−v2
2 , 1−v2

2 ).
This vector belongs to the core if and only if v2 � 1

3 and v2 + 1 � 2v3.
E6 Coalitions {1,2}, {1,3}, and {2,3} lead to the extreme point ( v2

2 , v2
2 , v2

2 ,1 − 3 v2
2 ). This

vector belongs to the core if and only if 3
2v2 � v3.

E7 Coalitions {1,2,3}, {1,2,4}, and {1,3,4} lead to the extreme point (3v3 −2,1−v3,1−
v3,1 − v3). This vector belongs to the core if and only if 3

4 � v3 � 2
3 and 2v3 � 1 + v2.

Fig. 1 depicts the subsets of games where the extreme points of the cores are defined by the
same constraints. Games in region A (resp. F ; G) have extreme points of the E1-type (resp. E3-;
E7-type) only. Games in region B have extreme points of both E2- and E4-type. Games in region
C have extreme points of both E2- and E6-type. Games in region D have extreme points of both
E4- and E5-type. Games in region E have extreme points of both E5- and E6-type.

The seven regions labeled from A to G correspond to the partition induced on the class of
generic games for which exactly n constraint are binding at each extreme point of the core. The
equivalence relation leads to the lines (e.g. the line between regions A and B) and intersecting
points (e.g. the point that falls next to all seven regions) separating these regions when consider-
ing nongeneric games.

As explained in the previous section, the additivity property holds if one chooses two com-
ponent games that fall in the same equivalence class, but not only in those cases. It would also
hold for instance if we combine a game that falls on the line between A and F with a game that
falls on the line between A and B , since both games can be approximated by games that belong
to A. This extended property with limits, on the other hand, characterizes all the cases where
the additivity property holds. The core of the sum of a game that belongs to A with a game that
belongs to E is strictly larger than the sum of the cores, or the core of the sum of a game that falls
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Fig. 1. Equivalence classes of four-player symmetric games.

on the line between A and F with a game that falls on the line between C and E is strictly larger
than the sum of the cores. The difference between the core of the combined game and the sum of
the cores of the component games can be extremely large. In fact, it is possible to combine two
component games where the core collapses to a single point, and obtain a full-dimensional core.
For example, pick two games v and w such that v2 = 1

2 and w3 = 3
4 . For each of these games,

the core is a single point ( 1
4 , 1

4 , 1
4 , 1

4 ). However, the sum of the two games can belong to any of
the regions A,B,D,E,F or G, where the core is a full-dimensional set.

Three classes of games stand out. Region A and its closure corresponds to the class of convex
games. The work of Shapley [29] and Ichiishi [13] imply that a game is convex if and only if the
extreme points of the core coincide with the vectors of marginal contribution. Our proposition
confirms the known-result that the core of the sum of any two convex games is equal to the sum
of the cores (see also Tijs and Branzei [30] on that point). Region G and its closure corresponds
to games where the extreme points of the core are characterized by constraints involving only
three-player coalitions, or the dual imputation set. This is the class of games Kd introduced by
Driessen and Tijs [10] — and for which Tijs and Branzei [30] also note that the core is additive.
Finally, region H (for which v3 > 3

4 ) corresponds to games with empty cores.

5. Concluding remarks

In this paper, we characterize the classes of cooperative games on which the core is additive.
In this concluding section, we briefly comment on the generalization of our results to other coop-
erative solution concepts, and discuss the existing literature on additivity axioms in cooperative
game theory.
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We first note that, whenever a solution is defined by a system of linear inequalities, a di-
rect application of Lemma 1 shows that the set of cooperative games can be partitioned into
equivalence classes where the solution is additive. For example, Laussel and Le Breton [17] an-
alyze the Pareto frontier of sets U(v) = {(u1, . . . , un) | ui � 0,

∑
i∈S ui � v(N) − v(N \ S)}

for a given cooperative game v. From our analysis, it is clear that the convex polyhedron
corresponding to the sum of two games v and w is equal to the sum of the convex poly-
hedra, U(v + w) = U(v) + U(w) if and only if the extreme points of U(v) and U(w) are
defined by the same coalitions.7 On the other hand, the lemma does not apply if the solution
concept is not a unique polyhedron but a finite union of polyhedra, like the Mi

1 bargaining
set (Davis and Maschler [8] and Maschler [18]), or the kernel (Davis and Maschler [9] and
Maschler and Peleg [19]). Suppose for illustration that a solution can be written as the union
of two polyhedra: S(v) = A(v) ∪ B(v). Even if we consider two games v and w with the
same binding coalitions in the two polyhedra A and B, so that A(v + w) = A(v) + A(w) and
B(v + w) = B(v) + B(w), there is no guarantee that S(v + w) = S(v) + S(w). In fact, it is easy
to check that (A(v + w) ∪ B(v + w)) ⊆ (A(v) ∪ B(v)) + (A(w) ∪ B(w)), with strict inclusion
for generic games.

We next consider solutions defined as unique points rather than convex polyhedra. Of course,
the Shapley value satisfies additivity. Peters [23] and [24] provides an axiomatic characterization
of solutions to Nash’s bargaining problem which satisfy additivity and variants of superadditiv-
ity. Charnes and Kortanek [6] and Kohlberg [16] prove that the nucleolus is piecewise linear
in the following sense. For any imputation x, and any coalition S, compute the excess function
e(x,S) = v(S) − x(S), and order the coalitions, by decreasing values of the excess, to obtain
an array of coalitions b(x, v) = (b1(x, v), . . . , b2n−1(x, v)). Partition then the set of coalitional
games in such a way that v and w belong to the same equivalence class if and only if, at the nu-
cleolus of the two games, ν(v) and ν(w), the array of coalitions satisfy b(ν(v), v) = b(ν(w),w).
Then, for any two v and w in the same equivalence class, ν(v + w) = ν(v) + ν(w).

Finally, we would like to emphasize that, in our opinion, the study of the additivity of the
core is only a first step in a research program on multi-issue cooperation. In the future, we hope
to extend the analysis by studying alternative models of multi-issue bargaining in nonwelfarist
environments.
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