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Abstract I prove that ‘Disagreement Point Convexity’ and ‘Midpoint
Domination’ characterize the Nash bargaining solution on the class of two-
player bargaining problems and on the class of smooth bargaining problems.
I propose an example to show that these two axioms do not characterize the
Nash bargaining solution on the class of bargaining problems with more than
two players. I prove that the other solutions that satisfy these two properties are
not lower hemi-continuous. These different results refine the analysis of Chun
(Econ Lett 34:311–316, 1990). I also highlight a rather unexpected link with the
result of Dagan et al. (Soc Choice Welfare 19:811–823, 2002).

1 Introduction

A bargaining problem specifies the set of utility vectors that are achievable if
the players cooperate, as well as the utility vector that prevails in case of dis-
agreement. Nash (1950) characterizes a unique single-valued solution that sat-
isfies the following list of elementary properties or axioms: ‘Efficiency’ (EFF),
‘Symmetry’ (SYM), ‘Scale Covariance’ (SC) and ‘Independence of Irrelevant
Alternatives’ (IIA).

‘Midpoint Domination’ (MD) requires that any reasonable agreement Pareto
dominates the outcome of the random dictatorship procedure. This property
appears in the literature at the beginning of the eighties. Moulin (1983) (see
Thomson (1994), Sect. 4.1) proves that the Nash bargaining solution is the only
solution to satisfy MD and IIA.
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IIA involves comparisons between bargaining problems with different
feasible sets: the solution has to be invariant to some contractions of the
set of achievable contracts. Chun and Thomson (1990) and Peters and van
Damme (1991) propose a dual approach involving the disagreement point.
Disagreement point convexity (DPC) for instance requires the solution to
be invariant to movements of the disagreement point towards the solution.
Peters and van Damme prove that the Nash bargaining solution is the only sin-
gle-valued solution to satisfy SYM, SC, DPC, ‘Strong Individual Rationality’,
‘Disagreement Point Continuity’ and ‘Invariance with respect to Non-Individ-
ually Rational Alternatives’ (INIR).

I prove that the Nash bargaining solution is the only solution to satisfy MD
and DPC on the class of two-player bargaining problems and on the class of
smooth bargaining problems. I propose an example to show that these two axi-
oms do not characterize the Nash bargaining solution on the class of bargaining
problems with more than two players. I prove that the other solutions that
satisfy these two properties are not lower hemi-continuous.

These results imply that the theorems of Chun (1990) can be extended to
multi-valued solutions and that his efficiency axiom is redundant. More interest-
ingly, his continuity axiom also appears to be redundant on the two important
sub-classes of bargaining problems discussed previously. I also highlight a rather
unexpected link with the result of Dagan et al. (2002). They prove, as a variant
of Peters and van Damme (1991), that the Nash bargaining solution is the only
solution to satisfy SYM, EFF, SC, INIR, DPC, ‘Single-Valuedness in Symmet-
ric Problems’ (SV) and ‘Twisting’ (TW) on the class of two-player bargaining
problems.1 I prove that SYM, EFF, SC, INIR, SV and TW together imply MD.
I also show by means of examples that the converse is not true.

2 Definitions

Let n be a positive integer and let N := {1, . . . , n} be the set of players. Vectors
in R

N are compared according to Pareto’s ordering: x ≥ y if xi ≥ yi for each
i ∈ N, and x >> y if xi > yi for each i ∈ N. The vector x is strictly positive if
x >> 0. The set of strictly positive vectors is denoted by R

N++. The inner product
of two vectors x and y is denoted by x ·y (=∑

i∈N xiyi). Let X be a subset of R
N .

Then x ∈ X is efficient (in X) if there does not exist x′ ∈ X different from x such
that x′ ≥ x. A vector λ ∈ R

N is orthogonal to X at a vector x∗ of its boundary if
λ · x ≤ λ · x∗, for each x ∈ X.

A bargaining problem is a couple (V, d) where V ⊆ R
N is the set of utility

vectors that the players can achieve through cooperation and d ∈ V is the utility
vector that prevails in case of disagreement. The players have a strict interest
to cooperate (d << v for some v ∈ V) and the set V of feasible agreements is

1 To be precise, Dagan et al. consider a class of bargaining problems that is slightly larger than the
class of bargaining problems considered in the present paper. Indeed, they do not require that the
utilities are transferable in the sense of condition (1), introduced in the next section.
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compact, convex and non-level. Non-level means that the utilities are transfer-
able in the following sense:2

[vi > di] → [(∃v′ ∈ V)(∀j ∈ N\{i}) : v′
j > vj] (1)

for each v ∈ V and each i ∈ N. If the agreement v is strictly better than the
disagreement outcome for player i, then there exists another feasible agreement
v′ that makes all the other players strictly better off, obviously at the expense
of player i if v is efficient. A utility vector v is individually rational if v ≥ d. It is
strictly individually rational if v >> d. Condition (1) implies that, if a vector λ is
orthogonal to V at an efficient utility vector that is strictly individually rational,
then λ is strictly positive. A bargaining problem (V, d) is smooth if V admits a
unique supporting hyperplane at each utility vector on its boundary.

A solution is a function that associates a nonempty set of feasible utility
vectors to each bargaining problem. For instance, the Nash bargaining solu-
tion selects the (unique) utility vector that maximizes the product of the utility
gains of the players over the set of feasible agreements that are individually
rational, i.e.

�Nash(V, d) := arg max
{v∈V|v≥d}

∏

i∈N

(vi − di). (2)

The Nash bargaining solution is single-valued, as the sets of achievable utility
vectors are convex.

3 Main results

Here are restrictions that could be imposed on a solution �. They are supposed
to hold for each bargaining problem (V, d), for each two-player bargaining
problem (V, d), or for each smooth bargaining problem (V, d), depending on
the context.

Disagreement point convexity (DPC) If σ ∈ �(V, d), then σ ∈ �(V, πd +
(1 − π)σ) for each π ∈]0, 1[.

If σ is a reasonable agreement for a bargaining problem (V, d), then so should
it remain for the modified problem (V, πd + (1 − π)σ). The solution has to be
invariant to movements of the disagreement point towards the final agreement.
The axiom was first introduced by Peters and van Damme (1991). Chun and
Thomson (1990) apply a similar axiom imposing some linearity on the solution
with respect to the disagreement point. I refer to these papers for justifications
in terms of invariance with respect to resolution of the uncertainty about the
disagreement point. Dagan et al. (2002) relate the axiom to properties of some
non-cooperative bargaining models.

2 This differs from the definition of transferable utility in cooperative games where it is actually
assumed that the utilities are transferable between the players at a one to one exchange rate.
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Midpoint domination (MD) If σ ∈ �(V, d), then σ ≥ ∑
i∈N ai(V, d)/n, where

ai(V, d) := arg max{v∈V|v−i≥d−i} vi, for each i ∈ N.

If player i had all the bargaining power, the outcome would be ai(V, d).
A natural reference point when the players have equal bargaining abilities is
obtained by mixing these extreme points, using a uniform probability distri-
bution. It is only because of its lack of efficiency that the random dictatorship
principle has to be amended. The objective of most bargaining solutions is to
specify a way to split the remaining surplus when the midpoint is not efficient.
For instance, the discrete Raiffa bargaining solution (see Luce and Raiffa 1957,
pages 136–137) considers the midpoint as a partial agreement and applies recur-
sively the random dictatorship argument up to the Pareto frontier. The solution
of Kalai and Smorodinsky (1975) follows the direction defined by the disagree-
ment point and the midpoint up to the Pareto frontier. I prove hereafter that
the Nash solution itself satisfies the axiom. Though natural and powerful, MD
has not been used frequently in the literature. The only references that I am
aware of are Moulin (1983) and Chun (1990).

Lower hemi-continuity (LHC) Let σ ∈ �(V, d) and let [(Vk, dk)]k∈N be a
sequence of bargaining problems that converges3 towards the bargaining prob-
lem (V, d) when k tends to infinity. Then, there exists a sequence (σ k)k∈N of
vectors in R

N that converges towards σ and such that σ k ∈ �(Vk, dk) for each
k ∈ N.

If σ is a reasonable agreement for the bargaining problem (V, d) and if the
bargaining problem (Vk, dk) is close enough to the bargaining problem (V, d),
then there exists a reasonable agreement σ k for (Vk, dk) that is close to σ .

Theorem 1 The Nash bargaining solution is the only solution to satisfy ‘Dis-
agreement Point Convexity’ (DPC) and ‘Midpoint Domination’ (MD) on the
class of two-player bargaining problems.

Theorem 2 The Nash bargaining solution is the only solution to satisfy ‘Dis-
agreement Point Convexity’ (DPC) and ‘Midpoint Domination’ (MD) on the
class of smooth bargaining problems.

Theorem 3 The Nash bargaining solution is the only solution to satisfy ‘Dis-
agreement Point Convexity’ (DPC), ‘Midpoint Domination’ (MD) and ‘Lower
Hemi-Continuity’ (LHC) on the class of bargaining problems.

The proof of these three theorems is based on the following characterization
of the Nash bargaining solution, suggested by Harsanyi (1959). It is obtained
by separating V from the set of utility vectors whose Nash product is greater
than its evaluation at the solution. Both sets are indeed convex.

3 I.e. the sequence (dk)k∈N converges towards d in the usual sense and the sequence (Vk)k∈N

converges towards V according to Hausdorff’s topology.
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Lemma (Harsanyi 1959) Let (V, d) be a bargaining problem and let σ ∈ V.
Then, �Nash(V, d) = {σ } if and only if σ >> d and there exists λ ∈ R

N++ such
that

(a) λ · σ = max
v∈V

λ · v

(b) (∀(i, j) ∈ N × N) : λi(σi − di) = λj(σj − dj).

The lemma can be interpreted as follows: the Nash bargaining solution
specifies the only feasible agreement that satisfies simultaneously the utilitarian
and the egalitarian objectives for some re-scaling of the individual utilities (see
Shapley 1969; Myerson 1991, Sect. 8.3).

Proof of Theorem 1 I start by proving that the Nash bargaining solution sat-
isfies both DPC and MD. Let (V, d) be a two-player bargaining problem, let
�Nash(V, d) = {σ }, let λ ∈ R

N++ be the vector appearing in the lemma, and let
Vλ := {x ∈ R

N |λ · x ≤ λ · σ }. Observe that

a1(Vλ, d) + a2(Vλ, d)

2
=

(
d1

2
+ λ · σ − λ2d2

2λ1
,

d2

2
+ λ · σ − λ1d1

2λ2

)

= σ . (3)

The second equality follows from condition b of the lemma. On the other hand,
V ⊆ Vλ, thanks to condition a of the lemma. Hence a1(V, d) ≤ a1(Vλ, d),
a2(V, d) ≤ a2(Vλ, d), and the Nash bargaining solution satisfies MD. Let now
π ∈]0, 1[. Clearly, σ satisfies condition a of the lemma for λ and for the bar-
gaining problem (V, πd + (1 − π)σ), as the condition does not depend on the
disagreement point. On the other hand, λi(σi − (πdi + (1−π)σi)) = πλi(σi −di)

for each i ∈ N. Hence σ also satisfies condition a of the lemma for λ and for the
bargaining problem (V, πd + (1 −π)σ). The lemma implies that �Nash(V, πd +
(1 − π)σ) = {σ }. Hence the Nash bargaining solution satisfies DPC.

Let � be a solution that satisfies both DPC and MD, let (V, d) be a two-
player bargaining problem and let σ ∈ �(V, d). I will use the lemma to prove
that σ ∈ �Nash(V, d). This will imply that �(V, d) = �Nash(V, d), as �(V, d) is
nonempty and the Nash bargaining solution is single-valued. MD implies that
σ >> d, as there exists v ∈ V such that v >> d. Let λ := (σ2 − d2, σ1 − d1) ∈
R

2++. Condition b of the lemma is trivially satisfied. Let v ∈ V. I prove that
λ · v ≤ λ · σ . The result is obvious if v ≤ σ . Observe also that σ is effi-
cient. Otherwise, the condition σ ∈ �(V, πd + (1 − π)σ) imposed by DPC
is incompatible with MD when π is small. Hence there remain two cases to
consider: (1) v1 < σ1 and v2 > σ2; (2) v1 > σ1 and v2 < σ2. The analysis
being similar in both cases, I assume that v1 < σ1 and v2 > σ2. Suppose in
addition for the moment that v1 > d1. Let π := (σ1 − v1)/(σ1 − d1) ∈]0, 1[,
so that πd1 + (1 − π)σ1 = v1. By DPC, σ ∈ �(V, πd + (1 − π)σ). Notice
that a2(V, πd + (1 − π)σ) ≥ v. Hence σ2 ≥ [πd2 + (1 − π)σ2 + v2]/2, by MD.
Developing the terms, I get v2 − σ2 ≤ π(σ2 − d2). Given the definitions of λ

and π , this amounts to λ2(v2 − σ2) ≤ λ1(σ1 − v1), or λ · v ≤ λ · σ , as required.
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If v1 ≤ d1, then there exists α ∈]0, 1[ such that αv1 + (1 − α)σ1 > d1. Hence,
by the previous reasoning, λ · (αv + (1 − α)σ) ≤ λ · σ . Rearranging the terms,
I obtain again λ · v ≤ λ · σ . 
�
Proof of Theorem 2 It is easy to extend the arguments developed in the Proof
of Theorem 1 to show that the Nash bargaining solution satisfies both DPC and
MD on the class of smooth bargaining problems.

Let � be a solution that satisfies both DPC and MD, let (V, d) be a smooth
bargaining problem and let σ ∈ �(V, d). I will use the lemma to prove that
σ ∈ �Nash(V, d). This will imply that �(V, d) = �Nash(V, d), as �(V, d) is
nonempty and the Nash bargaining solution is single-valued. MD implies that
σ >> d, as there exists v ∈ V such that v >> d. Observe also that σ is efficient.
Otherwise, the condition σ ∈ �(V, πd + (1 − π)σ) imposed by DPC is incom-
patible with MD when π is small. Let λ ∈ R

N++ be a vector that is orthogonal
to V at σ . Condition a of the lemma is trivially satisfied. I check condition b.
Combining DPC and MD, I have

σ ≥
∑

j∈N

aj(V, πd + (1 − π)σ)

n
(4)

for each π ∈ [0, 1]. Notice that aj
i(V, πd + (1 − π)σ) = πdi + (1 − π)σi for all

(i, j) ∈ N × N such that i �= j. Equation (4) therefore implies

(n − 1)(σi − di) ≥ ai
i(V, πd + (1 − π)σ) − σi

π
(5)

for each i ∈ N and each π ∈ [0, 1]. Remember that V is smooth and that λ

is orthogonal to V at σ . The implicit function theorem implies that ai(V, x) is
differentiable with respect to xj at σ and that ∂ai

i(V, σ)/∂xj = −λj/λi for each
j ∈ N\{i}. Taking the limit as π tends to zero and applying the chain rule of
differential calculus, I obtain

(n − 1)(σi − di) ≥
∑

j∈N\{i}

λj(σj − dj)

λi
(6)

for each i ∈ N. Hence,

λi(σi − di) ≥ λ · (σ − d)

n
(7)

for each i ∈ N. Taking the sum over i, I conclude that the inequality cannot be
strict and hence the left-hand term does not depend on i. Condition b of the
lemma is therefore satisfied. 
�
Proof of Theorem 3 It is easy to extend the arguments developed in the proof
of theorem 1 to show that the Nash bargaining solution satisfies both DPC and
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MD on the class of bargaining problems with any number of players. It is also
easy to check that the Nash bargaining solution is lower hemi-continuous.4

Let � be a solution that satisfies DPC, MD, and LHC. Let (V, d) be a bar-
gaining problem and let σ ∈ �(V, d). I will use Theorem 2 and LHC to prove
that σ ∈ �Nash(V, d). This will imply that �(V, d) = �Nash(V, d), as �(V, d) is
nonempty and the Nash bargaining solution is single-valued. As V is compact,
there exists a real number r large enough such that V is included in the ball
W := {x ∈ R

N |‖x − d‖2 ≤ r} of center d and radius r. Let Vk be the set defined
as follows:

Vk := 1
k

W +
(

1 − 1
k

)

V, (8)

for each positive integer k. Notice that (Vk, d) is a smooth bargaining problem,
for each k ∈ N, and that the sequence [(Vk, d)]k∈N converges towards (V, d)

when k tends to infinity. By LHC, there exists a sequence (σ k)k∈N that con-
verges towards σ and such that σ k ∈ �(Vk, d), for each k ∈ N. Theorem 2
implies that σ k ∈ �Nash(Vk, d), for each k ∈ N. Hence σ ∈ �Nash(V, d), as the
Nash bargaining solution is (upper hemi-) continuous. 
�

The Nash bargaining solution does not necessarily satisfy MD if the utilities
are not transferable in the sense of condition (1). For instance, let n = 2, let
d = (0, 0) and let V be the convex hull of the vectors (0, 0), (1, 1) and (2, 0).
The Nash bargaining solution is {(1, 1)}, but [a1(V, d)+a2(V, d)]/2 = (3/2, 1/2).
Notice that Chun (1990) considers a variant of MD where ai(V, d) is replaced by:

âi(V, d) := arg max
{v∈V|v−i=d−i}

vi (9)

for each i ∈ N. Obviously, ai(V, d) = âi(V, d) when V is non-level. On the other
hand, the Nash bargaining solution satisfies the modified version of MD even if
the utilities are not transferable in the sense of condition (1). It is easy to adapt
the three theorems to this larger class of bargaining problems, replacing MD
by its modified version. Nevertheless, âi(V, d) is hard to interpret, as it does not
necessarily coincide with the agreement that player i would impose should he
have all the bargaining power.

The axioms appearing in the three theorems are independent. The egalitar-
ian solution satisfies DPC and LHC, but not MD. The solution of Kalai and
Smorodinsky (1975) satisfies MD and LHC, but not DPC. Finally, the Nash
bargaining solution is not the only solution to satisfy DPC and MD on the
class of bargaining problems when there are more than two players, as the
following example shows. Let n = 3, let V̂ be the convex hull of the vectors
(0, 0, 0), (15, 0, 0), (0, 15, 0), (10, 10, 0) and (0, 0, 10), and let � be the solution
defined as follows: �(V, d) := �Nash(V, d)∪{(5, 5, 5)} if (V, d) = (V̂, π(0, 0, 0)+
(1 − π)(5, 5, 5)) for some π ∈ [0, 1] and �(V, d) := �Nash(V, d) for each other

4 Or simply a continuous function, as the Nash bargaining solution is single-valued.
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bargaining problem (V, d). Notice that (5, 5, 5) �∈ �Nash(V, π(0, 0, 0) + (1 − π)

(5, 5, 5)) for each π ∈]0, 1[. The solution � obviously satisfies DPC. It also satis-
fies MD because (5, 5, 5) ≥ ∑3

i=1 ai(V̂, π(0, 0, 0)+(1−π)(5, 5, 5))/3 for each π ∈
[0, 1]. Indeed, a1 = (5+10π , 5(1−π), 5(1−π)), a2 = (5(1−π), 5+10π , 5(1−π))

and a3 = (5(1 − π), 5(1 − π), 10 − 5(1 − π)).

4 Related literature

I already discussed part of the literature in the introduction. I further discuss
in this section how my results relate to Chun (1990, Theorems 1 and 3) and to
Dagan et al. (2002).

Theorem 3 shows that Chun’s results can be extended to multi-valued5 solu-
tions and that his efficiency axiom is redundant. More interestingly, Theorems
1 and 2 show that his continuity axiom is also redundant on two important
sub-classes of bargaining problems. To the best of my knowledge, Theorems 1
and 2 are the only axiomatizations of the Nash bargaining solution that do not
involve any axiom relating the solution of bargaining problems with different
feasible sets.

I devote the rest of the section to explain how theorem 1 relates to a previous
result obtained by Dagan et al. (2002). They axiomatize the Nash bargaining
solution on a large6 class of two-player bargaining problems. Here are the axi-
oms they consider, in addition to DPC. They are supposed to hold for each
two-player bargaining problem (V, d).

Symmetry (SYM) A bargaining problem (V, d) is symmetric if d1 = d2 and V =
{(v2, v1)|v ∈ V}. If (V, d) is symmetric, then �(V, d) = {(σ2, σ1)|σ ∈ �(V, d)}.
Efficiency (EFF) Any element of �(V, d) is efficient.

Scale covariance (SC) �(αV + β) = α�(V, d) + β, for each α ∈ R
2++ and each

β ∈ R
2.

Single-valuedness in symmetric problems (SV) If (V, d) is symmetric, then
�(V, d) is a singleton.

Independence of non-individually rational alternatives (INIR) If a bargaining
problem (V′, d) is such that {v ∈ V′|v ≥ d} = {v ∈ V|v ≥ d}, then �(V′, d) =
�(V, d).

Twisting (TW) Let σ ∈ �(V, d), let i ∈ {1, 2} and let (V′, d) be a bargaining
problem such that V\V′ ⊆ {x ∈ R

2|xi > σi} and V′\V ⊆ {x ∈ R
2|xi < σi}. Then,

σ ′
i ≤ σi for some σ ′ ∈ �(V′, d).

5 On the contrary, the restriction to single-valued solutions is crucial in Nash (1950) and Moulin
(1983). For instance, the solution that associates to every bargaining problem the set of efficient
allocations that Pareto dominate the midpoint satisfies the natural adaptation of Nash and Moulin’s
axioms when multi-valued solutions are considered.
6 Their class of games is larger than the one considered in the present paper, as they do not restrict
the feasible sets to be non-level.
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The next proposition shows that these six axioms together imply MD, the
converse being not true.

Proposition SYM, EFF, SC, SV, INIR and TW together imply MD on the class
of two-player bargaining problems. On the other hand, MD does not imply any
of the six previous axioms.

Proof Let (V, d) be a two-player bargaining problem and let σ ∈ �(V, d). Sup-
pose that σ �= a1(V, d). Let V′ be the set of individually rational utility pairs that
is bounded above by the line going through the points σ and a1(V, d). By the first

four axioms, �(V′, d) = {(d1+a1
1(V,d)

2 , x)} for some x ∈ R. By INIR, σ ∈ �(V̂, d)

where V̂ is the set of individually rational utility pairs that belong to V. By TW,
σ1 ≥ (d1 + a1

1(V, d))/2. A similar argument implies that σ2 ≥ (d2 + a2
2(V, d))/2

if σ �= a2(V, d). It is then easy to conclude.
Here are examples of solutions that satisfy MD but violate some of the above

axioms. The solution that is obtained by projecting vertically (upward) the mid-
point on the Pareto frontier of the feasible set does not satisfy SYM, the solution
that selects the midpoint does not satisfy EFF, the solution that equally split
the surplus above the midpoint does not satisfy SC, the solution that selects the
set of efficient utility vectors that dominates the midpoint does not satisfy SV,
the solution that maximizes the product of the utility gains with respect to the
downward vertical projection of the disagreement point on the boundary of the
feasible set and over the set of feasible utility vectors that Pareto dominate the
midpoint does not satisfy INIR, and finally the solution that selects the utility
vectors on the Pareto frontier that are the closest to the midpoint does not
satisfy TW. 
�
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