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Abstract

We study the problem of allocating m identical items among n > m agents,
where the items are jointly owned by the agents rather than by an auctioneer.
Each agent desires exactly one item and has a private value for consuming
it. We assume quasi–linear utilities and focus on dominant–strategy imple-
mentation. The key issue is that in the absence of an auctioneer who can
absorb payments collected from the agents, the payments must be burnt to
support dominant–strategy implementation.

Existing mechanisms for this setting modify the classic VCG mechanism
by redistributing as much of the payments as possible back to the agents while
still satisfying incentive constraints. This approach guarantees allocative
efficiency, but in some cases a large percentage of social welfare is lost. In this
paper, we provide a mechanism that is not allocatively efficient but is instead
guaranteed to achieve at least 80% of the social welfare as n→∞. Moreover,
in the extreme case of m = n − 1 where VCG–based mechanisms provide
zero welfare, the percentage of social welfare maintained by our mechanism
approaches 100% as n→∞.

1. Introduction

Suppose six city–dwelling roommates jointly own a car that seats five people.
They decide to take a trip to the countryside. While they all would like to
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go, there is not room for all of them in the car. Some really need the fresh
country air while others would not really mind staying home. The roommates
do not necessarily know one another’s desires, but each of them knows her
own true value of getting out of the city. How should they decide who gets
to go?

We study a class of resource allocation problems, in which n agents jointly
own m < n identical items that they wish to distribute among themselves.
We assume each agent wants exactly one item, and has a private value for
that item. As further examples, consider the allocation of free tickets for a
sporting event among club members, or seats on an overbooked airplane.

We assume that the agents can make monetary payments, and further
that they have quasi–linear utilities. These assumptions allow to provide
incentives for the agents to reveal their private values truthfully. In the pres-
ence of a participant possessing no private information (e.g., an auctioneer),
monetary payments can be absorbed by him, thus achieving budget balance.
In our setting however, all agents have private information, and any collected
payments need to be burnt in order to maintain truthful reporting. Burning
money is undesirable as it decreases social welfare. Therefore, it is impor-
tant to design mechanisms that ensure a high level of social welfare while
maintaining the incentives.

In this work, we focus on strategy–proof mechanisms, which require that
it be a dominant strategy for each agent to report her value truthfully. This
requirement is less permissive, but more robust than Bayesian implementa-
tion. In particular, agents are more likely to play a dominant strategy than a
strategy that is optimal only when other agents play their part of the truthful
equilibrium. Perhaps even more importantly, dominant–strategy implemen-
tation does not require any assumptions about the distribution of the agents’
values (or their beliefs about those values), nor their attitude towards risk.

As for measuring the appeal of various strategy–proof mechanisms, we
choose the strictest metric: worst–case performance. More specifically, if
one fixes the agents’ profile of values, one can compute the ratio of the
social welfare realized by the mechanism over the maximal social welfare that
could be achieved, should these values be known. Since these values are not
known, nor is their probabilistic distribution, the appeal of a strategy–proof
mechanism is measured by the minimum of this ratio over all possible value
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profiles. We call this ratio a social welfare ratio4, and we use it to determine
a mechanism’s worst–case (i.e., guaranteed) level of social welfare: reaching
a level α ∈ [0, 1] means that a mechanism realizes at least a proportion α of
the maximal social welfare for every possible profile of the agents’ values.

In addition to strategy–proofness, we also impose the following natu-
ral constraints: 1) feasibility—no more than m items can be allocated, and
monetary deficits are not allowed (i.e., no external subsidy), 2) individual
rationality—each agent’s total utility is nonnegative, and 3) anonymity—the
allocation and payment decision applied to each agent does not depend on
her identity. The question we are interested in can now be stated formally:

Find a mechanism that maximizes the worst–case social welfare
ratio among all those that are strategy–proof, feasible, individually
rational, and anonymous.

Recently, two sets of authors (Moulin (2009) and Guo and Conitzer
(2009)) solved the above question under the additional constraint that the
items be allocated to the m agents who value them most. Their solution char-
acterized the best mechanism within the class of VCG5 mechanisms, which
has received special attention in the economics literature because members
of this class admit a simple functional form (cf. characterization by Green
and Laffont (1979)). A VCG mechanism guarantees an efficient allocation
of all m items, but not necessarily a good level of “overall” efficiency (as
measured for instance by the worst–case social welfare ratio), because alloca-
tive efficiency may come at the cost of “burning” quite a bit of money to
meet the incentive constraints, whereas it may be better in terms of overall
efficiency to destroy some items in order to burn less money. Indeed it is. It
is not difficult to check that it is impossible to guarantee a strictly positive
worst–case social welfare ratio using a VCG mechanism when m = n − 1.
On the other hand, applying the best VCG mechanism after destroying even
one item would secure a strictly positive ratio.

Still, applying a VCG mechanism after destroying some fixed number of
items is not the best way to optimize overall efficiency. We show that contin-
gent destruction mechanisms, which make destruction decisions based on the

4The same measure is used in (Moulin, 2009; Guo and Conitzer, 2009).
5VCG stands for Vickrey, Clarke, and Groves, who independently defined and studied

some of these mechanisms in various contexts.
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values agents report, perform better. In fact, all strategy–proof mechanisms
rely on contingent payments as well as contingent destruction: an agent re-
ceives an item if and only if her reported value is larger than a threshold
value, which in general depends on other agents’ reports. We refer to such
mechanisms as threshold mechanisms.

The question of finding the best threshold mechanism is more complicated
than the question of finding the best VCG mechanism. The VCG mecha-
nism’s allocation function is constant once the agents’ values are ordered
(the agents with the m highest values receive the items). In this restricted
context, Guo and Conitzer (2009) and Moulin (2009) calculate the optimal
payment function. In contrast, allocation functions in the broader class of
threshold mechanisms are not constant.

We discuss related literature before describing our results. Enhancing
VCG mechanisms with payment redistribution has been studied in various
settings. Bailey (1997) proposes a way to redistribute some of the VCG tax
in a public good domain. Cavallo (2006) designs a redistribution mechanism
for single–item allocation problems, and provides a characterization of re-
distribution mechanisms for more general allocation problems. As already
mentioned, Guo and Conitzer (2009) and Moulin (2009) independently dis-
cover the optimal VCG redistribution mechanism for the allocation domain
studied here. Guo and Conitzer (2010b) derive a linear redistribution VCG
mechanism to maximize the expected social welfare when the distribution of
agents’ values is known. Porter et al. (2004) study the problem of allocating
undesirable goods (e.g., tasks) to agents in a fair manner. In the model where
a single item (task) needs to be allocated, the mechanisms by Porter, Bailey,
and Cavallo coincide.6 In other contexts, Hartline and Roughgarden (2008)
study welfare–maximizing mechanisms in settings where positive transfers
to the agents are not allowed. The tradeoff between efficiency and budget
balance in cost sharing scenarios is discussed by Moulin and Shenker (2001).

Most related to our work is the work by Guo and Conitzer (2008). Start-
ing from the observation that destroying items might save enough money to
be socially beneficial, they limit attention to allocation rules where the num-
ber of items destroyed is independent of the agents’ reports. In order for the
social benefit to be more significant, they allow for that number to be deter-

6A detailed discussion of relationship between these mechanisms appears in (Guo and
Conitzer, 2009).
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mined randomly.7 Instead, we observe that significant gains can be achieved
via deterministic mechanisms provided one uses contingent destruction rules.
Furthermore, Guo an Conitzer require feasibility only in expectation, and
need to assume that the agents are risk neutral. Our deterministic analysis
allows to dispense with these assumptions. If one is willing to use lotter-
ies, then it may be of interest to combine the insights from our two papers,
making Guo and Conitzer’s random variables depend on reported values.

Our approach is designed to achieve the right balance between tractabil-
ity, and showing that one can obtain a significant improvement in overall wel-
fare if one does not rely on the technical convenience of VCG mechanisms.
Even a very minor departure from VCG—destroying at most one item—
allows for drastic savings in problem instances with many agents and items.
Specifically, this paper presents a mechanism that guarantees an asymptotic
ratio of at least 0.8 as n → ∞. Importantly, the ratio guarantee improves
as the number of items increases. Perhaps most striking is the case where
m = n − 1. As already pointed out, VCG mechanisms do not provide any
strictly positive ratio in this case. Further, applying the best VCG mech-
anism after destroying a fixed number of items does not guarantee a ratio
larger than 1/2 (see numerical computations in Guo and Conitzer (2008)).
In contrast, our method of contingent destruction guarantees the ratio of
1 − 2

n2−n , which rapidly approaches 1 as n increases. Finally, an additional
advantage of our mechanism is that it has a much simpler analytical form
than the optimal VCG mechanism.

This paper unfolds as follows. Section 2 formally states the problem we
are studying. A computational method of searching for an optimal mecha-
nism in a restricted setting is proposed in Section 3. Numerical results for
this setting are presented in Section 4. Based on the numerical results, we
discern the analytical form of a general mechanism in Section 5.

7If one is ready to use lotteries, then observe that other natural mechanisms come to
mind. Faltings (2005), for instance, proposes a mechanism that picks an agent at random,
and makes him the recipient of the VCG payments. This mechanism applies to domains
more general than our allocation domain and achieves budget balance. However, if one
applies this mechanism to our allocation domain, one sees that the resulting allocation is
not efficient (unless the chosen recipient happens to value the item less than those who
are allocated an item).
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2. Definitions

An allocation problem is a triple 〈n,m, v〉, where n is the number of agents,
m < n is the number of (identical) items available to allocate, and v ∈ Rn

+

represents the agents’ satisfaction from consuming one item (agents do not
care for consuming multiple units). We restrict attention to value profiles v
such that v1 ≥ v2 ≥ . . . ≥ vn ≥ 0. This is without loss of generality since our
problem involves only anonymous mechanisms. Monetary compensations are
possible, and utilities are quasi–linear. The space of possible value profiles
is then V = {v ∈ Rn

+ | v1 ≥ v2 ≥ . . . ≥ vn ≥ 0}. An allocation is a pair
(f , t) ∈ {0, 1}n × Rn, where fi = 1 if and only if agent i gets one item, and
ti represents the amount of money that agent i receives (this number can be
negative, of course, in which case agent i pays that amount). Hence, the total
utility of agent i when implementing the allocation (f , t) is fivi+ti, if her value
for an item is vi. A mechanism is a pair of functions f : Rn

+ → {0, 1}n and
t : Rn

+ → Rn. Thus, it determines an allocation for each possible report from
the agents regarding their value for an item. We slightly abuse the notation
and define fi(v) = (f(v))i and ti(v) = (t(v))i. The vector v−i ∈ Rn−1 denotes
values of the agents other than agent i and the vector v can be written as
(vi, v−i). We focus on mechanisms that satisfy the following constraints:

• Feasibility: no more than m items should be allocated, and the sum
of payments to the agents should be less than or equal to zero, for all
value profiles v.

n∑
i=1

fi(v) ≤ m and
n∑
i=1

ti(v) ≤ 0 ∀v ∈ V

• Strategy–proofness: It is a dominant strategy for each agent to report
her value truthfully.

fi(vi, v−i)vi + ti(vi, v−i) ≥ fi(v
′
i, v−i)vi + ti(v

′
i, v−i) ∀v ∈ V, i, v′i

• Individual Rationality: It is in each agent’s interest to participate in
the mechanism, for all value profiles v.

fi(v)vi + ti(v) ≥ 0 ∀v ∈ V, i
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We now define the index that we use to measure the overall efficiency of
a mechanism (f, t) that is implemented truthfully (an equivalent index was
used in (Moulin, 2009; Guo and Conitzer, 2009, 2008)). If the true value
profile is v, then the social welfare realized by the mechanism is equal to∑n

i=1[vifi(v) + ti(v)]. This number is less interesting than knowing how far
it is from the first–best solution, i.e. the maximal welfare one could achieve
if the agents’ values were known. In order to have an index that is unit–free
(i.e. homogenous of degree zero), it is natural to consider a ratio. Finally,
since the agents’ values are not known, nor their probabilistic distribution,
it is natural to consider the worst–case index. To summarize, the index that
we use to measure the performance of a mechanism (f, t) that is truthfully
implemented is given by the following ratio:

min
v∈V

∑n
i=1[fi(v)vi + ti(v)]

maxf ′∈F(m)

∑n
i=1 f

′
ivi
,

where F(m) = {f ′ ∈ {0, 1}n|
∑n

i=1 f
′
i ≤ m}. Finding a mechanism whose

ratio is α means that a proportion α of the maximal social welfare is achieved,
independently of what the true values are. Following the convention v1 ≥
v2 ≥ . . . ≥ vn ≥ 0, the denominator becomes

∑m
i=1 vi and we write the ratio

as

min
v∈V

∑n
i=1[fi(v)vi + ti(v)]∑m

i=1 vi

The formal content of the question stated in the introduction can thus be
summarized by the following optimization problem:

max
(f,t)

min
v∈V

∑n
i=1[fi(v)vi + ti(v)]∑m

i=1 vi
(1)

n∑
i=1

fi(v) ≤ m ∀v ∈ V (2)

n∑
i=1

ti(v) ≤ 0 ∀v ∈ V (3)

fi(vi, v−i)vi + ti(vi, v−i) ≥ fi(v
′
i, v−i)vi + ti(v

′
i, v−i) ∀v ∈ V, i, v′i (4)

fi(v)vi + ti(v) ≥ 0 ∀v ∈ V, i (5)
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There is a full characterization of dominant–strategy implementable mech-
anisms in settings where agent’s private information is a single number
vi ∈ R.

Theorem 1 (e.g., see Nisan et al. (2007) p. 229). A mechanism (f, t)
is implementable in dominant strategies if and only if for each agent i: (i) fi
is monotone8 in vi; (ii) ti(v) = h(v−i)−τ(v−i) if fi(v) = 1 (i.e., i is allocated)
and ti(v) = h(v−i) otherwise, where τ(v−i) = supvi|fi(vi,v−i)=0 vi defines the
threshold.9,10

These mechanisms are easy to interpret. Each agent faces a personalized
price (the threshold τ) that is determined by the reports of the other agents.
She gets the good if and only if her reported value is larger than this price,
and must pay it in exchange. The collected money can be redistributed to
some extent to the agents via the rebate function h. The VCG mechanisms
form a special case, where i’s price is the mth largest component of v−i.

The allocation function f is determined by the threshold function, while
the payment function t is determined by the threshold and rebate functions.
Thus, we can restate the optimization problem (1)–(5) using these functions.

.

max
(h,τ)

min
v∈V

∑
i|vi≥τ(v−i)

(vi − τ(v−i)) +
∑n

i=1 h(v−i)∑m
i=1 vi

#{i|vi ≥ τ(v−i)} ≤ m ∀v ∈ V
n∑
i=1

h(v−i) ≤
∑

i|vi≥τ(v−i)

τ(v−i) ∀v ∈ V

h(v−i) ≥ 0 ∀v ∈ V, i

The first constraint is the feasibility constraint with respect to the items
being allocated11, while the second constraint is the feasibility constraint

8Monotonicity of fi in vi means that if an agent is allocated when she reports vi, she
is also allocated when she reports v′i ≥ vi.

9An agent i is allocated if and only if her report is above the threshold τ(v−i).
10As our focus is on anonymous mechanisms, the theorem was adapted to payment

functions h (rather than hi) that do not vary from agent to agent.
11 For notational convenience from now on we restrict our attention to profiles v where

all components are distinct. This restriction is introduced without loss of generality as we
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with respect to money (the sum of all rebates should be no more than the
amount collected from the agents that get an item). The third constraint is
the individual rationality constraint (remember that an agent’s value must
be larger than the threshold when she gets an item, and so this constraint
is trivially satisfied for her as well). The strategy–proofness constraint is no
longer needed as all threshold mechanisms are strategy–proof.

We now propose a last formulation of our optimization problem. We
remove the minimization over v by introducing a variable r ∈ R denoting
the best ratio that holds for any profile of values. The resulting optimization
program appears in Figure 1.

max
(h,τ),r

r (6)

∑
i|vi≥τ(v−i)

(vi − τ(v−i)) +
n∑
i=1

h(v−i) ≥ r
m∑
i=1

vi ∀v ∈ V (7)

#{i|vi ≥ τ(v−i)} ≤ m ∀v ∈ V (8)
n∑
i=1

h(v−i) ≤
∑

i|vi≥τ(v−i)

τ(v−i) ∀v ∈ V (9)

h(v−i) ≥ 0 ∀v ∈ V, i (10)

Figure 1: The problem of finding an optimal mechanism stated as an optimization
problem.

A solution to the mathematical program above is the optimal mechanism
for the allocation domain. However, the program is hard to solve for different
reasons. Firstly, maximization is over arbitrary functions h and τ , and there
is little hope in optimizing over the space of arbitrary functions. Secondly,

can extend the mechanism to all value profiles by using uniform lotteries to break ties, as
is usually done in papers on auctions. Suppose for instance that agent i should receive
an item, and that more than m other agents have the same value as i. Anonymity would
then come in conflict with feasibility. A uniform lottery can then be used to determine
which subset of agents receives an item, among all those that have the same value. Even
so, the way agents react to risk is irrelevant because all the outcomes of the lottery are
equivalent in terms of utility. Specifically, the lottery is between receiving an item worth
vi at a price pi and receiving a rebate hi such that hi = vi − pi.
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the program has an infinite number of constraints as the set of possible value
profiles v ∈ V is infinite. We address these problems in the next section
where we make assumptions about the form of the functions h and τ , show
that it is sufficient to consider a finite number of constraints, and solve the
resulting problem computationally.

3. A Simpler Problem

There are infinitely many constraints in our optimization problem, since they
are indexed by the value profiles v. Our technique for dealing with this diffi-
culty comes from an observation that linear constraints are satisfied through-
out a convex polytope if and only if they are satisfied at its extreme points
(see Observation 1). To apply the observation we need to identify regions
where the constrains are linear. In order to do this, we restrict attention to
the threshold and rebate functions for which we can partition the space of
value profiles into such regions. Letting w ∈ Rn−1 refer to a profile of agents’
values with one agent excluded we make two assumptions.

Assumption 1. The threshold function is of the form τ(w) = max(kwp, wm),
with k ∈ [0, 1] and p ∈ {1, 2, . . . , (m− 1)}.

Adding wm–component inside the max operator guarantees that no more
than m items are allocated, as required by the feasibility constraint. The
p parameter determines how many items are guaranteed to be allocated,
independently of the agents’ reports. The parameter k controls how large
the values of agents p + 1 through m must be for them to be allocated.
Taking k = 0 brings us back to VCG mechanisms, while setting of k = 1
means that items p+ 1, . . . ,m are always destroyed.

Similarly, we focus on rebate functions that are linear on convex subsets
of the set of value profiles. Here too we face a trade–off between tractability
and generality. A finer partition allows more flexibility in the rebates, but
also increases the number of constraints in the linear program to be solved.
The simplest choice would be to choose functions that are linear on the whole
cone characterized by v1 ≥ v2 ≥ . . . ≥ vn ≥ 0. Focusing on VCG mecha-
nisms, Moulin (2009) and Guo and Conitzer (2009) proved that the optimal
rebate function actually falls in that class. This is not the case anymore
when considering non–VCG mechanisms, as evidenced by our numerical re-
sults. Another simple choice would be to take rebate functions that are linear
on the regions where the number of items being allocated is constant. This
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choice is not permitted, though, because these regions depend on the values
of all the agents, while the rebate function can depend only on the values of
the agents different from the one receiving the rebate. We decided to choose
the closest match, imposing a condition that mimics the definition of these
regions while using only the right values.

Assumption 2. The rebate function h is linear in values on two regions:

h(w; a, b) =

{
aw if kwp ≥ wm

bw otherwise

where a, b ∈ Rn−1.

The approach we follow to optimize over the class of mechanisms satis-
fying these assumptions is summarized in Figure 2. We consider threshold
functions satisfying Assumption 1 with k coming from a finite set of con-
stants between 0 and 1 and p taking any value between 1 and m − 1. For
each threshold function specified by k and p, we compute the rebate function
that guarantees the highest social welfare among rebate functions satisfying
Assumption 2. We then select the threshold and the corresponding rebate
functions that achieved the highest welfare among the ones we considered.
The key step is computation of optimal rebates, which is the focus of the rest
of this section.

For the allocation problem with m items and n agents:

1. let K denote a finite set of values for the parameter k

2. for each threshold function τkp given by k ∈ K and p ∈
{1, 2, . . . ,m− 1}

– find the optimal rebate function hkp that satisfies Assump-
tion 2

3. choose the mechanism (τkp, hkp) with the highest welfare

Figure 2: Computational search for a welfare-maximizing mechanism.

To tackle computation of optimal rebates, we first characterize the regions
where the rebate function is linear and the number of allocated items is
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i ∈ {1. . . p}

fi = 1, ti(v) = −max(kvp+1, vm+1) +

{
av−i if kvp+1 ≥ vm+1

bv−i otherwise

i ∈ {(p+ 1) . . .m}

if vi ≥ kvp: fi = 1, ti(v) = −max(kvp, vm+1) +

{
av−i if kvp ≥ vm+1

bv−i otherwise

otherwise: fi = 0, ti =

{
av−i if kvp ≥ vm+1

bv−i otherwise

i ∈ {(m+ 1) . . . n}

fi = 0, ti =

{
av−i if kvp ≥ vm

bv−i otherwise

Figure 3: Mechanism satisfying Assumptions 1 and 2.

constant. By the definition of the threshold function τ = max(kwp, wm),
there are m − p + 1 possible allocations (the first p agents get the items,
the first p + 1 agents get the items, . . . , the first m agents get the items)
determined by the position of kvp among vp . . . vm. The rebate function h(w)
is resolved to one of the two linear functions (aw or bw) when the position
of kvp relative to vm and vm+1 and the position of kvp+1 relative to vm+1

are determined (see Figure 3). Below, we partition the space of values into
regions where allocation is determined and payment is resolved to either aw
or bw. A region Vj,· positions kvp between vj and vj+1 determining allocation
and payment for some of the agents. Payment for the rest of the agents is
determined by the second subscript which specifies whether kvp+1 is above
(>) or below (<) vm+1.

∀j ∈ {p . . .m+ 1}
Vj,> = {v ∈ V |v1 ≥ · · · ≥ vp ≥ · · · ≥ vj ≥ kvp ≥ vj+1 ≥ · · · ≥ vm ≥ · · · ≥ vn

AND kvp+1 ≥ vm+1}
Vj,< = {v ∈ V |v1 ≥ · · · ≥ vp ≥ · · · ≥ vj ≥ kvp ≥ vj+1 ≥ · · · ≥ vm ≥ · · · ≥ vn

AND kvp+1 ≤ vm+1}

The collection of regions above partitions the space {v ∈ V | v1 ≥ v2 ≥
. . . ≥ vn ≥ 0}. We group constraints by region and restate the optimization

12



problem (see Figure 4). Notice that on each region the constraints are of
the form dv ≥ 0 for some d ∈ Rn, which means that they are satisfied
at λv (∀λ > 0) as soon as they are satisfied at v. Hence we can assume
without loss of generality that v1 = 1 and focus on polytopes of vectors
(v2, . . . , vn) ∈ Rn−1. A polytope Vj,> (symmetrically Vj,<) is given by (n+ 2)
inequalities:

1 ≥ v2, v2 ≥ v3, · · · , vj ≥ kvp, kvp ≥ vj+1, · · · , vn−1 ≥ vn, vn ≥ 0
kvp+1 ≥ vm+1

The following observation tells us that it is enough to restrict attention to
the extreme points of each of these polytopes.

Observation 1. For any coefficients a ∈ Rn and b ∈ R, a linear constraint
av ≥ b holds at all v ∈ P of a polytope P ⊂ Rn if and only if it holds at
the points v ∈ ExtremePoints(P ), where ExtremePoints(P ) denotes the set
of extreme points of polytope P .

Thus, making sure the constraints hold at the extreme points of Vj,· guaran-
tees that the constraints hold everywhere on Vj,·. Now the linear program in
Figure 4 can be solved by enforcing constraints only at the extreme points
of each polytope Vj,·.

Example As an example consider the allocation problem with n = 3, m =
2 and the threshold function specified by k = .5 and p = 1: τ(w) =
max(.5w1, w2). The threshold function for agent 1 is max(.5v2, v3) < v1 (see
Figure 3). So agent 1 is always allocated an item. The threshold for agent 2
is max(.5v1, v3). Agent 2 is allocated an item only when v2 ≥ .5v1. Agent 3
is never allocated an item as the threshold for agent 3 is max(.5v1, v2) > v3.

The rebate function is linear when in addition to allocation, the position
of .5v1 and .5v2 relative to v3 is determined. Taking v1 = 1 we can represent
this on a 2-dimensional graph (Figure 5). The space is divided into 5 regions,
with each region having a linear rebate function and a fixed allocation. To
make sure the constraints hold for all {v ∈ V | v1 ≥ v2 ≥ v3}, we just need
to enforce each region’s constraints at its extreme points. For example, the
extreme points of the right bottom region after adding v1 = 1 as the first
component are (1,.5,0), (1,.5,.25), (1,1,.5), (1,1,0).
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max
a,b∈Rn−1,r∈R

r

∀j ∈ {p . . .m+ 1}, v ∈ Vj,>
j∑
i=1

vi −
p∑
i=1

kvp+1 −
j∑

i=p+1

kvp +
n∑
i=1

h(v−i; a, b) ≥ r
m∑
i=1

vi

n∑
i=1

h(v−i; a, b) ≤
p∑
i=1

kvp+1 +
j∑

i=p+1

kvp

h(v−i; a, b) ≥ 0 ∀i
∀j ∈ {p . . .m}, v ∈ Vj,<

j∑
i=1

vi −
p∑
i=1

vm+1 −
j∑

i=p+1

kvp +
n∑
i=1

h(v−i; a, b) ≥ r
m∑
i=1

vi

n∑
i=1

h(v−i; a, b) ≤
p∑
i=1

vm+1 +
j∑

i=p+1

kvp

h(v−i; a, b) ≥ 0 ∀i

Figure 4: Linear program with constraints grouped by regions Vj,> and Vj,<.

4. Numerical Results

We find mechanisms for different values of n and m using the computational
procedure described in Figure 2. The class of threshold functions we consider
is given by all pairs (k, p) where k takes values in {0, .025, .05, . . . , .975} and
p in {1, 2, . . . ,m− 1}. We used CPLEX 11.2.0 as a linear program solver.

Figure 6 illustrates the results we generate for each setting of n, m, and
p. The value for the parameter k is varied along the horizontal axis. For each
value of k, the corresponding threshold function is τ = max(kwp, wm), and
we can solve the linear program in Figure 4 to find an optimal rebate function
hkp. The social welfare ratio of each mechanism (τkp, hkp) is plotted for the
corresponding k value. We refer to the resulting graph as a performance
curve. We scan the values of k for the one that has the highest ratio. Figure 6
illustrates a typical graph one can construct given n, m, and p as input. This
graph is for the allocation problem with n = 6 agents and m = 5 items when
considering thresholds that destroy at most one item (p = 4). The best ratio
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Figure 5: (v1 = 1) Regions where the number of allocated items remains constant and
the rebate function is linear for 3 agents and 2 items. Each region is labeled with the
coefficients used in the rebate function for each agent, e.g. (b,a,a) means that the rebate
functions for agents 1,2, and 3 are bv−1, av−2, and av−3 respectively. One item is allocated
to the left of the vertical line v2 = k and two items to the right.

is achieved at k = .175. Notice that the shape of the curve suggests there
is only one peak. We try other values of k around .175 to find the peak
at k = 1

6
. In all of our results we noticed that the performance curve as a

function of k is single-peaked. This observation makes it easy to search for
the optimal k computationally.

Figure 6: Performance curve for the allocation problem with 6 agents and 5 items when
at least 4 items are allocated (p = 4).

For any fixed values of n and m we found that a mechanism with p set to
m − 1 achieves the highest ratio. This setting of p means that at most one

15



Figure 7: Performance curves for the allocation problem with 10 agents and 9 agents for
different values of p

item is destroyed. This result is consistent with the one obtained by Guo and
Conitzer Guo and Conitzer (2008) for randomized VCG mechanisms. They
find that the best mechanism randomizes between destroying one item and
not destroying any items. The performance curves for different values of p
are shown in Figure 7. Notice that the highest ratio is obtained on the graph
for p = m− 1 = 8 (at k = .1).

The mechanisms we find provide the most improvement when the number
of items is close to the number of agents. Our ratio gets closer to the VCG
ratio as the number of items gets smaller and approximately around m = n

2

the ratios and the mechanisms coincide. Figure 8 shows this trend for 10
agents and varying number of items. Also plotted are the ratios achieved
by the best VCG mechanism as well as the ratio achieved by the mecha-
nism that first destroys a fixed number of items and then applies an optimal
VCG mechanism (see deterministic burning mechanism in Guo and Conitzer
(2008)). All mechanisms coincide when the number of items is 4 or fewer.

5. Analytical Results

After analyzing mechanisms obtained numerically for various values of n and
m, we noticed a pattern and derived a simple mechanism parameterized by n
and m. We show that this mechanism, termed SimpleDestroy (SD), achieves

the ratio of at least 1 − (n−m+1
2 )

(n
2)

, which for any m ≥ .555n is at least 0.8

asymptotically; moreover, when m is close to n, the ratio approaches 1.
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Figure 8: Performance of various mechanisms as a function of the number of items.

5.1. The SimpleDestroy mechanism

The SD mechanism is defined in Figure 9. Note that it satisfies Assumptions 1
and 2 and is equivalently determined by the parameters p = m− 1, k = n−m

n

and the coefficients a = (0, . . . , 0), b = (0, . . . , 0,−k, 1).
Intuitively, the mechanism is specified in two cases based on the amount

of payment collected from the allocated agents before rebates. If the collected
amount is small relative to the social welfare, then there are no rebates. This
case occurs when the threshold is a fraction of the value of the last agent who
is guaranteed to be allocated: τ(w) = kwm−1. On the other hand, when the
threshold is above kwm−1, the mechanism makes sure enough redistribution
occurs if a significant portion of welfare is collected.

τ(w) = max {kwm−1 ; wm}

h(w) =

{
0 if τ(w) = kwm−1

wm − kwm−1 if τ(w) = wm

where k =
n−m
n

.

Figure 9: The SimpleDestroy Mechanism.

The next theorem proves that the SD mechanism is valid and shows good
performance.
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Theorem 2. The SimpleDestroy mechanism is individually rational, subsidy–

free, and achieves the ratio of at least 1− (n−m+1
2 )

(n
2)

.

Proof First note, that the rebate function is nonnegative, as its value is dif-
ferent from 0 only if wm > n−m

n
wm−1, in which case h(w) = wm− n−m

n
wm−1 >

0. So, individual rationality always holds.
The threshold function τ(w) = max

{
n−m
n
wm−1 ; wm

}
allows two alloca-

tions: agents 1 . . . (m − 1) are allocated when vm < n−m
n
vm−1 and agents

1 . . .m are allocated otherwise. We prove for each case separately.

(I) Assume vm ≥ n−m
n
vm−1, that is, m items are allocated. This also

defines the threshold and the rebates to agents i = m + 1, . . . , n for
which (v−i)m = vm and (v−i)m−1 = vm−1, and hence τ(v−i) = vm and
h(v−i) = vm − n−m

n
vm−1. For agents i = 1, . . . ,m, there are three

possibilities as follows.

(Ia) If vm+1 ≥ n−m
n
vm−1, then also vm+1 ≥ n−m

n
vm, and thus for all

i = 1, . . . ,m we have τ(v−i) = vm+1. The rebates are given by
h(v−m) = vm+1 − n−m

n
vm−1 and h(v−j) = vm+1 − n−m

n
vm for j =

1, . . . ,m− 1. Thereby, in this case we have

n∑
i=1

h(v−i)−
m∑
i=1

τ(v−i)

=
[
(m− 1)

(
vm+1 −

n−m
n

vm

)
+
(
vm+1 −

n−m
n

vm−1

)
+(n−m)

(
vm −

n−m
n

vm−1

)]
−mvm+1

=
(n−m)(n−m+ 1)

n
(vm − vm−1) ≤ 0,

and so the SD mechanism is subsidy-free. The ratio is bounded
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as follows:

rSD(n,m) =
∑m

i=1 vi +
∑n

i=1 h(v−i)−
∑m

i=1 τ(v−i)∑m
i=1 vi

=
∑m

i=1 vi + (n−m)(n−m+1)
n (vm − vm−1)∑m
i=1 vi

= 1 +
(n−m)(n−m+ 1) (vm − vm−1)

n
∑m

i=1 vi

≥ 1 +
(n−m)(n−m+ 1)

(
n−m
n vm−1 − vm−1

)
n
∑m

i=1 vi

= 1− (n−m)(n−m+ 1)mvm−1

n2
∑m

i=1 vi
≥ 1− (n−m)(n−m+ 1)m

n2
[
(m− 1) + n−m

n

]
= 1− (n−m)(n−m+ 1)

n(n− 1)
= 1−

(
n−m+1

2

)(
n
2

) ,

where the inequalities follow from vm ≥ n−m
n
vm−1 and vj ≥

vm−1 ≥ 0 for j = 1, . . . ,m− 1.

(Ib) If n−m
n
vm−1 > vm+1 ≥ n−m

n
vm, then τ(v−m) = n−m

n
vm−1 and

h(v−m) = 0. For agents i = 1, . . . ,m − 1 we have τ(v−i) = vm+1

and h(v−j) = vm+1 − n−m
n
vm, as before. In this case,

n∑
i=1

h(v−i)−
m∑
i=1

τ(v−i)

=
[
(m− 1)

(
vm+1 −

n−m
n

vm

)
+ (n−m)

(
vm −

n−m
n

vm−1

)]
−
[
(m− 1)vm+1 +

n−m
n

vm−1

]
=

(n−m)(n−m+ 1)
n

(vm − vm−1) ≤ 0,

as required by the no–subsidy constraint. The bound on the ratio
is achieved in the same way as in the previous case.

(Ic) Finally, if n−m
n
vm−1 ≥ n−m

n
vm ≥ vm+1 (with at least one inequality

being strict), then all agents i = 1, . . . ,m get zero rebates, and
the thresholds are τ(v−m) = n−m

n
vm−1 and τ(v−j) = n−m

n
vm for
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j = 1, . . . ,m− 1. Now,

n∑
i=1

h(v−i)−
m∑
i=1

τ(v−i)

= (n−m)
(
vm −

n−m
n

vm−1

)
−
[
(m− 1)

n−m
n

vm +
n−m
n

vm−1

]
=

(n−m)(n−m+ 1)
n

(vm − vm−1) ≤ 0,

so the no–subsidy holds. The ratio bound follows as in the pre-
vious case.

(II) Assume vm < n−m
n
vm−1, that is, m − 1 items are allocated. This also

implies vm+1 <
n−m
n
vm−1, and so for all agents i = m, . . . , n we have

τ(v−i) = n−m
n
vm−1 and h(v−i) = 0. For agents i = 1, . . . ,m − 1, there

are two possibilities as follows.

(IIa) If vm+1 ≥ n−m
n
vm, then τ(v−i) = vm+1 and h(v−i) = vm+1− n−m

n
vm

for all i = 1, . . . ,m− 1. Thus, in this case we have

n∑
i=1

h(v−i)−
m−1∑
i=1

τ(v−i)

= (m− 1)
(
vm+1 −

n−m
n

vm

)
− (m− 1)vm+1 = −(m− 1)(n−m)

n
vm ≤ 0,

and so the SD mechanism is subsidy-free. The ratio is bounded
as follows:

rSD(n,m) =
∑m−1

i=1 vi +
∑n

i=1 h(v−i)−
∑m−1

i=1 τ(v−i)∑m
i=1 vi

=
∑m−1

i=1 vi − (m−1)(n−m)
n vm∑m

i=1 vi
=
∑m

i=1 vi −
(m−1)(n−m)

n vm − vm∑m
i=1 vi

= 1− m(n−m+ 1)vm
n
∑m

i=1 vi
> 1− m(n−m+ 1)

n
(

(m− 1) n
n−m + 1

)
= 1− (n−m)(n−m+ 1)

n(n− 1)
= 1−

(
n−m+1

2

)(
n
2

) ,

where the inequality is implied by vi ≥ vm−1 >
n

n−mvm ≥ 0 for
i = 1, . . . ,m− 1.
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(IIb) If vm+1 <
n−m
n
vm, then τ(v−i) = n−m

n
vm and h(v−i) = 0 for all

i = 1, . . . ,m− 1. In this case,

n∑
i=1

h(v−i)−
m−1∑
i=1

τ(v−i)

= 0− (m− 1)
n−m
n

vm = −(m− 1)(n−m)
n

vm ≤ 0,

so the no–subsidy holds, and the ratio bound follows as before.

The proof is now complete. �

Recall that the ratio of the optimal VCG mechanism is close to 1 when
the number of items is small. However, it is not difficult to check that it
decreases as the number of items increases, and reaches 0 once the number of
items is as high as it can be: one fewer than the number of agents. Indeed,
this ratio, derived by Moulin (2009) and Guo and Conitzer (2009), is

rVCG(n,m) = 1−
(
n−1
m

)∑n−1
j=m

(
n−1
j

)
On the other hand, as shown above, the ratio of SimpleDestroy increases with
the number of items. For each n, there exists a unique integer m∗ < n such
that SimpleDestroy overtakes the optimal VCG mechanism, whenever there
are at least m∗ items to allocate. While there is no simple closed-form expres-
sion of m∗ as a function of n, it is simple enough to compute it numerically
for specific values of n, using the expressions of rVCG and rSD. We observe
that m∗ seems to always fall in the neighborhood of 1/2 (see Figure 10).
SimpleDestroy performs best when the number of items is the largest, i.e.
when the optimal VCG mechanism performs the worst. This motivates the
definition of the hybrid mechanism, which uses the optimal VCG mechanism
when the number of items is less than m∗ and SimpleDestroy otherwise.

We now study the limit case when both m and n are large. The purpose
of this asymptotic analysis is to better understand how SimpleDestroy and
VCG compare, and in which circumstances to employ one or the other in
the hybrid mechanism. Consider two increasing sequences (nq) and (mq) of
positive integers such that mq < nq for all q, the number nq → ∞ when
q → ∞, and the sequence (mq

nq
) converges to some α ∈]0, 1[ (thus to be

interpreted as the maximal percentage of the population that could receive
an item).
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(a) n = 10 (b) n = 20 (c) n = 50

Figure 10: Performance of optimal VCG with Redistribution and SimpleDestroy mecha-
nisms.

Proposition 1.

1.

rVCG(α) := lim
q→∞

rVCG(nq,mq) =

{
1 α ≤ 1/2
1−α
α

α > 1/2

(see Moulin (2009), Theorem 3).
2. rSD(α) := limq→∞ r

SD(nq,mq) = 2α− α2.
3. The asymptotically best hybrid mechanism is obtained by choosing m∗ ∼

0.555n. It guarantees a ratio of at least 0.8 for any α.

Proof Note that

rSD(n,m) = 1− (n−m)(n−m+ 1)

n(n− 1)
=

2(m− 1)

n− 1
− m(m− 1)

n(n− 1)

Hence,

lim
q→∞

rSD(nq,mq) = lim
q→∞

(
2(mq − 1)

nq − 1
− mq(mq − 1)

nq(nq − 1)

)
= 2α− α2

The asymptotically best hybrid mechanism and its associated guaranteed
ratio are then obtained by solving the equation 1−m∗

m∗
= 2m∗ − (m∗)2. �

Notice that rSD(·) is non-negative and monotonically increasing for α
between 0 and 1; moreover, it is concave (quadratic in α), and so the ratio
becomes quickly higher for relatively low α’s. The function rVCG(·), on the
other hand, is monotonically decreasing and convex when α > 1/2, implying
that the ratio becomes quickly lower for α’s larger than 1/2. For instance, if
there are enough items to serve 75% of the population, then SimpleDestroy
asymptotically guarantees the ratio of 15

16
, while the optimal VCG mechanism

asymptotically guarantees the ratio of only 1/3.
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6. Discussion

Allocative efficiency of VCG mechanisms comes in conflict with social welfare
in a basic allocation model we consider—a lot of money may need to be burnt
to maintain strategy-proofness, especially when the proportion of allocated
agents is high. In particular, the social welfare is lost completely when there
are enough items for all but one agent, and all agents have the same value
for consuming an item. In this case, the VCG payment equals the value, and
no redistribution is possible (Moulin, 2009; Guo and Conitzer, 2009).

It turns out that a small departure from efficiency allows to recover most
of the loss. Specifically, this paper presents the SimpleDestroy mechanism
that sometimes does not allocate to the last agent who would be allocated
under an efficient mechanism, and guarantees a high level of social welfare
when the number of items is at least half the number of agents. In contrast
to efficient mechanisms, the welfare guaranteed by this mechanism increases
with the percentage of allocated agents, and rapidly goes to 1 as the number
of items approaches the number agents. Furthermore, it follows that a hy-
brid mechanism applying VCG for m < .555n and SimpleDestroy otherwise,
guarantees a high level of social welfare (asymptotic ratio of at least 0.8) for
all allocation instances.

Our results are guided by an algorithmic procedure that exploits linear-
ity inherent in the model. Specifically, we restrict attention to a class of
mechanisms where optimization can be performed via linear programming,
and numerically find mechanisms which are optimal within this restricted
class.12 In many cases, these mechanisms guarantee social welfare which is
close to the total social welfare, and thus no significant improvement is pos-
sible. However, they are not generally optimal. For instance, for the problem
with 3 agents and 2 items we were able to find the following provably optimal

12Similar methodology was used in (Guo and Conitzer, 2010a) to derive optimal pay-
ments when free items are efficiently allocated. More generally, algorithmic approaches
to mechanism design problems are considered in (Conitzer and Sandholm, 2002; Guo and
Conitzer, 2010a).
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mechanism13:

τ(w) = max

(
1

4
(w1 + w2), w2

)

h(w) =


2
32
w2 if 1

9
w1 ≥ w2

−10
32
w1 + 11

32
w2 if 1

3
w1 ≥ w2 ≥ 1

9
w1

− 4
32
w1 + 20

32
w2 otherwise

This mechanism guarantees the ratio of .75, which is higher than what can
be obtained for 3 agents and 2 items by the mechanisms within the restricted
class we considered. The challenge is then to find a general mechanism that
is provably optimal for any number of items and agents. A few simpler
questions will probably need to be answered along the way: Is the natural
property that if an agent with value vi is allocated than all agents with
values above vi are also allocated, consistent with an optimal mechanism?
Is destroying more than one item ever beneficial? Another interesting open
question is whether a broader class of mechanisms would provide a significant
asymptotic improvement for general problem instances.

References

Bailey, M.J., 1997. The demand revealing process: To distribute the surplus.
Public Choice 91, 107–26.

Cavallo, R., 2006. Optimal decision-making with minimal waste: Strate-
gyproof redistribution of vcg payments, in: AAMAS’06, Hakodate, Japan.

Conitzer, V., Sandholm, T., 2002. Complexity of mechanism design, in: UAI,
pp. 103–110.

Faltings, B., 2005. A Budget-balanced, Incentive-compatible Scheme for
Social Choice, in: Faratin, P., Rodriguez-Aguilar, J.A. (Eds.), Agent-
Mediated Electronic Commerce VI. Springer. volume 3435, pp. 30–43.

Green, J.R., Laffont, J.J., 1979. Incentives in public decision-making. North
Holland, New York.

13The optimality proof of this mechanism can be found in Naroditskiy (2009).

24



Guo, M., Conitzer, V., 2008. Better redistribution with inefficient allocation
in multi-unit auctions with unit demand, in: EC’08, pp. 210–219.

Guo, M., Conitzer, V., 2009. Worst-case optimal redistribution of vcg pay-
ments in multi-unit auctions. Games and Economic Behavior 67, 69 –
98.

Guo, M., Conitzer, V., 2010a. Computationally feasible automated mecha-
nism design: General approach and case studies, in: AAAI.

Guo, M., Conitzer, V., 2010b. Optimal-in-expectation redistribution mecha-
nisms. Artif. Intell. 174, 363–381.

Hartline, J.D., Roughgarden, T., 2008. Optimal mechanism design and
money burning, in: STOC, pp. 75–84.

Moulin, H., 2009. Almost budget-balanced vcg mechanisms to assign multiple
objects. Journal of Economic Theory 144, 96–119.

Moulin, H., Shenker, S., 2001. Strategyproof sharing of submodular costs:
budget balance versus efficiency. Economic Theory 18, 511–533.

Naroditskiy, V., 2009. Select Problems at the Intersection of Computer Sci-
ence and Economics. Ph.D. thesis. Brown University.

Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V., 2007. Algorithmic
Game Theory. Cambridge University Press, New York, NY, USA.

Porter, R., Shoham, Y., Tennenholtz, M., 2004. Fair imposition. Journal of
Economic Theory 118, 209 – 228.

25


