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Abstract

This paper examines ways to extend egalitarian notions of fairness

to mechanism design. It is shown that the classic properties of con-

strained efficiency and monotonicity with respect to feasible options

become incompatible, even in quasi-linear settings. An interim egali-

tarian criterion is defined and axiomatically characterized. It is applied

to find “fair outcomes” in classical examples of mechanism design, such

as cost sharing and bilateral trade. Combined with ex-ante utilitari-

anism, the criterion characterizes Harsanyi and Selten’s (1972) interim

Nash product. Two alternative egalitarian criteria are proposed to il-

lustrate how incomplete information creates room for debate as to what

is socially desirable.
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1. INTRODUCTION

Developments in the theory of mechanism design, since its origin in the sev-

enties, have greatly improved our understanding of what is feasible in envi-

ronments involving agents that hold private information. Yet little effort has

been devoted to the discussion of socially desirable selection criteria, and the

computation of incentive compatible mechanisms meeting those criteria in ap-

plications. In other words, extending the theory of social choice so as to make

it applicable in mechanism design remains a challenging topic to be studied.

The present paper makes some progress in that direction, with a focus on the

egalitarian principle.

As a starting point, consider a classical social choice problem of complete

information. Assume for simplicity that utilities are transferable in a weak

sense: for any feasible utility profile that is individually rational, and any

agent i, there exists an alternative feasible utility profile that makes i bet-

ter off. Egalitarianism in that case means picking the unique feasible utility

profile that is Pareto efficient and equalizes the participants’ utilities. Kalai

(1977) shows that this criterion is the only to satisfy the axioms of Pareto effi-

ciency, anonymity and monotonicity. Pareto efficiency means that there is no

waste, in that all the social surplus has been distributed. Anonymity requires

that the selection criterion does not discriminate among agents based on their

identity. Monotonicity means that no member of the society should be worse

off when more collective decisions are available. In Section 3, I show that

straightforward extensions of the Monotonicity and Efficiency criteria become

incompatible in the more general context of mechanism design, even when

utilities are fully transferable. This incompatibility will be shown to be due to

the combined presence of incomplete information and incentive constraints.

In Section 4, I define a selection criterion that extends egalitarianism so as

to be applicable in mechanism design, and provide a partial axiomatic charac-

terization in terms of a sensible weakening of the monotonicity property that

restricts the circumstances under which monotonicity applies. Let’s take the

point of view of a mechanism designer (e.g. benevolent social planner or im-

partial arbitrator). He ignores the agents’ information, encoded as usual by

1



types in the sense of Harsanyi (1967-68). To have as many options as possible

to choose from, while guaranteeing that agents report their information truth-

fully, he must restrict attention to incentive compatible direct mechanisms

(classical revelation principle). For each such mechanism and each profile of

types, he can compute the interim utility that each agent would experience

should that mechanism be implemented and should these types happen to be

the correct ones. A mechanism fulfills the interim egalitarian criterion if it is

constrained efficient in the sense of (interim) incentive efficiency (Holmström

and Myerson (1983)), and all agents experience the same interim utilities in-

dependently of what the true information state might be. Not all mechanism

design problems admit a mechanism that fulfills the interim egalitarian crite-

rion. Those problems that do admit such a mechanism will be called simple.

In Section 4, I introduce a list of axioms that are compatible with incentive

efficiency and the weaker version of monotonicity on the set of all mechanism

design problems. In addition, any solution satisfying these properties picks

mechanisms that fulfill the interim egalitarian criterion in simple problems

(see Theorem 2).

While I will continue interpreting social choice functions as selection cri-

teria for uninformed mechanism designers throughout the paper, the interim

egalitarian criterion and the underlying axioms also admit alternative interpre-

tations in the absence of such third parties. The interim egalitarian criterion

can indeed be seen alternatively as maximizing the expected-utility level that

is commonly known to be reached by everyone. As for underlying axioms,

Holmström and Myerson (1983) already observed, for instance, that incentive

efficiency can be interpreted as an impossibility to find an alternative mecha-

nism that is commonly known to bring higher expected utilities to all individu-

als. Monotonicity requires in that alternative interpretation of the model that

it must be common knowledge that all individuals’ expected utilities increase

when more collective decisions become available.

Harsanyi (1963) (see also Shapley (1969) and Yaari (1981)) highlighted an

intriguing relationship between the maximization of the Nash’s (1950) product,

on the one hand, and the egalitarian and utilitarian principles, on the other
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hand, in classical problems of complete information. Indeed, in any problem,

there is a unique way of rescaling individual utilities so that the egalitarian

and utilitarian principles coincide, and this coincidence happens exactly at the

Nash solution. In Theorem 3, I extend this result by showing that there is

a unique way of rescaling interim utilities in any mechanism design problem

(not just simple ones) so that the interim egalitarian criterion and ex ante util-

itarianism (shown to be an appropriate version of utilitarianism at the interim

stage by Nehring (2004)) coincide. The resulting solution amounts to select-

ing the incentive compatible mechanism that is maximal according to Harsanyi

and Selten’s (1972) weighted Nash product (see Myerson (1979)). While My-

erson (1984a) provided arguments against this solution when interpreted as

a bargaining solution, the present result suggests that the maximization of

Harsanyi and Selten’s (1972) weighted Nash product may be more meaningful

for social choice.

Section 6 is devoted to the computation of mechanisms that meet the in-

terim egalitarian criterion in classical quasi-linear examples (sharing the cost

of production of a public good, and determining the fair price in a bilateral

trade problem). I conclude the paper by introducing and discussing by means

of examples two other extensions of the egalitarian principle, one based on

what the individuals themselves perceive as fair, and one based on a procedu-

ral approach to justice (see Section 7). The purpose of this last Section is to

illustrate the richness of the topic of social choice under incomplete informa-

tion, on which more work is needed.

Related Literature

Welfare economics under risk with symmetric uncertainty has been researched

since Harsanyi’s (1955) aggregation theorem. Ex-ante utilitarianism, as advo-

cated in that work, has been criticized for its indifference to the distribution

of utilities. Ex-ante egalitarianism is the first alternative to have been studied

(advocated by Diamond (1967), Epstein and Segal (1992), among others). In

those models, a state of nature will be revealed at some future date (e.g. who

will suffer an accidental loss), and contingent contracts (e.g. insurance) are be-

ing selected at a time when individuals hold some prior beliefs on the relative
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likelihood of those states, but do not know which will occur. The model studied

in the present paper is more general in that individuals may be asymmetrically

informed, and it may be impossible to write contracts contingent on the state

of nature, e.g. because it is not verifiable in court, or because it will never

be disclosed (encoding individuals’ preferences, for instance). The symmetric

uncertainty model will thus be a special case, in which case the interim egali-

tarian principle boils down to ex-ante egalitarianism. It is worth noting that

the mere presence of risk has already generated a rich literature on conflict-

ing interpretations of the egalitarian principle and of social choice in general

(see e.g. Fleurbaye (2010) and Grant et al. (2010)), particularly regarding

a tension between ex-ante efficiency and ex-post social comparisons. Similar

arguments should stimulate further research under asymmetric information as

well. Section 7 highlights how the presence of asymmetric information leads

to new conceptual questions that are likely to further enrich the debate on

egalitarianism in mechanism design.

The only paper studying social choice criteria under incomplete informa-

tion from an axiomatic perspective is Nehring (2004). He studies interim social

welfare orderings that allow to compare profiles of ex-post utilities. General-

izing Harsanyi (1955), he shows that two axioms of consistency, one with the

interim Pareto criterion and the other with uniform ex-post utilitarian com-

parisons, are compatible if and only if the individuals’ beliefs can be derived

from a common prior. In addition, the only interim social welfare ordering

that satisfies these two axioms when a common prior exists, is the ex-ante

utilitarian criterion. I show in de Clippel (2010) that Nehring’s methodology

– extending to the interim stage classical social welfare orderings by combining

ex-post arguments with the interim Pareto criterion – essentially works only

for the utilitarian criterion. Indeed, his two axioms become incompatible for

most common priors once the utilitarian criterion is replaced by any other

social welfare ordering that satisfies the strict Pigou-Dalton transfer principle

(as does the egalitarian principle, for instance).

There is a small literature on axiomatic bargaining under asymmetric in-

formation that relates to the present paper. The model studied in the present
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paper is inspired from Myerson’s (1984a) bargaining model. The virtual utility

construction he elaborated in Myerson (1983, 1984a, and 1984b) will also prove

useful to establish Theorem 2 below. As described earlier in this Introduc-

tion, the social choice criterion I derive by reconciling interim egalitarian and

utilitarian criteria coincides with Myerson’s (1979) variant of the bargaining

solution proposed by Harsanyi and Selten (1972). Weidner (1992) reconstructs

Harsanyi and Selten’s characterization result of the weighted Nash product on

Myerson’s domain, and argues that their result then holds only when the play-

ers’ types are independently distributed, an assumption that is not required

in Theorem 3. The criticisms raised by Myerson (1984a) against Harsanyi and

Selten (1972) and Myerson (1979) will be revisited in Section 5 in terms of

social choice instead of bargaining.

There exists a slightly more extensive literature whose objective is to com-

pute the optimal mechanism under a given social choice criterion, without

discussing the normative appeal of the criterion itself. For instance, Myerson

and Satterthwaite’s (1983) apply the ex-ante utilitarian criterion to a bilateral

trade problem. There is also a more recent literature that is developing at the

intersection of computer science and economics that looks for strategy-proof

mechanisms that maximize a worst-case scenario index, guaranteeing for in-

stance a minimal percentage of the maximal total surplus in every possible

realization of the types (see e.g. Guo and Conitzer (2009), Moulin (2009), de

Clippel et al. (2009), and references therein). Though intuitively appealing,

this criterion has not been axiomatically characterized yet. Another differ-

ence, of course, is that this approach is non-Bayesian. More importantly, we

see that emphasis has so far been placed on the utilitarian principle.

Ray and Ueda (1996) study the interplay between incentives and welfare

criteria from a different perspective. Collective decisions (sharing a collective

output) are taken under complete information, after individuals decide on how

much effort to perform. They show that the degree of inefficiency decreases in

the extent of egalitarianism embodied in the social welfare function.

Finally, readers are referred to a companion paper (de Clippel et al., 2010)

to see how one can apply the interim egalitarian criterion while avoiding in-
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terpresonal comparisons of utilities, by measuring utility gains endogenously

in the tradition of Pazner and Schmeidler (1978).

2. MODEL

Social choice theory has been developed mostly in the space of utilities.

Indeed, a social choice problem is a subset of RI describing the utility profiles

that can be achieved by underlying collective decisions (where I is the set

of relevant individuals). It is tempting, at first, to describe a social choice

problem under incomplete information as a collection of utility possibility sets,

one for each possible information state. Yet this information is not sufficient,

because it does not allow to keep track of incentive constraints. Indeed, the

fact that a utility vector is feasible at some type profile does not allow to

infer what would be the utility that an individual would get should he report

a different type. One must thus consider a more detailed model, as studied

under a different perspective in mechanism design.

A mechanism design problem is a sextuple S = (I,D, d∗, (Ti)i∈I , p, (ui)i∈I),

where I is the finite set of individuals, D is the set of collective decisions, d∗ ∈ D
is the status-quo, Ti is the finite set of individual i’s possible types, p ∈ ∆(T )

is the common prior determining the individuals’ beliefs (where T = ×i∈ITi),
and ui : D × T → R is individual i’s utility function, used to determine his

interim preferences via the expected utility criterion. It will be assumed for

notational convenience that ui(d
∗, t) = 0, for all t ∈ T . This is without loss of

generality if utilities are understood as representing gains over the status-quo.

I will also assume that T is the only nonempty common knowledge event.

This is without loss of generality, as the results can be applied over minimal

common knowledge events, and then merged so as to apply to the whole set

of type profiles.

A (direct) mechanism for S is a function µ : T → ∆(D). If a mechanism

µ is implemented truthfully, then individual i’s expected utility when of type

ti is given by:
Ui(µ|ti) =

∑
t−i∈T−i

p(t−i|ti)ui(µ(t), t).
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If all the other individuals report their true type, while individual i reports t′i

instead of his true type ti, then his expected utility is denoted Ui(µ, t
′
i|ti):

Ui(µ, t
′
i|ti) =

∑
t−i∈T−i

p(t−i|ti)ui(µ(t′i, t−i), t).

The mechanism µ is incentive compatible if Ui(µ|ti) ≥ Ui(µ, t
′
i|ti), for each

ti, t
′
i in Ti and each i ∈ I. The revelation principle (Myerson (1979)) implies

that any agreement that is achievable through some form of communication

can also be achieved through truth-telling in an incentive compatible direct

mechanism. Hence one may restrict attention to those mechanisms without

loss of generality.

An incentive compatible mechanism µ is interim individually rational if

Ui(µ|ti) ≥ 0, for all ti ∈ Ti and all i ∈ I. A mechanism is feasible if it is both

incentive compatible and interim individually rational. The set of feasible

mechanisms will be denoted F(S).

Let U(M) be the set of interim utilities that can be achieved via incentive

compatible mechanisms that belong to a set M:

U(M) = {u(µ)|µ ∈M},

where u(µ) = (Ui(µ|ti))ti∈Ti,i∈I . It is easy to check that U(F(S)) is a convex

set, as first observed by Myerson (1979). For notational simplicity, I will

restrict attention to mechanism design problems for which there exists u ∈
U(F(S)) such that u >> 0, and for which U(F(S)) is compact. This last

assumption is true whenever D is finite and in usual applications that involve

a continuum of collective decisions, but it is possible to construct mathematical

examples that would violate it.

A solution is a correpondence Σ that associates a nonempty set of feasible

mechanisms to each mechanism design problem: Σ(S) ⊆ F(S), for each S.

Even though correspondences are allowed, solutions are assumed to be essen-

tially single-valued, in the sense that all the individuals must be indifferent

(whatever their private information) between any two mechanisms that belong
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to the solution of any problem S = (I,D, d∗(Ti)i∈I , p, (ui)i∈I):

(∀µ, µ′ ∈ Σ(S))(∀i ∈ I)(∀ti ∈ Ti) : Ui(µ|ti) = Ui(µ
′|ti). (1)

A mechanism design problem S = (I,D, d∗, (Ti)i∈I , p, (ui)i∈I) is quasi-linear

if there exist a set D̂ and functions ûi : D̂ × T → R (one for each i ∈ I) such

that D = D̂ × RI and ui((d̂,m), t) = ûi(d̂, t) +mi, for all (d̂,m) ∈ D̂ × RI .

3. MONOTONICITY AND INCENTIVE EFFICIENCY

Monotonicity is a key property of the egalitarian solution (Kalai (1977)).

No member of the society should be worse off (whatever his or her private infor-

mation) when more collective decisions are available. Monotonicity properties

of this type have a long tradition in the theories of social choice, distribu-

tive justice, and bargaining. First briefly discussed in the books of Luce and

Raiffa (1957, pages 133 and 134) and Owen (1968), they have been system-

atically studied since then under the assumption of complete information, cf.

Kalai and Smorodinsky (1975), Kalai (1977), Thomson and Myerson (1980),

Kalai and Samet (1985), Young (1985a, 85b), Moulin and Thomson (1988),

and Moulin (1992), to cite only a few references that illustrate the variety of

environments where they have been studied.

In quasi-linear environments of complete information, selecting the collec-

tive decision that maximizes the sum of the gains and designing monetary com-

pensations so as to equalize those gains across individuals, is indeed monotonic

and consistent with the Pareto criterion. The purpose of the present section is

to show that these two properties may become incompatible in the combined

presence of incomplete information and incentive constraints.

The natural extension of the Pareto criterion was proposed by Holmström

and Myerson (1983).

Incentive Efficiency (I-EFF) Let S be a mechanism design problem, and

let µ ∈ Σ(S). Then there does not exist a mechanism µ̂ ∈ F(S) such that

Ui(µ̂|ti) ≥ Ui(µ|ti), for each ti ∈ Ti, and each i ∈ I, with at least one of the

inequalities being strict.

I-EFF requires the solution to systematically exhaust the benefit of coopera-
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tion at the time of agreeing. The set of interim utilities associated to incentive

efficient mechanisms will be denoted by U eff (S):

U eff (S) = {u ∈ U(F(S))| 6 ∃u′ ∈ U(F(S)) \ {u} : u′ ≥ u}.

There is also an obvious way to extend the monotonicity property to prob-

lems of incomplete information.

Monotonicity (MON) Let S and S ′ be two mechanism design problems. Sup-

pose that S ′ differs from S only in that more collective decisions are available:

I = I ′, D ⊆ D′, Ti = T ′i , and ui(d, t) = u′i(d, t), for each i ∈ I, each d ∈ D,

and each t ∈ T . If µ ∈ Σ(S) and µ′ ∈ Σ(S ′), then Ui(µ
′|ti) ≥ Ui(µ|ti), for

each ti ∈ Ti, and each i ∈ I.

Theorem 1 There is no solution that satisfies both I-EFF and MON, even

on the restricted class of quasi-linear mechanism design problems.

Proof: The proof goes by way of example. Consider a mechanism design

problem with two individuals,1 1 and 2, that can be of two types, L or H.

Each individual knows only his own type, and believes that the two types of the

other individual are equally likely. Each individual has up to 10 hours available

to work, and his productivity per hour is 1 if his type is L, and 2 if his type is

H. Allowing for any kind of transfers and free disposal, the set of decisions is

thus D = {(α1, α2,m1,m2) ∈ [0, 10]2×R2|m1 +m2 ≤ 0}. The utility functions

are given by the following expression: ui((α,m), t) = πi(ti)αi + mi, for each

(α,m) ∈ D, each i ∈ {1, 2} and ti ∈ {L,H}, with the convention πi(L) = 1 and

πi(H) = 2, for each i ∈ {1, 2}. One may think of each individual cultivating

a similar field, their payoffs being the quantity produced on their own field,

which depends on their productivity, modified by any kind of monetary subsidy

and taxes. We will assume that d∗ = 0.

Let’s consider now a feasible mechanism2 (α,m) that determines a decision

1The example extends in a straightforward way to accomodate any number of individuals,
but at the cost of heavier notations. The qualitative results remain unchanged.

2To keep notations lighter, the same letters are used to denote a collective decision, and
the mechanism that selects a collective decisions as a function of the reported types.
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in D as a function of the individuals’ reports.3 The incentive constraints faced

by the first individual can be written as follows:

m̄1(H)− m̄1(L) ≤ ᾱ1(L)− ᾱ1(H) ≤ m̄1(H)− m̄1(L)

2
(2)

where ᾱ1(L) (resp. ᾱ1(H)) is the average quantity of time the first individual

thinks he will have to work given the mechanism when of type L (resp. H),

and m̄1(L) (resp. m̄1(H)) is the average quantity of money the first individual

thinks he will receive given the mechanism when of type L (resp. H), i.e.

ᾱ1(L) =
1

2
(α1(L,L) + α1(L,H)) and ᾱ1(H) =

1

2
(α1(H,L) + α1(H,H)),

m̄1(L) =
1

2
(m1(L,L) +m1(L,H)) and m̄1(H) =

1

2
(m1(H,L) +m1(H,H)).

Equation (2) implies that m̄1(H) ≤ m̄1(L) and ᾱ1(L) ≤ ᾱ1(H). If the mech-

anism is incentive efficient, then it must be that ᾱ1(H) = 10. Otherwise, one

could construct another feasible mechanism that interim Pareto dominates

(α,m) by slightly increasing both ᾱ1(L) and ᾱ1(H) by a same amount, while

keeping α2 and m unchanged. Notice also that the second inequality in (2)

must be binding if (α,m) is incentive efficient. Indeed, suppose on the contrary

that the inequality is strict. Hence ᾱ1(L) < 10 (as otherwise ᾱ1(L) = ᾱ1(H),

and (2) implies that m̄1(L) = m̄1(H), which contradicts the fact that the sec-

ond inequality is strict). Now one can construct another feasible mechanism

that interim Pareto dominates (α,m) by increasing a bit ᾱ1(L), while keeping

ᾱ1(H), α2 and m unchanged. This contradicts the fact that (α,m) is incen-

tive efficient, and thereby proves that the second inequality in (2) is indeed

binding. Notice now that ᾱ1(L) must equal 10, as well. Otherwise, consider

an alternative mechanism where ᾱ1(L) is increased by a small amount ε, while

keeping ᾱ1(H) and ᾱ2 constant, and changing monetary transfers as follows:

∆m(L,L) = ∆m(L,H) = (−ε,+ε) and ∆m(H,L) = ∆m(H,H) = (+ε,−ε).
Since ᾱ1(L) < 10 and the second inequality in (2) is binding, it must be that

the first inequality in (2) is strict for the original mechanism. The change

3Utilities being linear in both time and money, there is no loss of generality in discussing
only deterministic mechanisms.
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makes lying for the first individual a bit more attractive when of a low type,

but not enough for him to actually lie if ε is small enough. The incentive

constraint remains binding when he is of a high type. As for the second in-

dividual, nothing changes for him, since he ignores the first individual’s type,

and the additional tax of ε when the first individual reports a high type is

exactly compensated by the additional subsidy of ε when the first individual

reports a low type. In terms of interim payoffs, both types of both individu-

als get at least as much with the new mechanism than with the original one,

but the first individual gets strictly more when of a high type, thereby con-

tradicting the fact that the original mechanism is incentive efficient. Hence

ᾱ1(L) = ᾱ1(H) = 10, and (2) implies m̄1(L) = m̄1(H). A similar reasoning

applies to individual 2. Hence, if a mechanism (α,m) is incentive efficient,

then there exists (x1, x2) ∈ R2 such that x1 + x2 = 0, and

Ui((α,m)|L) = 10 + xi and Ui((α,m)|H) = 20 + xi,

for i = 1, 2. Conversely, any such interim payoffs can be achieved by an

incentive compatible mechanism (α,m), where αi(t) = 10, mi(t) = xi, for

each t ∈ {L,H}2 and each i ∈ {1, 2}.
Consider now a similar problem, but where only a third field is avail-

able, with a total productivity of 3 per joint hour of work. Collective de-

cisions determine how much time each individual devotes to the field, in

which proportion to share the outpout, and possible monetary compensa-

tions. Formally,D′ = {(α′1, α′2, s1, s2,m1,m2) ∈ [0, 10]2 × [0, 1]2 × R2|s1 + s2 =

1 and m1 + m2 ≤ 0}, and the utility functions are given by the following ex-

pression: u′i((α
′, s,m), t) = 3si min{α′1, α′2}+mi, for each (α′, s,m) ∈ D′, each

i ∈ {1, 2} and ti ∈ {L,H}. The status-quo is d∗ = 0. Consider a mechanism

(α′, s,m′) that is incentive efficient. Feasibility implies that

2∑
i=1

∑
ti∈{L,H}

U ′i(α
′, s,m′|ti) =

∑
t∈{L,H}2

1

2

2∑
i=1

u′i((α
′(t), s(t),m′(t)), t) ≤ 60

Since utilities are independent of the types, incentive constraints imply that the

two types of each agent expect identical utility gains. Hence, if a mechanism
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(α′, s,m′) is incentive efficient, then there exists (x′1, x
′
2) ∈ R2 such that x′1 +

x′2 = 0, and
U ′i((α

′,m′)|L) = U ′i((α
′,m′)|H) ≤ 15 + x′i,

for i = 1, 2. The inequality must in fact be binding, since any interim payoff

profile on the right-hand side can be achieved by an incentive compatible

mechanism (α′, s,m′), where α′i(t) = 10, si(t) = 1/2, m′i(t) = x′i, for each

t ∈ {L,H}2 and each i ∈ {1, 2}.
Finally, suppose that the impartial third party can choose to allocate the

individuals’ time between the three fields:

D′′ = {(α1, α2, α
′
1, α

′
2, s1, s2,m1,m2) ∈ [0, 10]4 × [0, 1]2 × R2|

s1 + s2 = 1, α1 + α′1 ≤ 10, α2 + α′2 ≤ 10, and m1 +m2 ≤ 0}
and the utility functions are given by the following expression:

u′′i ((α, α
′, s,m), t) = πi(ti)αi + 3si min{α′1, α′2}+mi,

for each (α, α′, s,m) ∈ D′′, each i ∈ {1, 2} and ti ∈ {L,H}, with the convention

πi(L) = 1 and πi(H) = 2, for each i ∈ {1, 2}. Notice that

2∑
i=1

∑
ti∈{L,H}

U ′′i ((α, α′,m)|ti) =
∑

t∈{L,H}2

1

2

2∑
i=1

u′′i ((α(t), α′(t), s(t),m(t)), t) ≤ 65,

for each (α, α′, s,m) ∈ F(S ′′), the last equality following from the fact that

the maximal total surplus is 40 when both individuals’ type is H and is 30

otherwise. Hence there is no way to find a feasible mechanism that gives an

interim utility of at least 15 + x′1 and 15 + x′2 to the low-type individuals, and

20+x1 and 20+x2 to the high-type individuals, which contradicts MON, since

D ⊆ D′′, D′ ⊆ D′′, and both u′′i (d, t) = ui(d, t), for each i ∈ I, each d ∈ D,

and each t ∈ {L,H}2, and u′′i (d
′, t) = u′i(d

′, t), for each i ∈ I, each d′ ∈ D′,
and each t ∈ {L,H}2. �

I-EFF and MON would not be incompatible in quasi-linear environments of

incomplete information in the absence of incentive constraints (such an infor-

mational assumption is maintained in some related models of bargaining and

cooperative games, see e.g. Wilson (1978), de Clippel and Minelli (2004), de
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Clippel (2007), and Kalai and Kalai (2010)). To illustrate this point,4 suppose

for instance that the output of both individuals could be observed at no cost

in the first problem described in the proof of Theorem 1, and that contracts

could be made contingent on that observed output. Then the social planner

or the arbitrator could implement a mechanism that requires both individuals

to work for ten hours on their own field, and for the individual with a high

output to pay $10 to the individual with low output (if such a configuration

occurs). The resulting interim utilities are 15 for both types of both individ-

uals, which is also achievable in the last two problems described in the proof

of Theorem 1, and hence I-EFF and MON are compatible in that example.

Though the presence of incentive constraints is an important factor for the

incompatibility of I-EFF and MON, the presence of incomplete information,

i.e. asymmetric information at the time of making the collective choice, is also

critical. The tension between I-EFF and MON would indeed disappear if the

collective decision to be implemented at the interim stage was made at the ex-

ante stage (i.e. before the agents learn their private information). To illustrate

this point,5 notice indeed that there exists an ex-ante incentive efficient mech-

anism in each of the three problems discussed in the proof of Theorem 1 that

lead to an expected payoff of $15 to both individuals, and hence efficiency and

monotonicity are compatible, even when incentive constraints are imposed,

when considered at the ex-ante stage. Similarly, the impossibility result would

not hold in the presence of moral hazard instead of adverse selection.

Theorem 1 thus shares some similitude with Myerson and Satterthwaite

(1983), in that the incompatibility of their two properties, namely ex-post ef-

ficiency and interim individual rationality, also requires the presence of both

incentive constraints and incomplete information. Indeed, if any mechanism

could be implemented in Myerson and Satterthwaite’s example without hav-

ing to satisfy the incentive constraints, then any mechanism in Wilson’s (1978)

coarse core (which, he proved, is non-empty in even much more general ex-

change economies), is both interim individually rational and ex-post efficient

4The general argument is left to the reader.
5Again, the general argument is left to the reader.
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(because of quasi-linearity). On the other hand, the first-best can be achieved

in Myerson and Satterthwaite’s example (and many other quasi-linear envi-

ronments), even while imposing incentive constraints, if decisions are made at

the ex-ante stage (see e.g. d’Aspremont and Gérard-Varet (1979, 1982)). It

is then always possible to design some type-independent monetary transfer to

meet the (ex-ante) individual rationality constraints. The common denom-

inator between Myerson and Satterthwaite’s (1983) impossibility result and

Theorem 1 is that performing interim utility transfers across different “type-

agents” (in the sense of Harsanyi (1967-68)) may be critically impeded by the

presence of incentive constraints.

4. INTERIM EGALITARIAN CRITERION

As indicated in the Introduction, I think of an uninformed mechanism

designer (e.g. benevolent social planner or impartial arbitrator) trying to have

all individuals experience the same interim expected utility whatever the true

type profile might be, while exhausting all the surplus under the constraint that

individuals report their types truthfully. Formally, a mechanism µ satisfies the

interim egalitarian criterion if it is incentive efficient and Ui(µ|ti) = Uj(µ|tj),
for all i 6= j, and for all t ∈ T .

As we will see in applications (or as can be checked in the first problem

encountered in the proof of Theorem 1), mechanisms that pass the interim

egalitarian criterion need not always exist. A mechanism design problem is

simple if it admits at least one mechanism µ that passes the interim egalitarian

criterion and that satisfies the following additional property:

(∃λ ∈ ×i∈IRTi
++) : µ ∈ arg max

ν∈F(S)

∑
i∈I

∑
ti∈Ti

λi(ti)Ui(ν|ti).

This additional property is imposed for technical reasons that will become clear

only when introducing the concept of virtual utility in the proof of Theorem

2. Observe though that it is very weak, and can often be dispensed with.

Indeed, any mechanism that passes the interim egalitarian criterion is incentive

efficient. A standard separation argument implies that there necessarily exists

λ ∈ ×i∈IRTi
+ \ {0} such that µ ∈ arg maxν∈F(S)

∑
i∈I

∑
ti∈Ti λi(ti)Ui(ν|ti). The
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additional property is thus a restriction only in that it requires the existence

of a strictly positive λ, which is most often the case. It is always satisfied,

for instance, (and can thus be dropped from the definition of simple problem)

whenever D is finite.

I now provide a list of axioms – Restricted Monotonicity, Interim Wel-

farism, Exhaustivity, Irrelevant Splitting of a Type, Independance of Irrelevant

Alternatives, and Anonymity – that will partly justify this interim egalitarian

criterion, in that there exist solutions satisfying them on the whole domain

of mechanism design problems, and any such solution must coincide with the

interim egalitarian criterion for simple problems.

Efficiency and Monotonicity may also be incompatible under complete in-

formation when utilities are not transferable in any sense of the word. This is

known at least since Luce and Raiffa (1957). It is helpful to understand why.

Consider a first two-person problem where only one collective decision, d, is

available to replace the status-quo, and assume further that the first partici-

pant is indifferent between the alternative and the status-quo, while the second

strictly prefers the former. Efficiency will guide the social planner or the arbi-

trator in selecting the alternative over the status-quo. Consider then a second

problem that is symmetric to the first, in that only one collective decision,

d′, is available to replace the status-quo, with the property that the second

participant is indifferent between the alternative and the status-quo, while the

first strictly prefers the former. Again, efficiency will guide the social planner

or the arbitrator in selecting the alternative over the status-quo. Let then the

third problem be the union of the first two: any lottery selecting either d or d′

is feasible. Clearly, there is no way to solve uniquely that new problem so as to

make both the first individual better off than with the solution to the second

problem, and the second individual better off than with the solution to the

first problem. It has long been understood that this kind of impossibility is

due to an extreme lack of utility transferability. For instance, starting from d,

there is no alternative decision in the first problem that would allow to make

the first individual strictly better off, even if one is ready to make the second

individual worse off in any amount. A usual way to deal with this compli-
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cation is actually to avoid it altogether by restricting the class of acceptable

social choice problems. A textbook example is Moulin’s (1988, Theorem 3.2)

presentation of Kalai’s (1977, Theorem 1) axiomatic characterization of the

egalitarian solution,6 where social choice problems are assumed to satisfy a

property of “minimal transferability,”7 meaning that, at any feasible contract

that is efficient and individually rational, and for any individual i, there exists

an alternative feasible option that makes all the other individuals better off

(thereby at the expense of i).8 In particular, it rules out the possibility of

satiation.

Theorem 1 shows that restricting the class of mechanism design problems

is not anymore a practical way to resolve the incompatibility of Efficiency

and Monotonicity under incomplete information, as this incompatibility al-

ready occurs on the very restrictive class of quasi-linear mechanism design

problems (i.e. with unlimited one-to-one transferability). The reason is that

incentive constraints may lead to feasible sets of interim utilities that are non-

comprehensive (for instance, a type of an individual may beneficiate of an

“informational rent” in any incentive efficient mechanism) and with the pos-

sibility of satiation, even in the simplest quasi-linear environments. The way

asymmetric information and incentive constraints restrict what is feasible at

the interim stage makes it significantly more complicate to derive axiomatic

characterizations than when information is complete.

I will say that interim utilities are (weakly9) “transferable” at an incentive

compatible mechanism µ if for any two participants i, j, and any possible pair

of types, ti for i and tj for j, there exists an alternative incentive compatible

6To be precise, Kalai actually characterized the proportional solutions in his original
paper, but of course the egalitarian solution is the only one to be anonymous in that class.

7Kalai’s original result only required free disposal, which is weaker than the property
of minimal transferability, but at the cost of accommodating only a weak form of Pareto
efficiency, which is not very appealing, especially in social choice theory.

8Though not explicit in its name, the usual notion of transferable utility in cooperative
games (or of quasi-linearity in mechanism design) requires in addition that, starting from any
contract, utilities can be transferred at a constant rate of one to one. Minimal transferability
is thus far weaker, to a point that it is almost unrelated.

9Again, transferability here should not be confused with its narrow meaning in cooper-
ative games under complete information - cf. footnote 8.
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mechanism ν that is better than µ for i when of type ti, worse than µ for j of

type tj, and at least as good as µ for any combination of participant and type

that is different from (i, ti) and (j, tj). Formally, for all (i, j) ∈ I×I with i 6= j

and all (ti, tj) ∈ Ti × Tj that comes with positive probability (p(ti, tj) > 0),

there exists a feasible mechanism ν such that

Ui(ν|ti) > Ui(µ|ti), Uj(ν|tj) < Uj(µ|tj), and

(∀k ∈ I)(∀tk ∈ Tk) : (k, tk) 6∈ {(i, ti), (j, tj)} ⇒ Uk(ν|tk) ≥ Uk(µ|tk).

A social planner or an arbitrator may feel constrained at a mechanism where

interim utilities are not transferable because he would like to pick an alter-

native mechanism that is more favorable to individual i, when of type ti, at

the expense of individual j, when of type tj, but cannot do so because of the

incentive and feasibility constraints. In such cases, having more collective de-

cisions available may soften this constraint, and result in a mechanism that is

less favorable to individual j of type tj. This motivates the following axiom.

Restricted Monotonicity (R-MON) Let S and S ′ be two mechanism design

problem. Suppose that S ′ differs from S only in that more collective decisions

are available: I = I ′, D ⊆ D′, Ti = T ′i , and ui(d, t) = u′i(d, t), for each i ∈ I,

each d ∈ D, and each t ∈ T . Let µ ∈ Σ(S) be such that interim utilities

are transferable at µ, and let µ′ ∈ Σ(S ′). Then Ui(µ
′|ti) ≥ Ui(µ|ti), for each

ti ∈ Ti, and each i ∈ I.

R-MON corresponds to MON applied only when starting from a mechanism

at which interim utilities are transferable, and is thus weaker than MON. I am

not claiming that monotonicity should systematically be violated when adding

collective decisions to a problem whose solution is a mechanism at which in-

terim utilities are not transferable. Instead I am arguing that these are cases

where monotonicity might be problematic and less appealing. R-MON thus

remains silent in those dubious cases.

Most results in social choice under complete information, including Kalai’s,

are phrased in the space of utilities. This is sometimes referred to as the wel-

farist assumption. Following the same approach is not exactly feasible under

incomplete information, as one needs to know the underlying decisions in or-
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der to have the possibility of phrasing the incentive constraints. Yet, one can

impose an axiom in that spirit after taking these constraints into account.

Interim Welfarism (I-WELF) Let S = (I,D, d∗, (Ti)i∈I , p, (ui)i∈I) and S ′ =

(I,D′, d∗, (Ti)i∈I , p
′, (u′i)i∈I) be two mechanism design problems. If U(F(S)) =

U(F(S ′)), then U(Σ(S)) = U(Σ(S ′)).

Of course, this definition boils down to the usual notion of welfarism under

complete information, i.e. when each type set is a singleton.

The other axiom associated to the welfarist assumption requires that if a

feasible mechanism generates the same interim utilities as another mechanism

in the solution of a problem, then it also belongs to the solution of that prob-

lem.

Exhaustivity (EX) Let S = (I,D, d∗, (Ti)i∈I , p, (ui)i∈I) be a mechanism de-

sign problem. If µ ∈ Σ(S) and µ′ is a feasible mechanism such that Ui(µ
′|ti) =

Ui(µ|ti), for all ti ∈ Ti and all i ∈ I, then µ′ ∈ Σ(S).

The next axiom is similar to Harsanyi and Selten’s (1972) “Splitting Types”

(see also Axiom 6 in Weidner (1992)). Let S = (I,D, d∗, (Ti)i∈I , p, (ui)i∈I) be

a mechanism design problem, and let tj be a type of an individual j. The

mechanism design problem S ′ = (I,D, d∗, (T ′i )i∈I , p
′, (u′i)i∈I) obtained from

S by splitting type tj is defined as follows: T ′i = Ti, for all i ∈ I \ {j},
T ′j = (Tj \{tj})∪{tj1, tj2}, p′(t′) = p(t′), for all t′ ∈ T ′ such that t′j 6∈ {tj1, tj2},
p′(tj1, t−j) = p′(tj2, t−j) = p(t)/2, for all t−j ∈ T−j, u

′
i(d, t

′) = ui(d, t
′), for

all i ∈ I, all d ∈ D, and all t′ ∈ T ′ such that t′j 6∈ {tj1, tj2}, u′i(d, tj1, t−j) =

u′i(d, tj2, t−j) = ui(d, t), for all i ∈ I, all d ∈ D, and all t−j ∈ T−j. So individual

j’s types has been splitted into two sub-types that have the same information

and the same preferences as when of type tj in the original problem. As for j’s

other types, nothing has changed, and for the other individuals, they see j’s

two new subtypes half as likely as tj in the original problem, and as having the

exact same properties as tj otherwise. Such a split is thus an irrelevant change

in the way to model the situation at hand,10 and it should be inconsequential

10If a mechanism µ : T → ∆(D) is feasible for S, then µ′ : T ′ → ∆(D) is feasible for S ′,
where µ′ is defined as follows: µ′(t′) = µ(t′), for all t′ ∈ T ′ such that t′j 6∈ {tj1, tj2}, and
µ′(tj1, t−j) = µ′(tj2, t−j) = µ(t), for all t−j ∈ T−j . Conversely, if a mechanism µ′ : T ′ →
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on the solution of the problem. This is indeed the content of the following

axiom.

Irrelevant Splitting of a Type (IST) Let S = (I,D, d∗, (Ti)i∈I , p, (ui)i∈I)

be a mechanism design problem, and let S ′ be the problem derived from S by

splitting individual j’s type tj into two types tj1 and tj2. If µ ∈ Σ(S), then

µ′ ∈ Σ(S ′), where µ′(t′) = µ(t′), for all t′ ∈ T ′ such that t′j 6∈ {tj1, tj2}, and

µ′(tj1, t−j) = µ′(tj2, t−j) = µ(t), for all t−j ∈ T−j.

The next axiom captures the classical property of independence of irrele-

vant alternatives in our problems with incomplete information.

Independence of Irrelevant Alternatives (IIA) Let S and S ′ be two social

choice problem. Suppose that S ′ differs from S only in that more collective de-

cisions are available: I = I ′, D ⊆ D′, Ti = T ′i , and ui(d, t) = u′i(d, t), for each

i ∈ I, each d ∈ D, and each t ∈ T . If µ ∈ Σ(S ′) ∩ F(S), then µ ∈ Σ(S).

MON implies IIA. R-MON implies IIA only when interim utilities are trans-

ferable in the smaller problem. IIA is thus only a small addition to the list of

axioms. IIA captures a property of rationality on the part of the uninformed

third party making the collective decision. A violation of IIA would require a

strong argument to justify such behavioral irrationality. MON (or R-MON),

on the other hand, goes beyond IIA by imposing some principle of distribu-

tive justice, thereby narrowing the type of moral preference that this social

planner or arbitrator is maximizing. Here, alternative properties might be

meaningful as well, and leading to characterization of other moral preferences,

or alternative characterizations of the same moral preferences.

The final axiom considered in this paper captures the idea that the solu-

tion should not be systematically biased in favor of some specific types of some

specific individuals, and should not depend on the way collective decisions are

labeled.

Anonymity (AN) Let S = (I,D, d∗, (Ti)i∈I , p, (ui)i∈I) and S ′ = (I,D, d∗∗, (T ′i )i∈I , p
′,

(u′i)i∈I) be two mechanism design problems. Suppose that there exist an iso-

∆(D) is feasible for S ′, then Uj(µ
′|tj1) = Uj(µ

′|tj2) and the mechanism µ : T → ∆(D) is
feasible, where µ(t′) = µ′(t′), for all t′ ∈ T such that t′j 6= tj , and either µ(t) = µ′(tj1, t−j),
for all t−j ∈ T−j , or µ(t) = µ′(tj2, t−j), for all t−j ∈ T−j .

19



morphism f : I → I, an isomorphism g : D → D with g(d∗) = d∗∗, and

isomorphisms hi : Ti → T ′f(i) (one for each i ∈ I) such that

1. (∀t ∈ T ) : p(t) = p′(h(t)), and

2. (∀t ∈ T )(∀i ∈ I)(∀d ∈ D) : ui(d, t) = u′f(i)(g(d), h(t)),

with the convention h(t) = (hi(ti))i∈I . Then µ′ ∈ Σ(S ′) if and only if µ ∈
Σ(S), where µ is the mechanism for S defined as follows: the probability of

implementing d ∈ D when first individual reports t1 ∈ T1, . . . , and the I th

individual reports tI ∈ TI is equal to the probability of implementing g(d)

under µ′ when individual f(1) reports h1(t1), . . . , and individual f(I) reports

hI(tI).

Theorem 2 There exists a solution satisfying I-EFF, R-MON, AN, I-WELF,

EX, IST, and IIA. Any solution that satisfies these seven axioms must coincide

with the interim egalitarian criterion on simple problems.

Proof: A mechanism µ ∈ F(S) belongs to the interim lex-min solution of

the mechanism design problem S = (I,D, d∗, (Ti)i∈I , p, (ui)i∈I), µ ∈ Σlex(S),

if and only if θ(u(µ)) maximizes θ(u) according to the lexicographic order over

all u ∈ U(F(S)), where θ : ×i∈IRTi
+ → ×i∈IRTi

+ is the function that rearrange

the components of a vector increasingly.

Let S = (I,D, d∗, (Ti)i∈I , p, (ui)i∈I) be a mechanism design problem. Ob-

serve that, if interim utilities are transferable at µ ∈ Σlex(S), then Ui(µ|ti) =

Uj(µ|tj), for all ti ∈ Ti, all tj ∈ Tj, and all i, j ∈ I. Indeed, otherwise,

there exist (i, ti) and (j, tj) with i 6= j such that Ui(µ|ti) < Uj(µ|tj). Since

interim utilities are transferable at µ, there exists a mechanism µ′ ∈ F(S)

such that Ui(µ
′|ti) > Ui(µ|ti), Uj(µ′|tj) < Uj(µ|tj), and Uk(µ

′|tk) ≥ Uk(µ|tk),
for all (k, tk) different from (i, ti) and (j, tj). For each ε ∈]0, 1[, let µε :=

εµ′+ (1− ε)µ ∈ F(S). For ε small enough, θ(u(µε)) strictly dominates θ(u(µ))

according to the lexicographic order, thereby contradicting µ ∈ Σlex(S). So it

must be indeed that all the components of u(µ) are identical. Consider now a

larger mechanism design problem S ′, as defined in R-MON. Since µ ∈ F(S ′),
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it must be that the smallest component of u(µ′) is larger of equal to the iden-

tical components of u(µ), for each µ′ ∈ Σlex(S ′). Hence Σlex satisfies R-MON,

as desired.

The fact that Σlex satisfies IST follows from the fact that the set of interim

utilities that can be achieved in the splitted problem is the set of interim

utilities that can be achieved in the original problem, except that the utility

associated to the (j, tj) component now appears twice (once for (j, tj1) and

once for (j, tj2), cf. footnote 10). The very definition of Σlex makes it straight-

forward to check that it satisfies the five other axioms. The fact that any

solution that satisfies the axioms must coincide with the interim egalitarian

criterion on simple problems is proved in the Appendix. A more informal

roadmap of the argument is provided in the second supplemental appendix. �

5. EGALITARIANISM AND UTILITARIANISM RECONCILED

The egalitarian solution requires the possibility of measuring the individ-

uals’ utility gains in some common units. Also, when such measurements are

possible, the egalitarian principle often comes in conflict with other normative

criteria, the most prominent alternative being the utilitarian principle. Vari-

ous authors (see e.g. Harsanyi (1963), Shapley (1969), Yaari (1981)) showed

that these two difficulties can be resolved simultaneously in the following sense.

There is a unique way to rescale the participants’ utilities so that there exists

a feasible option that is optimal according to both the egalitarian and the

utilitarian criteria (in the rescaled utilities). In addition, any such option is

optimal according to Nash’ product criterion (either in the original or in the

rescaled utilities, since that criterion is invariant to linear transformations).

Nehring (2004) has argued that maximizing the ex-ante sum of the individu-

als’ utilities is the natural extension of the utilitarian criterion to problems with

incomplete information. The analysis of the previous section suggests that the

interim egalitarian criterion is a natural extension of the egalitarian solution to

frameworks with incomplete information (at least for simple problems). One

may thus wonder whether there is a way, in each mechanism design problem, to

make both criteria compatible by rescaling the participants’ interim utilities.
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The next theorem answers positively (independently of whether the problem

is simple or not). In addition, the resulting solution amounts to selecting the

incentive compatible mechanism that is maximal according to Harsanyi and

Selten’s (1972) weighted Nash product (see Myerson (1979)). Weidner (1992)

obtained a different characterization of that solution in a similar framework

(based on axioms adapted from Nash (1950) and Harsanyi and Selten (1972)).

He observes that his result is valid only when types are independent, an as-

sumption that plays no role in the following theorem.

Theorem 3 Let S = (I,D, d∗, (Ti)i∈I , p, (ui)i∈I) be a mechanism design prob-

lem, and let µ∗ ∈ F(S). Then

µ∗ ∈ arg max
µ∈F(S)

Πi∈IΠti∈Ti [Ui(µ|ti)]p(ti) (3)

if and only if µ∗ satisfies the two following conditions for some λ ∈ ×i∈IRTi
++:

1. µ∗ ∈ arg maxµ∈F(S)

∑
i∈I

∑
ti∈Ti p(ti)U

λ
i (µ|ti),

2. (∀t ∈ T )(∀i ∈ I)(∀j ∈ I) : Uλ
i (µ∗|ti) = Uλ

j (µ∗|tj),

where Uλ
i (µ|ti) := λi(ti)Ui(µ|ti), for each ti ∈ Ti and each i ∈ I.

Proof: Let W ∗ = Πi∈IΠti∈Ti [Ui(µ
∗|ti)]p(ti). Since it is assumed that there exists

at least one element of U(F(S)) with only strictly positive components, it must

be that W ∗ > 0 and (Ui(µ
∗|ti))ti∈Ti,i∈I >> 0 under (3). The sets U(F(S)) and

{u ∈ ×i∈IRTi
+ |Πi∈IΠti∈Tiui(ti)

p(ti) ≥ W ∗}
are both closed and convex. Under (3), their intersection is the singleton

{(Ui(µ∗|ti))ti∈Ti,i∈I}. Hence the separating hyperplane theorem implies that

(3) is equivalent to the existence of a vector l ∈ ×i∈IRTi for wich the two

following conditions hold:

1. µ∗ ∈ arg maxµ∈F(S)

∑
i∈I

∑
ti∈Ti li(ti)Ui(µ|ti),

2. l is proportional to the gradient of the curve {u ∈ ×i∈IRTi
+ |Πi∈IΠti∈Tiui(ti)

p(ti) ≥
W ∗} at (Ui(µ

∗|ti))ti∈Ti,i∈I .
The second condition itself is equivalent to the existence of a strictly positive

number α such that

li(ti) =
αp(ti)

Ui(µ∗|ti)
,
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for all ti ∈ Ti and all i ∈ I. The result thus follows, by taking λi(ti) =

li(ti)/p(ti), for all ti ∈ Ti and all i ∈ I. �

While first embraced by Myerson (1979) as a reasonable bargaining solu-

tion, the criterion derived in Theorem 3 has been subsequently criticized by

Myerson (1984a) because of its sensitivity to joint changes of the utility func-

tions and the individuals’ beliefs that leave interim preferences unchanged (see

his Probability-Invariance axiom). Though not a bargaining solution, observe

nevertheless that the interim egalitarian criterion does satisfy Myerson’s prob-

ability invariance (I-WELF indeed implies it). In view of Theorem 3, the fact

that the Harsanyi-Selten solution violates it can be traced back to the fact that

the ex-ante utilitarian principle violates it as well. To the extent that ex-ante

utilitarianism has some separate appeal and justification when understood as

a social welfare criterion, Theorem 3 shows that the weighted Nash product

derived by Harsanyi and Selten is perhaps more justified when understood as

defining a social welfare ordering instead of a bargaining solution. Observe

also that the interim egalitarian criterion being rooted in interim utilities, its

definition (as well as its characterization in Theorem 2) extends to the case

of non-common priors. This is not the case for the ex-ante utilitarian crite-

rion, as shown by Nehring (2004), nor the Harsanyi-Selten criterion, as there

is no unique way of defining marginal probabilities of types in the absence of

a common prior.

6. APPLICATIONS

This section is devoted to the analysis of two classical quasi-linear exam-

ples in perspective of the analysis developed in previous sections. The first

example is about the production of a public good and how to share its cost,

while the second example is about fair terms of trade. The objective is to

understand what the interim egalitarian criterion entails, when it exists, and

to see how one can apply Theorem 3 to compute the Harsanyi/Selten/Myerson

solution. We will also see that the interim lexmin solution introduced in the

proof of Theorem 2 seems to select sensible mechanisms in problems that are

not simple.
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Figure 1: Illustration of Example 2 for p=1/10

(36,36;36)

(27,37.38;36)

Egalitarian solution in blue
Harsanyi/Selten solution in green
Utilitarian solution in red

Example 1 Consider the following problem, which is similar11 to the main

example in Myerson (1979). Two individuals have the option to cooperate

by investing in a public project that costs $100, which is known to bring a

satisfaction of $90 to the second individual, and either a satisfaction of $30,

with probability p, or of $90, with probability 1 − p, to the first individual.

Formally, I = {1, 2}, D = {(x,m) ∈ {0, 1} × R2|m1 + m2 ≤ −100x}, where

x = 0 means that the project is not carried out, x = 1 means that the project

is carried out, d∗ = (0, (0, 0)), T1 = {30, 90},12 u1((x,m), 30) = 30x + m1,

u1((x,m), 90) = 90x+m1, and u2((x,m), 30) = u2((x,m), 90) = 90x+m2.

U(F(S)) thus coincides with the set of vectors

(30x̄(30)+m̄1(30), 90x̄(90)+m̄1(90); 90(px̄(30)+(1−p)x̄(90))+pm̄2(30)+(1−p)m̄2(90)),

that satisfy the following constraints:

m̄1(30) + m̄2(30) ≤ −100x̄(30) and m̄1(90) + m̄2(90) ≤ −100x̄(90), (4)

30(x̄(90)− x̄(30)) ≤ m̄1(30)− m̄1(90) ≤ 90(x̄(90)− x̄(30)), (5)

where x̄(t1) denotes the expected probability of implementing the public project

11The only difference is that I consider a fully quasi-linear problem, while Myerson allows
for compensations only indirectly by allowing for randomization over three deterministic
collective decisions, ‘no public project,’ ‘public project funded by 1,’ and ‘public project
funded by 2,’ which prevents the possibility of compensations when the public project is not
implemented.

12T2 is ignored to make notations lighter. This is inconsequential, since T2 is a singleton,
the second individual having no private information.
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when the first individual reports t1, and m̄i(t1) is the expected monetary pay-

off received by individual i when the first individual reports t1. Indeed, a

feasible mechanism must select lotteries defined over D, and taking expec-

tations of the feasibility constraints will give (4). Conversely, any vector

(x̄(t1), m̄1(t1), m̄2(t1))) can be seen as the expectation of the lottery that picks

[x = 0, m = (0, 0)] with probability 1−x̄(t1), and [x = 1, m = (m̄1(t1)/x̄(t1), m̄2(t1)/x̄(t1))]

with probability x̄(t1), which selects elements of D whenever (4) is satisfied.

Inequalities in (5), on the other hand, represent the incentive contraints. A

traditional reasoning allows to conclude that incentive efficiency implies that

x̄(90) = 1, and both inequalities in (4), as well as the second inequality of (5)

are binding. If p = 1/10, as in Myerson (1979), then simple computations

imply that U eff (F(S)) is the set of vectors

(30x̄(30) + m̄1(30), 90x̄(30) + m̄1(30); 72− 82x̄(30)− m̄1(30)), (6)

with x̄(30) ∈ [0, 1] and m̄1(30) ∈ R. It is then easy to check that a mechanism

meets the interim egalitarian criterion if and only if x̄(30) = 0, m̄1(30) = 36,

m̄2(30) = −36, x̄(90) = 1, m̄1(90) = −54, and m̄2(90) = −46, in which

case both individuals get an expected utility of 36, independently of the true

state. The problem is thus simple. Theorem 2 implies that any solution

that satisfies the axioms must pick that specific mechanism in this numeri-

cal example. The ex-ante utilitarian solution, on the other hand, will con-

tain only pooling mechanisms with x̄(30) = x̄(90) = 1, m̄1(90) = m̄1(30),

and m̄2(30) = m̄2(90) = −100 − m̄1(30), leaving the choice of m̄1(30) open.

So, in this example, it does not refine the set of ex-ante incentive efficient

mechanisms. The interim utilities are 30 + m̄1(30) for the first individual

when he values the public project at 30, 90 + m̄1(30) for the first individual

when he values the public project at 90, and 90 − m̄1(30) in expectation for

the second individual. One can apply Theorem 3 to find Harsanyi and Sel-

ten’s (1972) weighted Nash product over U(F(S)). One concludes from (6)

that the vector (2/15, 13/15; 1) is orthogonal to U eff (F(S)). If the weighted

Nash optimum is reached at a point in the interior of U eff (F(S)), then it

must be for λ = (20/15, 26/27, 1), given the first condition in Theorem 3.
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Solving then for the two equations implied by the second condition in Theo-

rem 3, one obtains x̄(30) = 189/1092 ∼= 0.173, m̄1(30) = 567/26 ∼= 21.81,

m̄2(30) = −1017/26 ∼= −39.12, x̄(90) = 1, m̄1(90) = −684/13 ∼= −52.62, and

m̄2(90) = −616/13 ∼= −47.38, which turns out to be a feasible mechanism. The

Harsanyi-Selten solution being unique, we are thus done solving the problem.

The interim utilities are 27 for the first individual when he values the public

project at 30, 486/13 ∼= 37.38 for the first individual when he values the public

project at 90, and 36 in expectation for the second individual.

The set of incentive efficient mechanisms and the three solutions are rep-

resented in the space of interim utilities on Figure 1. The utilitarian solution

does not place any weight on the distribution of the gains from cooperation,

and thereby allows to be more efficient in aggregate, the public project being

implemented for sure independently of individual 1’s type. On the other hand,

this is achieved at the cost of equity, being too generous towards individual 1

when he values the public project at $90, because one cannot rely on him to re-

port his type for free. The second individual, for instance, cannot expect a gain

larger than $20, while the aggregate benefit is $80 with probability 9/10 and $20

with probability 1/10. The first individual’s information rent vanishes at the

egalitarian solution, in that both types of the first individual receive the same

interim utility, but this comes at the cost of not implementing the public project

when the first individual does not care much for it. Note that even though some

mutually beneficial cooperative opportunities are not exploited, the mechanism

itself, on the other hand, is incentive efficient. As already hinted by Theorem

3, the Harsanyi/Selten solution strikes a compromise between two conflicting

points of view, allowing the public project to be realized with a positive proba-

bility when the first individual has the low type, but not systematically, so as

to avoid being too soft on individual 1 when of the high type because of his

informational advantage.

Suppose now that there is a probability 9/10 that the first individual values

the public project at $30, instead of 1/10. Starting from inequalities (4) and

(5), it is easy to check that U eff (F(S)) is the set of vectors

(30 + m̄, 90 + m̄;−10− m̄), (7)
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with m̄ ∈ R. In other words, incentive efficient mechanisms must be pooling,

with the public project being implemented for sure regardless of the first indi-

vidual’s report, and the expected monetary compensation being constant. In

this case, the first individual has a larger payoff when of the high type than

when of the low type at any incentive efficient mechanism, and the problem is

not simple. The interim lex-min solution defined for all problems (see proof

of Theorem 2) seems to make sense. Since individual 1 systematically enjoys

a payoff that is larger by a constant amount of $60 when of a high type com-

pared to the low type alternative, he is left aside and all what matters is to

choose m so as to equalize the second individual’s expected payoff with the first

individual’s payoff when he values the public project at $30. Hence one must

choose m̄ = −$20, and the associated vector of interim utilities is (10, 70; 10).

The ex-ante utilitarian solution does not refine the set of incentive efficient

mechanisms, while the Harsanyi-Selten solution selects a m̄ that is slightly

smaller than −$20, thereby being slightly more generous towards the second

individual.13

More generally, the problem is simple whenever p < 3/4, and the interim

egalitarian criterion will prescribe to implement the public project if and only

if the first individual reports his high type. In that case, he pays $90, while the

second individual pays $10. In addition, a monetary transfer of $(1−p)40 goes

from the second to the first individual, independently of the type reported. The

interim utility enjoyed by each type of each individual is (1−p)40. The problem

is not simple when p ≥ 3/4, in which case the interim lex-min solution has the

public project implemented independently of the first individual’s report, with

1 paying 20% of the cost, and 2 the remaining 80%.

Example 2 Consider the following classical bilateral trade problem, as in My-

erson (1991, Section 10.3). A first individual owns one unit of a divisible

good that is worth more to a second individual than to him. The good can be

of relatively low quality, with probability p, in which case the good is worth

13Not surprisingly, the Harsanyi-Selten solution converges towards the egalitarian solu-
tion, as p gets closer to 1, as the problem then approaches a problem with both complete
information and transferable utilities, in which case the Nash and the egalitarian solutions
coincide.
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Figure 2: Illustration of Example 3 for p=4/5

(4,4;4)

(4.57,2.67;4)

Egalitarian solution in blue
Harsanyi/Selten solution in green
Utilitarian solution in red

$20 per unit to the first individual and $30 per unit to the second individual,

or of relatively high quality, with probability 1 − p, in which case the good

is worth $40 per unit to the first individual and $50 per unit to the second

individual. The true quality of the object is known to the seller only. Co-

operating here means agreeing on a quantity to trade against some monetary

compensation, as a function of what the seller reveals about the quality of the

good he owns. The problem is to find a fair compensation scheme. Formally,

I = {1, 2}, D = {(x,m) ∈ [0, 1] × R2|m1 + m2 ≤ 0}, where x represents the

quantity traded, d∗ = (0, (0, 0)), T1 = {L,H},14 u1((x,m), L) = m1 − 20x,

u1((x,m), H) = m1 − 40x, u2((x,m), L) = 30x + m2, and u2((x,m), H) =

50x+m2.

U(F(S)) thus coincides with the set of vectors (m1(L)− 20x(L),m1(H)−
40x(H); p(30x(L)+m2(L))+(1−p)(50x(H)+m2(H))) that satisfy the following

constraints:15

m1(L) +m2(L) ≤ 0 and m1(H) +m2(H) ≤ 0, (8)

20(x(L)− x(H)) ≤ m1(L)−m1(H) ≤ 40(x(L)− x(H)), (9)

where (x(t1),m(t1)) ∈ [0, 1] × R, for each t1 ∈ {L,H}. Standard arguments

imply that incentive efficiency require x(L) = 1, and both inequalities in (8),

14As in the previous example, T2 is ignored to make notations lighter. This is inconse-
quential, since T2 is a singleton, the second individual having no private information.

15Utilities being linear in both the good and money, there is no loss of generality in
discussing only deterministic mechanisms.
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as well as the first inequality of (9) to be binding. If p = 4/5, as in Myerson

(1991), then U eff (F(S)) is the set of vectors

(m− 20x,m− 40x; 8 + 26x−m), (10)

with (x,m) ∈ [0, 1] × R representing the quantity traded and the monetary

compensation from 2 to 1 when the first individual reports H. U eff (F(S)) thus

coincides with the triangle whose vertices are (80/7, 0; 0), (8, 8, 0), and (0, 0; 8),

as represented on Figure 2. The interim egalitarian criterion selects the mech-

anism with (x,m) = (0, 4), in which case both individuals enjoy an interim util-

ity of 4 whatever their types (this remains true for any p > 1/3). The problem

is simple. Theorem 2 implies that any solution that satisfies the axioms must

select that specific mechanism in this numerical example. The ex-ante utilitar-

ian solution, on the other hand, selects the mechanism that is most advanta-

geous to the first individual when he is of a low type - (x,m) = (4/7, 160/7)

leading to the extreme vector of interim utilities (80/7, 0; 0). Contrarily to the

previous example, the ex-ante utilitarian principle does refine the set of feasible

mechanisms that are ex-ante efficient (which leads to interim utilities along the

segment that joins (0, 0; 8) to (80/7, 0; 0)). One can apply Theorem 3 to find

Harsanyi and Selten’s (1972) weighted Nash product over U(F(S)). One con-

cludes from (10) that the vector (7/10, 3/10; 1) is orthogonal to U eff (F(S)). If

the weighted Nash optimum is reached at a point in the interior of U eff (F(S)),

then it must be for λ = (7/8, 3/2; 1), given the first condition in Theorem 3.

Solving then for the two equations implied by the second condition in Theo-

rem 3, one obtains the feasible mechanism corresponding to the combination

(x,m) = (2/21, 136/21). The Harsanyi-Selten solution being unique, we are

thus done solving the problem. The interim utilities are 32/7 ∼= 4.57 for the

first individual when of a low type, 56/21 ∼= 2.67 for the first individual when

of a high type, and 4 in expectation for the second individual.

More generally, the problem is simple whenever p > 1/3, and the interim

egalitarian criterion prescribes trade in full against $34 when the first individ-

ual’s report is L, and no trade, but still with a transfer of $4 from 2 to 1 when

the report is H. The interim utilities are (4, 4; 4). If, on the other hand, the
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high type is rather likely to occur (p ≤ 1/3) then incentive efficiency occurs

only at pooling mechanisms where full trade occurs independently of the first

individual’s report. In that case, the low type always gets a larger utility than

the high type, and the problem is not simple. The interim lex-min solution

defined for all problems (see proof of Theorem 2) then follows the pragmatic

principle of equalizing the two remaining payoffs. This leads to trade in full

with a transfer of $45−10p from 2 to 1, independently of individual 1’s report.

7. DIRECTIONS FOR FUTURE RESEARCH

The purpose of this section is to present directions for future research on

social choice in mechanism design. Of particular interest, I will argue that

considering problems of incomplete information should lead to an even richer

debate on what is equitable, due to the presence of multiple reasonable norms

that differ only when information is asymmetrically distributed.

Mechanisms that meet the interim egalitarian criterion are obviously eq-

uitable in the following sense: an uninformed third party (social planner or

arbitrator) can be sure that all the individuals enjoy the same expected ben-

efits given their own private information, and this whatever the actual profile

of types. Yet, I believe that there might be alternative appealing ways to pro-

ceed. Here is an example of solution that takes more into account what the

individuals know to determine what is equitable. I will restrict attention to

the class of quasi-linear problems. Given his own information, an individual i

of type ti can evaluate the total surplus achieved by an incentive compatible

mechanism µ:
TSi,ti(µ) =

∑
t−i∈T−i

p(t−i|ti)
∑
i∈I

ui(µ(t), t).

From his point of view, his share of the total surplus realized by µ is then

si,ti(µ) =
Ui(µ|ti)
TSi,ti(µ)

(with the convention si,ti(µ) = 1/#I if both Ui(µ|ti) and TSi,ti(µ) are equal

to zero). One may have to accept inefficiency in some type profiles in order to

satisfy the incentive constraints. For instance, the public good is not always

implemented at incentive efficient mechanisms in Example 1, when t1 = 30
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and p < 3/4, and trade does not always occur at incentive efficient mecha-

nisms in Example 2, when t1 = 40 and p > 1/3. More generally, we know from

Myerson and Satterthwaite (1983) that ex-post efficiency, interim individual

rationality and incentive compatibility may be incompatible. This is why it

is more natural for the definition of the total surplus to be endogenous to

the mechanism considered, instead of taking the maximal total surplus that

could be achieved in the absence of incentive constraints. Another meaning-

ful definition of egalitarianism under incomplete information would then be

to select an interim individually rational and incentive efficient mechanism µ

that equalizes the shares in each type profile: si,ti(µ) = sj,tj(µ), for all i, j ∈ I
and all t ∈ T . Perfect equalization being not always possible, as with the

interim egalitarian criterion, it is natural to consider the weaker criterion of

maximizing, according to the lexicographic ordering, the vector θ(s(µ)) over

the set of individually rational and incentive efficient mechanisms µ. The as-

sociated solution will be denoted Σ∗. Notice that, if an interim individually

rational and incentive efficient mechanism µ for a mechanism design problem

S is such that si,ti(µ) = sj,tj(µ), for all i, j ∈ I and all t ∈ T , then µ ∈ Σ∗(S)

and si,ti(µ) = 1/#I, for all i ∈ I and ti ∈ Ti. Indeed, if σ is the share that is

common to all the individuals of any type, then we have:∑
t∈T p(t)

∑
i∈I ui(µ(t), t) =

∑
i∈I

∑
ti∈Ti p(ti)Ui(µ|ti)

=
∑

i∈I
∑

ti∈Ti p(ti)σTSi,ti(µ)

= σ(#I)
∑

t∈T p(t)
∑

i∈I ui(µ(t), t),

which implies σ = 1/#I. Any mechanism µ′ such that θ(s(µ′)) lexicographi-

cally dominates θ(s(µ)) will lead to similar equations, except that the second

equality is now changed into a strict inequality for σ = 1/#I, thereby leading

to a contradiction and showing that µ ∈ Σ∗(S). It also implies, conversely,

that any interim individually rational and incentive efficient mechanism µ

such that si,ti(µ) = 1/#I, for all i ∈ I and ti ∈ Ti, must belong to Σ∗(S). Of

course, Σ∗ coincides with the regular egalitarian criterion when information is

complete (as does the interim egalitarian criterion), i.e. when the type sets

contain a single element. Easy computations in Example 1 show that, for
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any p < 3/4, equalization of the shares is feasible and a mechanism belongs

to Σ∗ if and only if x̄(30) = 4/7, m̄(30) = (−80/7,−320/7), x̄(90) = 1, and

m̄(30) = (−50,−50). Things become even clearer if the collective decision

implemented when t1 = 30 is decomposed as an explicit lottery over D: the

public project is implemented with probability 4/7, in which case the first in-

dividual pays $20 and the second individual pays $80 (this distribution of the

cost is ex-post egalitarian), while there is no payment and no transfer when

the public project is not implemented. The interim utilities are 40/7 for the

first individual of type t1 = 30, 40 for the first individual of type t1 = 90, and

40− 240
7p

for the second individual. So, on the one hand, one could say that the

mechanism is not equitable from the point of view of an uninformed third party

(social planner or arbitrator), in that different individuals enjoy different levels

of satisfaction, but on the other hand the mechanism looks equitable from the

point of view of the individuals themselves, given their private information.

One must resort to the lexicographic ordering when p ≥ 3/4, in which case the

public project is implemented regardless of the first individual’s report, who

has to pay $130−90p
5−3p

, while the second individual pays $370−210p
5−3p

. In Example

2, for any p > 1/3, equalization of the shares is feasible and a mechanism

belongs to Σ∗ if and only if x(L) = 1, m(L) = (25,−25), x(H) = 1/5, and

m̄(H) = (9,−9) (or, equivalently, the second individual pays $45 per unit to

the first conditional on him reporting 40 - again this is the ex-post egalitarian

outcome). The interim utilities are 5 for the first individual of type t1 = L, 1

for the first individual of type t1 = H, and 1 + 4p for the second individual,

which again is different from the prescription made by the interim egalitarian

criterion. One must resort to the lexicographic ordering when p ≤ 1/3, in

which case the good is traded in full regardless of the first individual’s report

and he receives $45−10p from the second individual, which, this time, happens

to coincide with the outcome of Σlex (defined in the proof of Theorem 2).

The fact that various extensions seem sensible is a feature that makes the

subject of social choice under incomplete information richer. Additional and

sharper axiomatic characterizations are needed to capture the essence of what

distinguishes these various normative criteria. Since they all coincide in the
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special case of complete information, the key normative question one must ad-

dress is how to treat information in determining what is equitable, and more

specifically how to treat different types of a same individual. The interim

egalitarian criterion (as well as the ex-ante utilitarian principle, and Harsanyi

and Selten’s (1972) weighted Nash product) ends up treating different types

of individuals as different individuals in the way it is computed. Analogous

treatments have already appeared in very different contexts, cf. the notion

of “type-agent” introduced by Harsanyi (1967-68) to define Bayesian Nash

equilibria, and that also played a key role in defining a notion of core under

asymmetric information (de Clippel (2007)). Yet it seems that other inter-

type compromises might have some normative appeal as well. This is the

right place to mention a third notion of equity that would also coincides with

egalitarianism in quasi-linear social choice problems under complete informa-

tion (with risk-neutral individuals), but leads to different recommendations

under incomplete information. Procedural justice offers an interesting alter-

native to the consequentialist approach that discusses equity exclusively in

terms of the outcomes selected in various problems. What matters now is to

let the individuals themselves select the social outcome via a procedure (or a

game form) that is fair, in a broad sense of giving them equal opportunities.

“Random Dictatorship,” choosing with equal probability one of the individu-

als to act as a dictator, provides an example of such procedure, at least when

the resulting equilibrium outcome is Pareto efficient (as it is under complete

information if the problem is quasi-linear and individuals are risk-neutral).

This example of fair procedure is a bit extreme, since the outcome when a

dictator has been selected is clearly unfair, but at least all the individuals are

in an equal position ex-ante. Notice that “Random Dictatorship” is also a

corner-stone of Myerson’s (1984a) theory of bargaining. Though trivial, there

is an interesting equivalence under complete information between the egali-

tarian principle and the equilibrium outcome of that procedure in quasi-linear

problems with risk-neutral individuals. This general equivalence breaks down

when information is incomplete. A key insight from Myerson’s work (1983

and 1984a) (see also Maskin and Tirole (1992)) is that being a dictator de-
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fines an implicit inter-type compromise in some problems, and I will simply

observe now that this implicit compromise is incompatible with both the in-

terim egalitarian criterion and Σ∗ in both Examples 1 and 2.Indeed, it is easy

to check in Example 1 that the principal-agent game when the first individual

is a dictator admits a unique weak sequential equilibrium outcome, with the

public project being implemented, the first individual paying $10 and the sec-

ond paying $90, independently of the reported type. The associated interim

utilities are (20, 80; 0). The unique weak sequential equilibrium outcome when

the second individual is the dictator and p < 3/4 implies that the project is

implemented only when the reported type is 90, in which case the first indi-

vidual pays $90 and the second pays $10. The associated interim utilities are

(0, 0; 80(1 − p)). When p > 3/4, the public project is always implemented,

with the first individual paying $30 and the second paying $70. The associ-

ated interim utilities are (0, 60; 20). Random Dictatorship thus leads to the

interim utilities (10, 40, 40(1−p)) if p < 3/4 and (10, 70, 10) if p > 3/4. We see

that the interim egalitarian criterion coincides with the random dictatorship

outcome if and only if p > 3/4. Σ∗ differs both from the interim egalitarian

criterion (or Σlex if the problem is not simple) and the random dictatorship

outcome for any p. In Example 2, if p > 1/3, then the unique weak sequential

equilibrium outcome when the first individual is the dictator leads to the good

being traded at the highest possible price - $30 per unit if the reported type is

L, and $50 per unit if the reported type if H - but only a third is traded when

the reported type is H, while the good is traded in full when the reported

type is H. If the second individual is the dictator with p > 1/3, then the

good is traded if and only if the reported type is L. in which case it is traded

in full at the lowest possible price - $20 per unit. Random Dictatorship thus

leads to the interim utilities (5, 5/3, 5p), which differ from both Σlex and Σ∗.

If p < 1/3, then trade occurs in full independently of the first individual’s

report. The price is $50− 20p if the first individual is the dictator, and $40 if

the second individual is the dictator. Random Dictatorship thus leads to the

interim utilities (25− 10p, 5− 10p, 5− 10p), as with Σlex and Σ∗.

The two alternative egalitarian criteria discussed in this last section also
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highlight the strength of I-WELF, as neither Σ∗, nor the Random Dictatorship

solution, satisfy it. To see that, notice first that U(F(S)) in Example 2 with

p = 4/5 is the convex hull of (0, 0; 0) and the three vectors shown on Figure

2, i.e. (11.43, 0; 0), (8, 8; 0), and (0, 0; 8). This follows immediately from the

previous characterization of the incentive efficiency frontier and the fact that

U1(µ|L) ≥ U1(µ|H) at any incentive compatible mechanism (indeed, m1(L)−
20x(L) ≥ m1(H) − 20x(H) ≥ m1(H) − 40x(H), where the first inequality

follows from the incentive constraint and the second follows from the fact that

x(H) is non-negative). Now, similar computations would show that the set

of interim utilities that can be achieved by mechanisms that are individually

rational and incentive compatible remains unchanged if p is 3/4 instead of

4/5, the buyer’s value in the low type is $92/3 instead of $30, and the buyer’s

value in the high type is $44 instead of $50. Yet Σ∗ now leads to the interim

utilities (16/3, 16/33; 136/33) instead of (5, 1; 21/5), and Random Dictatorship

now prescribes (11/3, 8/9; 11/4) instead of (5, 5/3; 4).16
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Appendix: Proof of Theorem 2

(An informal roadmap of the argument is available in the second supplemental

appendix.) Consider a solution Σ that satisfies I-EFF, R-MON, AN, I-WELF,

IIA, EX, and IIA, and a problem S = (I,D, d∗, (Ti)i∈I , p, (ui)i∈I) that is simple.

We have to prove that Σ(S) coincides with the set of mechanisms meeting the

interim egalitarian criterion. We first assume that #Ti = #Tj, for all i, j.

Let µ be a mechanism that passes the interim egalitarian criterion, and

for which there exists λ ∈ ×i∈IRTi
++ such that µ ∈ arg maxν∈F(S) W

λ(µ) =∑
i∈I

∑
ti∈Ti λi(ti)Ui(ν|ti). All the components of u(µ) are identical, by defini-

tion of the interim egalitarian criterion. Let ξ be this common component. The

proof requires the consideration of other related mechanism design problems.

The first alternative problem is obtained by changing both the common prior

and the utility functions so as to keep the set of interim utilities that are achiev-

able via feasible mechanisms unchanged: S1 = (I,D, d∗, (Ti)i∈I , p
1, (u1

i )i∈I),

with p1 being the uniform probability distribution on T , and u1
i (d, t) :=

#(T−i)p(t−i|ti)ui(d, t), for all (d, t) and all i.

Notice that this first modification does not change the individuals’ interim

evaluations of any mechanism since the products of the conditional probabil-

ities with the state-contingent utilities remain constant (see Myerson, 1984a,

Section 3). Hence U(F(S1)) = U(F(S)), and λ is also orthogonal to U(F(S1))

at u1(µ). Following Myerson’s virtual utility construction (see also Lemma 4

in the first supplemental Appendix), it is possible to construct an auxiliary

problem S2 = (I,D2, (Ti)i∈I , p
1, (u2

i )i∈I), where D2 = D ∪ {di,ti |ti ∈ Ti, i ∈ I},
u2
i (·, t) = u1

i (·, t) on D, for all t and all i, and such that U(F(S2)) is the

convex hull of the vectors 0 and ui,ti , for each ti ∈ Ti and each i ∈ I, where

ui,tij (tj) = 0, for all (j, tj) 6= (i, ti), and ui,tii (ti) = W λ(µ)/λi(ti). Notice that µ

remains incentive efficient in S2.

Lemma 5 in the first supplemental Appendix shows that it is possible to

define utility functions u3 and, for each combination (i, ti), a collective decision

d̂i,ti such that U3
i (d̂i,ti |ti) = W λ/λi(ti), U

3
i (d̂i,ti |t′i) = 0 if t′i 6= ti, U

3
j (d̂i,ti |tj) = 0,

for all j ∈ N \ {i} and all tj ∈ Tj, and
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∑
j∈I

λj(t
′
j)

p1(t′j)
u3
j(d̂i,ti , t

′) ≤ ξ
∑
j∈I

λj(t
′
j)

p1(t′j)
, for all t′ ∈ T. (11)

Let D3 = {d∗} ∪ {d̂i,ti |i ∈ I, ti ∈ Ti}, and S3 = (I,D3, d∗, (Ti)i∈I , p
1, (u3

i )i∈I).

Clearly, U(F(S3)) = U(F(S2)).

Let 0 < ε < min
(i,t)

λi(ti)

p1(ti)
∑

j∈I
λj(tj)

p1(tj)

,

and C = {x ∈ RI
+|(∀i ∈ I) : xi + ε

∑
j∈I\{i} xj ≤ ξ(1 + ε(#I − 1))}. Notice

that C is included in the half-space {x ∈ RI |
∑

i∈I
λi(ti)
p1(ti)

xi ≤ ξ
∑

i∈I
λi(ti)
p1(ti)
},

for all t ∈ T . Indeed, given t, let x ∈ C and let J = {i ∈ I|xi > ξ}. If

J = ∅, then
∑

i∈I
λi(ti)
p1(ti)

xi is clearly lower or equal to ξ
∑

i∈I
λi(ti)
p1(ti)

. Suppose

then that J is nonempty, and let i be an element of J . The i-inequality in

the definition of C implies that xi − ξ ≤ ε
∑

j∈I\J(ξ − xj). Multiplying by

λi(ti)/p(ti), and taking the sum over i ∈ J , one gets:
∑

i∈J
λi(ti)
p1(ti)

(xi − ξ) ≤∑
j∈I\J ε(

∑
i∈J

λi(ti)
p1(ti)

)(ξ−xj) ≤
∑

j∈I\J ε(
∑

i∈I
λi(ti)
p1(ti)

)(ξ−xj) ≤
∑

j∈I\J
λj(tj)

p1(tj)
(ξ−

xj), and hence
∑

i∈I
λi(ti)
p1(ti)

xi ≤ ξ
∑

i∈I
λi(ti)
p1(ti)

, as desired.

Let S4 = (I,D4, d∗, (Ti)i∈I , p
1, (u4

i )i∈I) be the mechanism design problem

with D4 = CT and u4
i (d

4, t) = d4
i (t), for all d4 ∈ D4, all i ∈ I, and all t ∈ T .

Observe that the problem S4 is symmetric, and hence AN and (1) imply that

the interim utility of any mechanism in the solution of that problem must give

equal interim utility to all the individuals and whatever their private informa-

tion. I-EFF and EX imply that the constant mechanism that selects (ξ, . . . , ξ)

in C, for all t ∈ T , belongs to Σ(S4). It is easy to check that interim utilities are

transferable at that constant mechanism. The combination of R-MON and EX

imply that it also belongs to Σ(S5), where S5 = (I,D5, d∗, (Ti)i∈I , p
1, (u5

i )i∈I)

is the mechanism design problem with D5 = D3 ∪ D4, u5
i (d

5, t) = u3
i (d

5, t) if

d5 ∈ D3 and u5
i (d

5, t) = u4
i (d

5, t) if d5 ∈ D4, for all d5 ∈ D5, all i ∈ I, and all

t ∈ T . Indeed, the way ε was chosen guarantees that the constant mechanism

is incentive efficient in S5 (cf. (11)). EX implies that any feasible mechanism

that gives the same vector of interim utilities also belongs to Σ(S5). Let’s

choose one that can be expressed via lotteries on D3, which is possible since

the constant mechanisms that pick one of the decisions in D3 independently
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of the individuals’ reports generate all the extreme points of U eff (F(S5)). R-

MON and EX imply that it must remain a solution to S3. I-WELF imply that

any mechanism in the solution of S2 must have the same interim utilities, and

µ must thus belong to Σ(S2), by EX. IIA implies that µ ∈ Σ(S1). Condition

(1) implies that Σ(S1) coincides with the set of mechanisms that meet the

interim egalitarian criterion in S1. I-WELF and EX implies that Σ(S) selects

all mechanisms meeting the interim egalitarian criterion, as desired.

We now conclude the proof by dropping the assumption that #Ti = #Tj,

for all i, j. As before, let µ be a mechanism that passes the interim egalitarian

criterion. All the components of u(µ) are identical, by definition of the interim

egalitarian criterion. Let ξ be this common component.

We now derive from S an alternative mechanism design problem where all

the individuals have the same number of possible types. Let τ = maxi∈I #Ti,

let hi : Ti → {1, . . . , τ} be an injective function, for each i ∈ I, let t̄ ∈ T ,

let gi : {1, . . . , τ} → Ti be defined as follows: gi(t
′
i) = h−1

i (t′i), if t′i ∈ Im(hi),

and = t̄i, otherwise, for each t′i ∈ {1, . . . , τ} and each i ∈ I. Let S ′ =

(I,D, d∗, (T ′i )i∈I , p
′, (u′i)i∈I), where T ′i = {1, . . . , τ}, for each i ∈ I, p′(t′) =

p(g(t′))/Π{i∈I|gi(t′i)=t̄i}(τ + 1−#Ti), and u′i(d, t
′) = ui(d, g(t′)), for each i ∈ I,

where g(t′) = (gi(t
′
i))i∈I . So S ′ differs from S only in that, for each i ∈ I, type

t̄i has been splitted sufficiently many times so that i has τ possible types.

The splitted version of µ (iteration of the definition in IST – see also foot-

note 10) meets the interim egalitarian criterion for S ′, and the associated vector

of interim utilities is constant, with ξ being the common component. It is then

easy to check that S ′ is simple, and hence the first part of the proof applies:

any mechanism in Σ(S ′) generates a constant vector of interim utilities, with

ξ being the common component.

Let ν ∈ Σ(S). IST implies that the splitted version of ν belongs to Σ(S ′).
Condition (1) implies that the associated vector of interim utilities is constant,

with each component being equal to ξ. Hence Ui(ν|ti) = ξ = Ui(µ|ti), for all

ti ∈ Ti and all i ∈ I. EX implies that µ ∈ Σ(S). EX and (1) implies that

Σ(S) coincides with the set of mechanisms that meet the interim egalitarian

criterion, as desired. �
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First Supplemental Appendix (not for publication)

Results in this section are variants or reformulations of previous results estab-

lished by Myerson (1983, 1984a, 1984b, 1991).

Lemma 1 Let (Ti)i∈I be finite sets of types, let p be a probability distribution

on T = ×i∈ITi with full support, let v : T → R, and let u ∈ ×i∈IRTi. Then

there exists x : T → RI such that

1. (∀t ∈ T ) :
∑

i∈I xi(t) = v(t), and

2. (∀i ∈ I)(∀ti ∈ Ti) : ui(ti) =
∑

t−i
p(t−i|ti)xi(t),

if and only if ∑
i∈I

∑
ti∈Ti

p(ti)ui(ti) =
∑
t∈T

p(t)v(t).

Proof: If the two conditions are true, then

∑
i∈I

∑
ti∈Ti p(ti)ui(ti) =

∑
i∈I

∑
ti∈Ti p(ti)

∑
t−i
p(t−i|ti)xi(t)

=
∑

t∈T p(t)
∑

i∈I xi(t)

=
∑

t∈T p(t)v(t),

where the first equality follows from 2, the second equality follows from rear-

ranging the terms, and the third equality follows 1.

I now prove the converse, assuming for simplicity that
∑

t∈T p(t)v(t) 6= 0 (a

straightforward translation argument implies that the result also holds when∑
t∈T p(t)v(t) = 0). To do this, I will show that for any (i, t̄i) there exists an

x : T → RI that satisfies 1 and 2 for ui.t̄i , where ui.t̄ii (ti) =
∑

t∈T p(t)v(t)/p(t̄i)

and ui.t̄ij (tj) = 0, for all (j, tj) 6= (i, t̄i). The result will indeed follow since any

vector u such that
∑

i∈I
∑

ti∈Ti p(ti)ui(ti) =
∑

t∈T p(t)v(t) can be written as

an affine combination of these vectors, and the equations in 1 and 2 are linear

in x. So I now define a function x : T → RI , and show that it satisfies the two

sets of equations for ui.t̄i :

xi(t) = 0 and xj(t) =
v(t)

#I − 1
,
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for all t ∈ T such that ti 6= t̄i, and

xi(t̄i, t−i) = v(t̄i, t−i)−
∑

j∈N\{i}

xj(t̄i, t−i)

xj(t̄i, t−i) = − 1

#I − 1

∑
t̃−j |t̃i 6=t̄i

p(t̃−j, tj)

p(t̄i, tj)
v(tj, t̃−j).

for all t−i ∈ T−i. Equations in 1 and the equations in 2 for any (i, ti) with

ti 6= t̄i are trivially satisfied, by construction. I now check the equations in 2

for any (j, tj) with j 6= i. For each j ∈ I \ {i} and each tj ∈ Tj, we have:∑
t−j

p(t−j|tj)xj(t) =
∑
t−ij

p(t−ij, t̄i|tj)xj(t̄i, t−i) +
∑

t−j |ti 6=t̄i

p(t−j|tj)xj(t)

= − p(t̄i|tj)
#I − 1

∑
t−j |ti 6=t̄i

p(t−j, tj)

p(t̄i, tj)
v(t) +

1

#I − 1

∑
t−j |ti 6=t̄i

p(t−j|tj)v(t),

where the second equality follows from the definition of x̄, and in particular the

fact that xj(t̄i, t−i) does not depend on t−ij. The last expression equals zero, as

desired, because p(t̄i|tj)p(t−j ,tj)

p(t̄i,tj)
= p(t−j|tj). Finally, since x satisfies the equa-

tions in 1, we have that
∑

i∈I
∑

ti∈Ti p(ti)
∑

t−i
p(t−i|ti)xi(t) =

∑
t∈T p(t)v(t).

This combined with what we just proved implies that
∑

t−i
p(t−i|t̄i)xi(t) =∑

t∈T p(t)v(t)/p(t̄i), as desired. �

Lemma 2 A feasible mechanism µ is incentive efficient if and only if there

exist λ ∈ ×i∈IRTi
+ \ {0} and α ∈ ×i∈IRTi×Ti

+ such that

1. (∀i ∈ I)(∀(ti, t′i) ∈ Ti × Ti) : αi(t
′
i|ti)(Ui(µ|ti)− Ui(µ, t′i|ti)) = 0

2.
∑

i∈I
∑

ti∈Ti λi(ti)Ui(µ|ti) =
∑

t∈T p(t) maxd∈D
∑

i∈I v
(λ,α)
i (d, t), where the

“virtual utility” functions v
(λ,α)
i are defined as follows:

v
(λ,α)
i (d, t) =

1

p(ti)
[(λi(ti) +

∑
t′i

αi(t
′
i|ti))ui(d, t)−

∑
t′i

αi(ti|t′i)ui(d, t−i, t′i)],

for each d ∈ D, each t ∈ T , and each i ∈ I.
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Proof: The vector λ is derived from a classical separation argument, using

the fact that U(F(S)) is closed and convex. The vector α specifies the dual

variables of maximization of the weighted sum under the incentive constraints.

Condition 1 is the usual condition stating that the dual variable associated to

the constaint that individual i should not pretend to be of type t′i when being

actually of type ti, is positive only if that constraint is binding. Condition 2 is

obtained by rearranging the terms of the Lagrangean (more details available

in Myerson (1991, Chapter 10), for instance). �

Lemma 3 Let A = (aij)1≤i,j≤n be a square matrix with non-positive elements

off the diagonal (i.e. aij ≤ 0 if i 6= j) and such that the sum of the elements

in each column is strictly positive (i.e.
∑n

i=1 aij > 0, for each j). Then A is

invertible.

Proof: Let x ∈ Rn be such that Ax = 0. I will prove that x ≥ 0. Suppose, on

the contrary, that J = {j ∈ I|xj < 0} 6= ∅. Then

∑
j∈J

n∑
k=1

ajkxk = 0,

which is equivalent to∑
j∈J

∑
k∈J

ajkxk +
∑
j∈J

∑
k∈I\J

ajkxk = 0.

Notice that
∑

j∈J
∑

k∈J ajkxk =
∑

k∈J(
∑

j∈J ajk)xk < 0, because
∑

j∈J ajk >

0, for each k ∈ J , given the assumptions on A. All the coefficients of the second

term fall off the diagonal of A and are thus negative, while the corresponding

components of x are non-negative since k 6∈ J . Hence the second term is non-

positive, reaching a contradiction. This shows that x ≥ 0. A similar reasoning

implies that x ≤ 0, and x must actually be equal to zero. Hence A is invertible.

�

Lemma 4 Let S = (I,D, (Ti)i∈I , p, (ui)i∈I) be a mechanism design problem,

let µ be an incentive efficient mechanism, let (λ, α) ∈ (×i∈IRTi
++)×(×i∈IRTi×Ti

+ )
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be a pair of vectors that satisfy the conditions of Lemma 2, let j ∈ I, let t̄j ∈ Tj,
and let W λ =

∑
i∈I

∑
ti∈Ti λi(ti)Ui(µ|ti). Then it is possible to construct a

decision d̂ and utility functions (ûi)i∈I defined on (D ∪ {d̂})× T such that

1. ûi(d, t) = ui(d, t), for each d ∈ D, each i ∈ I, and each t ∈ T ;

2. µ satisfies the conditions of Lemma 2 for (λ, α) in Ŝ = (I,D∪{d̂}, (Ti)i∈I , p, (ûi)i∈I);

3. Ûj(d̂|t̄j) = W λ/λj(t̄j);

4. Ûj(d̂|t′j) = 0 if t′j ∈ Tj \ {tj};

5. Ûi(d̂|ti) = 0, for all i ∈ N \ {j} and all ti ∈ Ti.

Proof: Let f : RI×T → RI×T be the linear transformation that maps any

profile of ex-post utilities to its associated virtual utilities:

(f(u))i(t) =
1

p(ti)
[(λi(ti) +

∑
t′i

αi(t
′
i|ti))ui(t)−

∑
t′i

αi(ti|t′i)ui(t−i, t′i)],

for each u ∈ RI×T , each t ∈ T , and each i ∈ I. Let f̂ : ×i∈IRTi be an analogue

transformation for interim utilities:

(f(u))i(ti) =
1

p(ti)
[(λi(ti) +

∑
t′i

αi(t
′
i|ti))ui(ti)−

∑
t′i

αi(ti|t′i)ui(t′i)],

for each u ∈ ×i∈IRTi , each ti ∈ Ti, and each i ∈ I. Lemma 3 implies that both

f and f̂ are invertible.

Let

v(t) = max
d∈D

∑
i∈I

v
(λ,α)
i (d, t),

for each t ∈ T . Consider then the interim profile of virtual utilities u defined

as follows:

uj(t̄j) =
W λ

λj(t̄j)

(∀(i, ti) 6= (j, t̄j)) : ui(ti) = 0,
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and let v be the associated profile of interim utilities, i.e. v = f̂(u). Notice

that ∑
i∈I

∑
ti∈Ti

p(ti)vi(ti) =
∑
tj∈Tj

p(tj)(f̂(u))j(tj) = W λ =
∑
t∈T

p(t)v(t).

Lemma 1 implies that there exists x : T → RI such that

1. (∀t ∈ T ) :
∑

i∈I xi(t) = v(t), and

2. (∀i ∈ I)(∀ti ∈ Ti) : vi(ti) =
∑

t−i
p(t−i|ti)xi(t).

The conditions of the present lemma are then satisfied if one defines d̂ and

the utility functions such that ûi(d̂, t) = (f−1(x))i(t), for all i ∈ I and t ∈ T .

Condition 1 is satisfied by definition, while condition 2 follows from Lemma 3

and the fact that
∑

i∈I xi(t) = v(t), ∀t ∈ T . The three remaining conditions

follow from simple computations:∑
t−i∈T−i

p(t−i|ti)ui(d̂, t) =
∑

t−i∈T−i

p(t−i|ti)(f−1(x))i(t) = (f̂−1(v))i(ti) = ui(ti),

for each ti ∈ Ti and each i ∈ I. �

Lemma 5 Let I be a finite set of individuals, let (Ti)i∈I be a collection of type

sets, let p ∈ ∆(T ) be a common prior with full support, let λ ∈ ×i∈IRTi
++, and

w ∈ ×i∈IRTi
++. Then there exists a collective decision di,ti, for each combina-

tion (i, ti), and a utility function ui : {dj,tj |j ∈ I, tj ∈ Tj} × T → R, for each

i ∈ I, such that the following conditions hold true for each (i, ti):

1. Ui(di,ti |ti) = [
∑

j∈I
∑

tj∈Tj λj(tj)wj(tj)]/λi(ti);

2. Ui(di,ti |t′i) = 0, for all t′i ∈ Ti \ {ti};

3. Uj(di,ti |tj) = 0, for all j ∈ N \ {i} and all tj ∈ Tj;

4.
∑

j∈I
λj(t′j)

p(t′j)
uj(di,ti , t

′) ≤
∑

j∈I
λj(t′j)

p(t′j)
wj(t

′
j), for all t′ ∈ T
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Proof: Let

v(t) =
∑
j∈I

λj(tj)

p(tj)
wj(tj),

for each t ∈ T . Notice that∑
t∈T

p(t)v(t) =
∑
t∈T

∑
j∈I

p(t−j|tj)λj(tj)wj(tj) =
∑
j∈I

∑
tj∈Tj

λj(tj)wj(tj).

Fix i ∈ I and t̄i ∈ Ti. The previous computation implies that the conditions

of Lemma 1 are satisfied for u ∈ ×i∈IRTi defined as follows:

ui(t̄i) = [
∑
j∈I

∑
tj∈Tj

λj(tj)wj(tj)]/p(t̄i)

(∀(j, tj) 6= (i, t̄i)) : uj(tj) = 0.

Let x : T → RI be a function that satisfies the two conditions of Lemma 1. It is

then easy to check that the four conditions of the present lemma are satisfied if

one defines di.t̄i and the utility functions so that uj(di.t̄i , t) = p(tj)xj(t)/λj(tj),

for all tj ∈ Tj and all j ∈ I. �
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Second Supplemental Appendix (not for publication)

The purpose of this second supplemental appendix is to provide a non-technical

and informal roadmap for the proof of Theorem 2 (found in the main Appendix

of the paper), and to illustrate some of the difficulties one encounters when

working under asymmetric information, making arguments significantly more

intricate than in the special case of complete information.

Let’s start by presenting Kalai’s argument to show that any monotone,

efficient, and anonymous solution must be egalitarian (under complete infor-

mation).17 Remember that, in line with classical models of bargaining and

social choice at the time, his argument is phrased in the space of utilities.

Let’s assume that there are only two individuals so that we can rely on graph-

ical representations. Consider a problem U , as depicted on Figure A. The

egalitarian solution u∗ falls on the 45-degree line. Consider then the symmet-

ric problem V that is included in U and contains u∗. Given that the solution is

anonymous, it must pick u∗ as the solution for V . Monotonicity then implies

that u∗ must be the solution to U , as well, and we are done. This argument was

possible because of the possibility of constructing a symmetric problem V that

is included in U and that contains u∗. This is always possible given Kalai’s as-

sumption that problems are comprehensive. The argument to prove Theorem

2 in the Appendix aims at following a similar line of proof while working in

the space of interim utilities. Yet here is a first difficulty: incentive constraints

may make problems non-comprehensive even when utilities are fully transfer-

able as in quasi-linear mechanism design problems. So, let’s revisit Kalai’s

argument by considering another problem U ′ of complete information that is

non-comprehensive, see Figure B. To make a better connection with the proof

of Theorem 2, let’s also consider the basic collective decisions underlying the

problem. Remember indeed that one must consider these underlying collective

decisions in order to write incentive constraints. So, suppose more precisely,

that there are three collective decisions available, d0, d1, and d2, and that util-

17To be more precise, Kalai (1977) offers a characterization of proportional solutions with
an axiom of Homogeneity instead of Anonymity.
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ity functions are such that the convex hull of the image of these three decisions

in the utility space deliver U ′. Notice that Kalai’s original argument does not

apply in this case, as there is no symmetric subset of U ′ that contains v∗ in the

relative interior of its Pareto frontier (in order to apply R-MON, given that

MON is incompatible with Pareto efficiency on the expanded domain). One

way to determine the solution to U ′ is to consider an expanded problem U ′′

(as in Figure C) by adding a collective decision d3 whose image in the utility

space expands U ′ into a right triangle. Kalai’s argument applies to U ′′, imply-

ing that the solution to that problem is v∗. Applying IIA, one concludes that

the solution to U ′ is v∗, as desired. Yet there is a substantial problem when

trying to replicate that argument under incomplete information: constructing

U ′′ from U ′ (in the space of interim utilities) is far from trivial. First notice

that requiring I-WELF combined with R-MON does not imply that R-MON

can be applied directly in the space of utilities. Indeed, one must keep the

original set of collective decisions available when expanding a problem. This

has no real consequence under complete information, but may have surprising

effect on the set of achievable interim utilities under incomplete information,

for the following two reasons:

1. Mechanism designers can build mechanisms that wisely combine addi-

tional decisions with existing ones in a way that provide mutually ben-

eficial insurance to individuals. In other words, the impact of adding

collective decisions (or equivalently utility vectors ex-post) may have

complex implications at the interim stages because of expected utility,

especially when participants hold different beliefs due to asymmetric in-
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formation.

2. Mechanism designers can build mechanisms that wisely use additional

decisions to better manage incentive constraints. Adding simple new col-

lective decisions often dramatically moves the incentive efficiency frontier

in a way that makes the application of IIA in a subsequent stage impos-

sible.

This is where Myerson’s virtual utility construct becomes most helpful. In-

deed, his technique identify, for any incentive efficient mechanism, additional

collective decisions that effectively linearize the set of interim utilities that are

individually rational when added to the problem, while leaving the original

mechanism incentive efficient in the enlarged problem. This explains the con-

sideration of S2 in the proof of Theorem 2. Even so, the problem S2 may

be highly asymmetric, and not contain any symmetric sub-problem. This is

where I-WELF becomes handy, as it allows to construct S3, which is still

typically asymmetric, but can be solved by considering an alternative fully

symmetric problem where incentive constrainst are effectively non restrictive,

cf. S4. The consideration of S5, whose set of collective decisions is the union

of those available in either S3 or S4. This reasoning worked because S4 was

fully symmetric, which required the consideration of a problem where all the

individuals hold the same number of possible types and beliefs are derived

by Bayesian updating from a uniform common prior. The second half of the

proof of Theorem 2 (see page 40) shows how one can deal with problems that

involve type sets of different cardinality by applying IST. In addition, I-WELF

(or even the weaker property of probability invariance, as assumed by Myer-

son (1984a)) shows that there is no loss of generality in solving only problems

with a uniform common prior when type sets have equal cardinality - see the

construction of S1 at the beginning of the proof. This completes the argument.
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