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Abstract

A group of rational individuals with common interest need to select
one of two outcomes. The optimal decision depends on whether cer-
tain premises or pieces of evidence are established as being true, and
each member receives a noisy signal of the truth value of the relevant
premises. Should the group reach a decision by voting whether each
premise is true or false, or should they simply vote on the outcome? We
show that for any finite number of individuals, the premise-based voting
rule is more efficient in aggregating information than the outcome-based
rule. However, generically, the gain from using the premise-based over
the outcome-based rule can only be marginal when numerous individ-
uals express independent opinions. Indeed, the outcome-based game is
almost always asymptotically efficient.
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1. Introduction

Many collective decisions share the following features. A group of individ-

uals need to decide which of two possible actions to take. The members of

the group agree that the optimal action depends on whether certain premises

or pieces of evidence are established as being true. For example, in a crimi-

nal trial, a jury (or alternatively, judges in an appeals court) needs to decide

whether the defendant is guilty or innocent. The jurors may agree that the

defendant should be convicted if certain premises are found to be true, e.g.,

if there are reliable eyewitnesses who saw him at the scene of the crime, if a

weapon was found with the defendant’s fingerprints, if he could not produce a

credible alibi, etc. Another example is that of a tenure decision in academia.

The members of the committee may agree that the person should be granted

tenure if it is established that the candidate has had an impact on the profes-

sion, and/or he has sufficiently many quality publications, and/or he is a good

citizen, etc. Similar considerations arise when the representatives of a nation

or a group of nations need to decide whether or not to implement sanctions

against some country. The decision will depend on whether the individuals

members believe that some set of premises are true, e.g., the country in ques-

tion is developing weapons of mass destruction, it is committing crimes against

humanity, it has violated international treaties, and so forth.

The most common procedure for reaching a group decision is to hold a vote.

Oftentimes, individual members of the group have only partial or imprecise

information on the truthfulness of the relevant premises, hence, a vote may

help in aggregating the members’ beliefs about the validity of the premises. A

natural question that arises is whether the group decision depends on whether

one aggregates the individual members’ beliefs about the relevant premises or

over the action to be taken. This question is at the heart of the “doctrinal

paradox” or “discursive dilemma,” first introduced and studied by Kornhauser

and Sager (1986), Pettit (2001), and Brennan (2001), and which has received

an increased interest over the past decade in varied academic literatures in-

cluding computer science, economics, law, philosophy, and political science

(see e.g. List and Puppe (2009) for a survey).
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The “paradox” or “dilemma” stems from the fact that the group decision

may be different depending on which aggregation method is used: premise-

based or outcome-based. To illustrate this, consider the jury example described

above. Suppose the jurors agree that the defendant is guilty if and only if

two pieces of evidence are established. Each juror has formed an opinion

regarding the validity of the relevant pieced of evidence, and these opinions

are aggregated by a majority vote. Suppose that a third of the jury is convinced

that both pieces of evidence are established, a second third is convinced that

only the first piece of evidence is established, while the rest is convinced that

only the second piece of evidence is established. If members of the jury vote

truthfully, then the defendant will go free if the vote is on the final verdict,

while both pieces of evidence would pass - resulting in a guilty verdict - if

voting on evidence. Beyond this simple example of logical conjunction over

two premises, numerous results have been established to show the impossibility

of finding aggregation methods that deliver logically consistent judgments.

Various applications have been cited in the literature, including those listed

above.

These impossibility results motivate the next question to investigate, which

is to determine which approach – aggregating opinions about premises versus

outcomes – is best. Different criteria are conceivable. The purpose of the

present paper is to compare the outcome-based versus the premise-based pro-

cedures in terms of their ability to aggregate information in the presence of

strategic individuals with common interest. Inspired by the Condorcet Jury

theorem, we assume that each individual independently receives some noisy

signals regarding the truth value of the premises. Much of the literature on vot-

ing and information aggregation has focused on the case of common interest:

there is a “truth” out there (e.g., guilty/innocent), as well as an unambiguous

optimal action, given the truth. Opinions may vary because of different inter-

pretations or realizations of signals.1 We, therefore, assume that individuals

1Some notable examples include Austen-Smith and Banks (1996), Feddersen and Pe-
sendorfer (1998), McLennan (1998) and the references therein, and more recently, Persico
(2004).
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all share the same standard regarding which combinations of premises must

lead to a positive decision. As in the doctrinal paradox, we consider two aggre-

gation procedures, whereby individuals submit their opinions regarding either

premises or outcomes. A critical difference, though, is that these reports need

not be truthful (in the sense of systematically reporting their signals). For

instance, an individual is free to report that some premise is positive while

he received a null signal, or to report that a positive decision should be taken

while his signal is such that a null decision should be taken. Why might he

be inclined to do so? There are at least two reasons. First he may be more

concerned about incorrectly taking a positive decision versus incorrectly tak-

ing the null decision, or vice versa. Second, an individual can influence the

truth value of a premise, or the final decision, only when he is pivotal, and his

opinion conditional on being pivotal may be different from his signal. We will

thus investigate and compare the outcomes that can be supported by Bayesian

Nash equilibrium (BNE) strategies in both the premise and the outcome-based

games.2

Our first result establishes that gathering opinions about premises is sys-

tematically at least as good as gathering opinions about outcomes. This may

seem tautological at first, since the premise-based approach offers more degrees

of freedom in participant’s actions. Yet this argument is invalid as a proof, as

voters are strategic and different voting procedures induce different incentives.

Instead, akin to revelation principles, our first result (see Proposition 1) estab-

lishes that any symmetric3 BNE of the outcome-based game can be replicated

by a symmetric BNE of the premise-based game. This holds for any super-

majority rule that is not unanimous, for a large class of common preferences,

independently of the logical connection between premises and outcomes, inde-

pendently of the probability distribution of the true states, and independently

of the probability distributions of the signals conditional on the states.

2We do not model any communication that may occur between the individual members
of the group. This direction is left for future research.

3We restrict attention to symmetric BNEs throughout the paper because these are the
most natural in our symmetric environment, but all our results remain valid over the set of
all BNEs.
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Our second contribution is to show that the converse result is not true.

In particular there are cases where the ex-ante welfare of a symmetric BNE

of the premise-based game is strictly larger than the ex-ante welfare of any

symmetric BNE in the outcome-based game (see Example 1).

While making collective decisions by gathering opinions regarding premises

can lead to a strictly higher ex-ante welfare in the presence of finitely many in-

dividuals, our third result is to show that, generically, gains over the outcome-

based approach can only be marginal when sufficiently many individuals ex-

press independent opinions. Indeed, we prove that the outcome-based game

is almost always asymptotically efficient (see Proposition 3).4 To the best of

our knowledge, this is the most general result concerning the asymptotic ef-

ficiency of outcome-based voting. Hence, as a corollary of Proposition 1, the

premise-based game is almost always asymptotically efficient, as well. Yet we

also provide an alternative sufficient condition for asymptotic efficiency in the

premise-based game (see Proposition 2) that is useful to show that there exist

(non-generic) cases where the premise-based game is asymptotically efficient,

while the outcome-based game is not (see Example 2).

Related Literature

Strategic considerations were first introduced to the literature on the doc-

trinal paradox by Dietrich and List (2007). Instead of investigating informa-

tion aggregation, they investigate which of the two rules is more robust against

strategic manipulations in a context where individuals want the final decision

to be as close as possible to their exogenous opinion (private value setting).

In our model, instead, individuals share the common preference of taking a

collective decision that is best given the true state, while their opinions are

derived from noisy signals of that state. Their results are then quite different.

For instance, truth-telling is a weakly dominant strategy in the outcome-based

game of their model, while it need not even be a Bayesian Nash equilibrium

in ours.
4Our treatment of asymptotic efficiency follows the tradition of virtually all works on

information aggregation (e.g., Feddersen and Pesendorfer (1997,1998) and more recently,
Ahn and Oliveros (2011a,b) and the references therein).
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Bozbay et al. (2011) are interested in characterizing procedures for ag-

gregating reports on the truthfulness of premises for which truth-telling is an

efficient BNE. Note that they take a mechanism-design approach, while we

study a fixed mechanism (any given super-majority) in two different scenar-

ios (premise vs. outcome-based). Bozbay et al. (2011) focus on the case of

two independent signals on two premises, where the disutility from making a

mistake is independent of its type (e.g. convicting an innocent versus letting

a guilty person go free). Their main results are concerned with a class of

mechanisms, referred to as “quota rules”, that precludes the outcome-based

voting rule.5 These rules are characterized by two numbers representing the

percentage of positive votes needed on each of the two premises to make it pass

before applying the society standard to determine the final decision.6 The au-

thors provide a condition on the parameters of their model that is necessary

and sufficient to guarantee the existence of a quota rule for which truth-telling

forms an efficient BNE of the premise-based game.7

The existence of a quota rule that induces an efficient BNE in truthful

strategies may be viewed as a knife-edge result in the following sense: when-

ever such a rule exists, the pair of premise-specific thresholds must be unique

(see their Theorem 4 and Corollary 2). Their results are irrelevant for our

model whenever these two thresholds differ. A difficulty with their approach

is that the mechanism designer needs to know precisely the parameters of the

model if his objective is to design a quota rule for which truth-telling is an

efficient BNE. Furthermore, he would have to change the mechanism whenever

a new situation with different parameters occurs. Even though truth-telling

need not be a BNE when the same quotas are applied to all premises, there

5The outcome-based procedure violates their independence axiom. It also violates their
monotonicity axiom when the society standard is different from classical conjunction or
disjunction (or, in their terminology, when individuals have consequentialist preferences of
the first type). Results that rely on these axioms cannot apply to our outcome-based game.

6Our premise-based game is thus a special case of quota rule where both quotas are
equal.

7Bozbay et al. also present other results (their Corollary 1, Proposition 1, and Theorem
5) that extend beyond the class of quota rules, and which also apply to outcome-based
voting.
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will always be other BNEs. The best BNEs may have some focal attractive-

ness, and changing the equilibrium play as the underlying parameters of the

model change may be viewed as a milder requirement compared to the need

of changing the mechanism altogether. Nevertheless, the results of Bozbay et

al. may be helpful in deriving conditions on the parameters of a model that

are necessary and sufficient for a given mechanism- such as the premise-based

or outcome-based voting rule - to admit an efficient truthfull equilibrium.

We now turn our attention to papers that relate only to our asymptotic

results. A few authors have investigated the “truth-tracking” properties of

outcome-based and premise-based aggregation methods - see List (2005) and

Bovens and Rabinowicz (2006) for the earliest results on the topic (see also List

(2006, Section 6)). The difference between our approaches is that they assume

that individuals report their opinions truthfully (as in the original Condorcet

Jury theorem). Accounting for the incentives of strategic individuals leads to

fundamentally different asymptotic results. Indeed, the main point of the small

truth-tracking literature is that premise-based and outcome-based aggregation

methods are not systematically comparable, as one may dominate the other

and vice versa as a function of the relative reliability of the signals on each

premise.

The systematic study of strategic multi-issue voting and information ag-

gregation has been initiated by Ahn and Oliveros (2011a, 11b). The first paper

is less relevant as it focuses on pure private values. The second paper, on the

other hand, compares the asymptotic efficiency of a joint trial vs. two separate

trials for two defendants in an environment with common values. Given the

generality of Ahn and Oliveros’ (2011b) framework, our premise-based game

could essentially be seen as a particular case of their joint trial scenario with

only a binary decision to be chosen. On the other hand, our outcome-based

game bears little resemblance with their split trial scenario. Comparing the

type of asymptotic results we derive,8 two differences are worth noting. First,

we provide an example where the premise-based game is asymptotically strictly

superior to the outcome-based game, while their main result shows that the

8Ahn and Oliveros (2011b) focus exclusively on asymptotic results.
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joint trial game is asymptotically efficient if and only if their split trial game is.

Second, the translation of their sufficient condition for asymptotic efficiency

in our setting is much less permissive than the ones we derive. In particular,

their condition would be far from being generic in the outcome based approach.

This point will be further discussed in Section 5.

2. Model

There exists a set of K issues or premises that are relevant for some binary

decision. Each premise may be either true (denoted by the value 1) or false

(denoted by 0). The actual state of nature is thus a vector ω ∈ {0, 1}K .

The relative likelihood of these various states is captured by a probability

distribution π ∈ ∆({0, 1}K). There are n individuals and each individual i

receives only a noisy signal of the actual state - si ∈ {0, 1}K . Signals are

drawn independently (conditional on the state) across individuals. Let p :

{0, 1}K → ∆({0, 1}K) be the function that describes the relative likelihood of

the various signals as a function of the actual state: pω(x) is the probability of

receiving the signal x ∈ {0, 1}K conditional on the fact that the actual state

is ω.

The society’s standard, f : {0, 1}K → {0, 1}, determines which decision to

take – “0 = fail” vs. “1 = pass” – as a function of the validity of the various

underlying premises. In order for the problem to be non-trivial, we assume

that there exist a state ω such that f(ω) = 0 and another state ω′ such that

f(ω′) = 1. Simple examples include logical conjunction (unanimity) – all the

underlying premises must be true in order for the decision to be positive –,

logical disjunction – at least one underlying premise must be true in order for

the decision to be positive–, and majority – at least K+1
2

of the underlying

premises must be true in order for the decision to be positive. Obviously, a

society’s standard may also include more complicated logical relations between

premises and decisions. For instance, the first premise together with a majority

of the remaining ones must be true in order for the decision to be positive.

All the standards provided so far happen to be monotone: a positive deci-

sion is taken at a state ω whenever there exists a state ω′ such that ω ≥ ω′ and
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a positive decision is taken at ω′. Note that one can think of yet other natural

examples where the standard is not monotone. For instance, a country may

decide that it needs to expand its military capability only if there is a threat

either from the north or the south, but not if intelligence shows that neither

the north nor the south have hostile plans, nor if both the north and the south

have hostile plans (e.g. because there is no way to defend oneself against a

coordinated attack). Our results do not rely on monotonicity, and are valid

for any non-trivial standard.

It is assumed that each individual shares the same standard as the society.

Individuals have the common objective of trying to take the decision that is

right for the actual state. This means that individuals’ utilities are defined

by comparison between the actual decision and f(ω): 0 if match, −q if the

decision is strictly below f(ω), and −(1 − q) if the decision is strictly above

f(ω).

A super-majority voting rule is a general method to make collective judge-

ments. Given a threshold θ ∈ (1
2
, 1), a judgement is positive if at least a

fraction θ of the population votes in its favor.9 Given a θ-majority voting rule,

decisions can then be taken via two different natural mechanisms. In a premise-

based approach, individuals are asked to submit ballots regarding the validity

of all premises. The θ-majority rule is then applied premise-by-premise, and

the society’s standard is applied to determine the final decision. Formally, in-

dividual i’s ballot in the premise-based game is a vector bi ∈ {0, 1}K . Let then

τ k(bk) be premise k’s revealed truth value: 1 if
∑

i∈I b
k
i ≥ θn, and 0 otherwise.

The final outcome associated with the profile b of ballots is f((τ k(bk))Kk=1).

Individual i’s strategy in this game is a function βi : {0, 1}K → ∆({0, 1}K),

where βi(si) is the probability distribution with which he will decide which

ballot to submit, conditional on his signal si.
10

In an outcome-based approach, each individual is only asked to submit his

9In this paper we take the voting rule to be exogenously given and compare the equi-
libria of two voting mechanism. An interesting question, left for future research, is how to
optimally design the voting rule for each voting procedure.

10We implicitly assume that individuals cannot abstain. Note that by the common-interest
assumption, individuals would not want to abstain.
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opinion regarding the final decision - not the premises. Individual i’s ballot in

that case is just an element b̂i ∈ {0, 1}. The decision is positive if and only if

at least a fraction θ of the ballots are equal to 1. Individual i’s strategy in this

game is a function β̂i : {0, 1}K → ∆({0, 1}). With slight abuse of notation,

β̂i(si) will denote the probability with which he will vote for the decision to

pass, conditional on his signal si.

In either game, a profile of strategies form a Bayesian Nash equilibrium

(BNE) if the action prescribed by the strategy of each player is optimal for

each signal he might receive. While not needed in any of our results, we will

restrict attention to symmetric BNEs. Given that both games are symmetric,

these equilibria are more intuitive and more focal.

3. Superiority of the Premise-Based Approach

Proposition 1 Let β̂ = (β̂1, . . . , β̂n) be a symmetric BNE in the outcome-

based game. Then there exists a symmetric BNE in the premise-based game,

β = (β1, . . . , βn), such that for every vector of signal realizations, the strategy

profile β induces the same probability distribution over decisions as β̂.

Proof: By assumption, there exists a state ω such that f(ω) = 0. For

notational simplicity, one may redefine the truth value of premises so that

f(0, . . . , 0) = 0. The rest of the proof is written under this assumption. We

also know by assumption that there exists ω̄ such that f(ω̄) = 1.

For every voter i, and for every signal realization si, define βi(si) to be

a mixed strategy that plays action ω̄ with probability β̂i(si) and plays the

action (0, . . . , 0) with probability 1− β̂i(si). It follows that for a given vector

of signal realizations, the probability that the decision is passed under β is

equal to the probability that at least a fraction θ of the voters chose ω̄, which

in turn, equals to the probability that at least a fraction θ of the voters chose

the action 1 under β̂.

Assume β is not a BNE. Then there is a player i, a signal si and a pure

action ai, such that, given si and β−i, player i strictly prefers to choose ai ∈

10



{0, 1}K over βi(si). Voter i’s expected utility when playing ai after receiving

a signal si is equal to∑
ω∈Ω

Prob(ω|si)
∑
s−i

Prob(s−i|ω, si)
∑

a−i∈{0,1}K×(I\{i})

Prob(a−i|s−i, β−i)ui(a, ω),

where ui(a, ω) denotes i’s utility when each player j has submitted the ballot

aj (which determines the collective decision to be implemented) and ω is the

true state.

By definition of β, Prob(a−i|s−i, β−i) is positive only if aj = (0, . . . , 0) or

ω̄, for all j ∈ I \{i}. Let Xi be the subset of such ballot profiles with k∗ ballots

of the form (0, . . . , 0) and n−1−k∗ ballots of the form ω̄. Voter i’s action has

no impact on the final outcome when a−i 6∈ Xi, and we can thus ignore those

terms when computing i’s optimal action. In other words, it must be that∑
ω∈Ω

Prob(ω|si)
∑
s−i

Prob(s−i|ω, si)
∑

a−i∈Xi

Prob(a−i|s−i, β−i)ui(a, ω)

is strictly larger than the same expression where ai is replaced by βi(si). Given

the definition of Xi, either the collective decision is one (“pass”) when playing

ai against any a−i ∈ Xi or the collective decision is zero (“fail”) when playing

ai against any a−i ∈ Xi.

Consider now the outcome-based game, and let X̂i be the set of ballot

profiles for voters different from i such that k∗ of them cast a 0-ballot and

n − k∗ − 1 cast a 1-ballot. A similar reasoning to the one developed for the

premise-based game implies that voter i of type si picks an action âi ∈ {0, 1}
so as to maximize∑

ω∈Ω

Prob(ω|si)
∑
s−i

Prob(s−i|ω, si)
∑

â−i∈X̂i

Prob(â−i|s−i, β̂−i)ui(â, ω),

where X̂i is the set of vectors â−i ∈ {0, 1}I\{i} with exactly k∗ null components.

By construction of β, it must be that Prob(a−i|s−i, β−i) = Prob(â−i|s−i, β̂−i),
for each a−i ∈ Xi, with â−i ∈ X̂i given by âj = 1 when aj = ω̄ and âj = 0 when
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aj = (0, . . . , 0). So, if ai induces a positive collective decision (“pass”) when-

ever i is pivotal in the premise-based game, then voter i of type si would be

better off in the outcome-based game by playing âi = 1 instead of β̂i(si) when

others play β̂−i. If ai induces the zero collective decision (“fail”) whenever i

is pivotal in the premise-based game, then voter i of type si would be better

off in the outcome-based game by playing âi = 0 instead of β̂i(si) when others

play β̂−i. This contradicts the fact that β̂ forms a BNE of the outcome-based

game, and we have thus proved that β is a BNE of the premise-based game.

�

Note that Proposition 1 is not a corollary of McLennan (1998). That

paper showed that ex-ante efficient symmetric strategy profiles must be BNE

in games with common interest. Since the strategy space is larger in the

premise-based approach, it follows as a corollary that the most efficient BNE

of the premise-based game is at least as efficient than the most efficient BNE

of the outcome-based game. Yet common-interest games often admit BNEs

other than the efficient symmetric one. Proposition 1 establishes that any

symmetric BNE of the outcome-based game can be replicated by a symmetric

BNE of the premise-based game.

The converse does not hold. There are robust situations where symmetric

BNE outcomes of the premise-based game cannot be achieved by any sym-

metric BNE of the outcome-based game. The next example illustrates an

even stronger point, namely that the maximal ex-ante welfare achievable by

a symmetric BNE can be strictly larger in the premise-based than in the

outcome-based game.

Example 1 Consider a problem with three premises, and three individuals.

The society’s standard is to take a positive decision if and only if two of three

premises are positive. Suppose that q = 1/2, meaning that the disutility from

a false positive is equal to the disutility from a false negative. Let π be any

prior such that π101 = 0.4 and π100 = π001 = 0.15. Suppose that conditional

probabilities are such that p101(101) = 1/2, p101(100) = 1/4, and p101(001) =

1/4, while pω(ω) = 1 for all ω 6= (1, 0, 1). We start by computing the best ex-

ante welfare that can be achieved by a symmetric BNE in the outcome-based
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game. Given McLennan’s (1998) result, it amounts to computing the largest

ex-ante welfare that can be achieved via any symmetric strategy profile. Given

the signal structure, it is easy to check that an optimal strategy profile will

have β̂(s) = 0 for all s such that f(s) = 0 and s is different from (1, 0, 0) and

(0, 0, 1), and β̂(s) = 1 for all s such that f(s) = 1. Symmetry then allows us to

restrict attention without loss of generality to the case β̂(1, 0, 0) = β̂(0, 0, 1).

If α denotes this common number, then rather straightforward computations

allow to show that the ex-ante welfare of an individual (same for all, given

that they share a common interest) is equal to:

1

4
α3 − 9

20
α2 +

3

20
α− 1

10
.

This expression is maximized at α = 1/5. One can check that the ex-ante

welfare from truth-telling in the premise-based game is already strictly larger

than the maximal welfare achievable in the outcome-based game (the exact

difference is equal to 0.0235).

Observe that this example is robust in the sense that there exists an open

set of conditional probabilities in ∆(Ω)Ω around p such that the maximal ex-

ante welfare associated to a symmetric BNE is strictly larger in the premise-

based game than in the outcome-based game, for any of profile r of conditional

probabilities in that set. For each strategy profile, the ex-ante welfare (in both

games) is a linear function of the probabilities associated with each profile of

votes conditional on the various states. These probabilities vary continuously

with r, and hence the sequence of functions that determines the ex-ante welfare

as a function of the strategy profile converges uniformly to the ex-ante welfare

function associated with p as r approaches p. The maximal value of the ex-ante

welfare (derived from choosing the optimal strategy profile) will thus converge

to the maximal value at p when r approaches p, and it must thus be that

the premise-based becomes strictly superior compared to the outcome-based

whenever q is close enough to p.

4. Large Groups and Efficiency at the Limit

We start by proving a simple lemma that will allow us to derive a useful
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sufficient condition for asymptotic efficiency in the premise-based game.

Lemma 1 Let θ ∈ [1/2, 1), and (αl)
L
l=1, (βl)

L
l=1 be two vectors with compo-

nents in [0, 1]. If minl αl > maxl βl, then there exists (x, y) ∈ [0, 1]× [0, 1] such

that

(∀l = 1, . . . L) : αlx+ (1− αl)y > θ

(∀l = 1, . . . L) : βlx+ (1− βl)y < θ

Proof: Let α = minl αl and β = maxl βl. Consider the vector

(x, y) = (θ, θ) + (ε,− ε
2

[
α

1− α
+

β

1− β
]).

If ε is small enough, then (x, y) ∈ [0, 1]2. Observe that αlx + (1 − αl)y ≥
αx+ (1− α)y, for all l, because x > y and αl ≥ α. In addition,

αx+(1−α)y = θ+αε−(1−α)
ε

2
[
α

1− α
+

β

1− β
] > θ+αε−(1−α)

ε

2
[
α

1− α
+

α

1− α
] = θ,

where the inequality follows from the fact that α > β. Hence αlx+(1−αl)y >

θ, as desired.

Similarly, observe that βlx + (1− βl)y ≤ βx + (1− β)y, for all l, because

x > y and βl ≤ β. In addition,

βx+(1−β)y = θ+βε−(1−β)
ε

2
[
α

1− α
+

β

1− β
] < θ+βε−(1−β)

ε

2
[
β

1− β
+

β

1− β
] = θ,

where the inequality follows from the fact that α > β. Hence βlx+(1−βl)y <

θ, as desired. �

The lemma is useful in the following way. Suppose that the objective is to

implement some positive decision when the state falls in some subset A of Ω,

and to implement the other decision when the state falls in a disjoint subset

B of Ω. Suppose also that there is a set S of signals such that the probability

of getting a signal in S given any true state in A (cf. the αl’s) is strictly larger

than the probability of getting a signal in S given any true state in B (cf.

the βl’s). Then it is possible to find a “separating mixed strategy” - voting
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for the positive decision with probability x when the signal falls in S, and

with probability y when the signals falls outside of S – such that the desired

decisions are implemented for sure in a large population of independent voters

who follow this strategy in a super-majority game with threshold θ. The next

proposition applies this idea issue by issue.

Proposition 2 Suppose that, for all k ∈ {1, . . . , K}, there exists a set Sk ⊆
{0, 1}K of signals such that the probability of receiving a signal in Sk at any

state ω such that ωk = 1 is strictly larger than the probability of receiving a

signal in Sk at any state ω such that ωk = 0:

min
ω s.t. ωk=1

∑
s∈Sk

pω(s) > max
ω s.t. ωk=0

∑
s∈Sk

pω(s).

Then there exists a sequence of symmetric BNEs in the premise-based game

such that the probability of error in each state goes down to zero as n grows.

Proof: Observe that McLennan’s (1998) result allows to limit ourselves to

prove a weaker statement, namely that there exists a sequence of symmetric

strategies (not necessarily in equilibrium) in the premise-based game such that

the probability of error in each state decreases to zero as n grows. Indeed, any

symmetric strategy profile will be dominated by another strategy profile that is

ex-ante efficient, and which will thus be a symmetric BNE, as well as achieving

efficiency at the limit.

Fix a premise k, and let (x, y) be the two numbers derived in the previous

Lemma, with the various α’s being equal to
∑

s∈Sk
pω(s), with ω varying in

{0, 1}K such that ωk = 1, and the β’s being equal to
∑

s∈Sk
pω(s), with ω

varying in {0, 1}K such that ωk = 0. Let then β̂ be a strategy such that

each individual votes positively on premise k with probability x whenever the

signal falls in Sk, and with probability y otherwise. The previous Lemma and

the law of large numbers imply that the probability of having a number of

positive votes on premise k larger than θn converges to 1 at any state ω such

that ωk = 1, and that the probability of having a number of positive votes on

premise k smaller than θn converges to 1 at any state ω such that ωk = 0. In
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other words, the probability of error on any premise goes down to zero as n

grows if these strategies are followed, and the probability of making the wrong

decision also goes down to zero, a fortiori. �

A similar technique would allow us to prove the following result for asymp-

totic efficiency in the outcome-based game: if there exists a set S ⊆ {0, 1}K of

signals such that the probability of receiving a signal in S at any state ω with

f(ω) = 1 is strictly larger than the probability of receiving a signal in S at

any state ω with f(ω) = 0, then there exists a sequence of symmetric BNEs in

the outcome-based game such that the probability of error in each state goes

down to zero as n grows. Instead of proving this claim, we establish an even

weaker sufficient condition for the outcome-based game. This new condition

will allow us to derive several key results in this section and the next. From

now on, let Ω := {0, 1}K denote the set of states (or signals), let I be the set

of states ω such that f(ω) = 0, and let G = Ω \ I.

Proposition 3 Fix θ ∈ [1/2, 1). Suppose that the collection of vectors (pω)ω∈Ω

describing the probability distribution of signals as a function of the true state

satisfy the following condition:

(∃x ∈ RΩ) : pω · x > 0, for all ω ∈ G and pω · x < 0, for all ω ∈ I.

Then there exists a sequence of symmetric BNEs in the outcome-based game

such that the probability of error in each state goes down to zero as n grows.

Proof: As in the proof of the previous Proposition, McLennan’s (1998)

result allows to limit ourselves to prove a weaker statement, namely that there

exists a sequence of symmetric strategies (not necessarily in equilibrium) in the

outcome-based game such that the probability of error in each state decreases

to zero as n grows.

Notice that x can be taken as close as desired to the null vector in RΩ, as λx

satisfies the same set of inequalities as x, for each λ > 0. Hence consider an x

small enough so that (θ, . . . , θ)+x ∈ [0, 1]Ω. Consider then the mixed strategy

β where an individual votes positively on the final decision with probability
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θ + x(s) if he receives the signal s. Trivially, we have that pω · β > θ, for all

ω ∈ G, and pω ·β < θ, for all ω ∈ I. The law of large numbers implies that the

probability of having a number of positive votes on the final decision larger

than θn converges to 1 at any state ω ∈ G, and that the probability of having

a number of positive votes on the final decision smaller than θn converges to

1 at any state ω ∈ I. In other words, the probability of making the wrong

decision goes down to zero when n grows, as desired. �

The stronger sufficient condition, stated right before Proposition 3, can

now be derived as a corollary of that proposition and Lemma 1.

Corollary 2 Suppose that there exists a set S ⊆ Ω of signals such that:

min
ω∈G

∑
s∈S

pω(s) > max
ω∈I

∑
s∈S

pω(s).

Then there exists a sequence of symmetric BNEs in the outcome-based game

such that the probability of error in each state goes down to zero as n grows.

Proof: By Lemma 1, there exists (y, z) ∈ [0, 1]2 such that y
∑

s∈G pω(s) +

z
∑

s∈I pω(s) is strictly larger than θ, for all ω ∈ G, and strictly smaller than θ

for all ω ∈ I. Hence the assumption of Proposition 3 is satisfied for x defined

as follows: x(s) = y − θ if s ∈ G and = z − θ if s ∈ I. �

Another immediate corollary of Proposition 3 establishes that the outcome-

based game is generically asymptotically efficient.

Corollary 3 Fix θ ∈ [1/2, 1). Suppose that the collection of vectors (pω)ω∈{0,1}K

describing the probability distribution of signals as a function of the true state

are linearly independent. Then there exists a sequence of symmetric BNEs in

the outcome-based game such that the probability of error in each state goes

down to zero as n grows. In particular, asymptotic efficiency is guaranteed at

almost all p ∈ ∆(Ω)Ω.

Proof: Fix ε > 0. Consider now the system of equations pω · x = ε, for all

ω ∈ G and pω ·x = −ε, for all ω ∈ I. This system admits a solution x since the

matrix (pω)ω∈{0,1}K is invertible, and the previous proposition thus applies. �
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By Proposition 1, asymptotic efficiency is guaranteed in the premise-based

game whenever it happens in its outcome-based variant. We conclude this

section by providing an example showing that the converse does not hold. It

also shows that the sufficient condition stated in Proposition 3 does not imply

the one stated in Proposition 2. This comes in sharp contrast with Ahn and

Oliveros (2011b) where asymptotic efficiency is shown to be achievable in a

trial-by-trial mechanism if and only if it is achievable via combined voting.

The difference in results stems from the fact that our outcome-based game is

different from their split trial scenario, as we explained in the Introduction.

Example 2 Consider a problem with three premises – K = 3 – and the

society’s standard being the simple majority – f(ω) = 1 if and only if at least

two premises are positive. Suppose that conditional probabilities are defined

as follows: p010 picks (1, 1, 1) with probability α and (0, 0, 0) with probability

1−α, p110 picks (1, 1, 1) with probability β and (0, 0, 0) with probability 1−β,

p011 picks (1, 1, 1) with probability γ and (0, 0, 0) with probability 1− γ, p111

picks (1, 1, 0), (1, 0, 1) and (0, 1, 1) with equal probability, while pω picks ω for

sure for any other state ω. We claim that, whenever γ > 0 and max{γ, 1/3} <
α < min{β, 2/3}, there exists a sequence of symmetric strategy profiles in the

premise-based game such that the probability of error converges to zero in

every state, but not in the outcome-based game.

We begin by showing that Proposition 2 applies. Take S1 as the set of all

signals for which the first component is positive. The probability of getting

a signal in S1 is 2/3 in (1, 1, 1), β in (1, 1, 0), and 1 in any other ω such that

ω1 = 1. The probability of getting a signal in S1 is α in (0, 1, 0), γ in (0, 1, 1),

and 0 in any other ω such that ω1 = 0. It is thus true that the probability

of getting a signal in S1 is larger at any state ω for which ω1 = 1 than at

any state ω′ for which ω′1 = 0. Take S2 as the set of all signals for which the

second component is positive. It is easy to check that the minimal probability

of getting a signal in S2, conditional on the second component of the state

being positive, is equal to min{2/3, α, β, γ}, while the probability of getting a

signal in S2, conditional on the second component of the state being zero, is

zero. Finally, take S3 as the set of signals for which the third component is
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positive, minus (1, 1, 1), plus (0, 0, 0). The probability of getting a signal in

S3 is 2/3 in (1, 1, 1), 1− γ in (0, 1, 1), and 1 in any other ω such that ω3 = 1.

The probability of getting a signal in S3 is 1− α in (0, 1, 0), 1− β in (1, 1, 0),

and 0 in any other ω such that ω1 = 0. It is thus true that the probability of

getting a signal in S3 is larger at any state ω for which ω1 = 1 than at any

state ω′ for which ω′1 = 0.

We now show that it is impossible to reach asymptotic efficiency in the

outcome-based game. Consider a group of size n. The distribution of the

number of positive votes when the state is (0, 1, 0) is the sum of n independent

draws of a variable that picks 1 with probability αxn(111) + (1 − α)xn(000)

and 0 with the complementary probability, where xn denotes the probability

ascribed by an optimal strategy for a group of size n to send a positive mes-

sage as a function of the signal. Similarly, the distribution of the number of

positive votes when the state is (1, 1, 0) is the sum of n independent draws

of a variable that picks 1 with probability βxn(111) + (1 − β)xn(000) and 0

with the complementary probability. Also, the distribution of the number of

positive votes when the state is (0, 1, 1) is the sum of n independent draws of

a variable that picks 1 with probability γxn(111) + (1− γ)xn(000) and 0 with

the complementary probability. Given that α falls strictly in between γ and β,

it must be that αxn(111) + (1− α)xn(000) is larger or equal to the minimum

of βxn(111) + (1 − β)xn(000) and γxn(111) + (1 − γ)xn(000). Hence, if the

probability of having a super-majority of positive votes increases to 1 in both

(1, 1, 0) and (0, 1, 1), then it also increases to 1 in (0, 1, 0). This shows that

asymptotic efficiency cannot be reached in the outcome-based game.

5. Further Comparison with Ahn and Oliveros (2011b)

In this last section, we show that a natural analogue of Ahn and Oliveros’

(2011b) sufficient condition for asymptotic efficiency to our outcome-based

game is significantly stronger than the one derived in Proposition 3. Here is

the natural analogue of their condition in our framework:

There exists SI and SG ⊆ Ω such that SI ∩ SG = ∅ and (1)
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1. (∀ω ∈ I) :
∑

s∈SI pω(s) >
∑

s∈SG pω(s), and

2. (∀ω ∈ G) :
∑

s∈SG pω(s) >
∑

s∈SI pω(s).

In other words, it is strictly more likely to get a signal in SG rather than

a signal in SI when the true state is associated with a positive decision, and

vice versa when the optimal decision at the true state is zero.

First observe that condition (1) trivially implies the condition stated in

Proposition 3, simply by taking x(s) = 1 if s ∈ SG, −1 if s ∈ SI , and 0

otherwise. On the other hand, condition (1) is significantly stronger than

the condition appearing in Proposition 3. For instance, it does not allow to

establish the generic asymptotic efficiency of the outcome-based game, as we

did in Corollary 3. To see this, consider for instance the case of two premises,

with a society standard where the positive decision is optimal if and only if

both premises are positive. It is easy to check that condition (1) does not

apply for any collection of conditional probabilities such that p11(11) < 1/2

and p00(11) < 1/2. Such a set clearly contains an open subset of ∆(Ω)Ω.

Notice that such distributions are not unreasonable at all. It is quite possible,

for instance, that signals on the two premises are drawn independently, and

that the probability of getting a positive signal is systematically rather low

(e.g. it is overall difficult to establish the evidence of a crime even if they are

factually true). Asymptotic efficiency at the limit can be guaranteed, though,

if the probability of getting a positive signal conditional on the premise being

true is larger than the probability of receiving a positive signal conditional

on the premise being false. Indeed, let αk be the probability of receiving a

positive signal when premise k is true, and βk be the probability of receiving

a positive signal when premise k is false. Corollary 2 implies that asymptotic

efficiency is guaranteed in the outcome-based game whenever αk > βk (simply

take S = {11}, since α1α2 > α1β2, β1α2 > β1β2). Yet both p11(11) and

p11(00) will be smaller than 1/2 (and hence condition (1) does not apply) if

α1α2 < 1/2.
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