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Abstract

Myerson’s [Cooperative games with incomplete information. Int. J. Game Theory 13 (1984
96] extension of theλ-transfer value to cooperative games with incomplete information foc
among other things on the strength of the incentive constraints at the solution for determin
power of coalitions. We construct an intuitive three-player game where the player whoseonly con-
tribution is to partly release the two other players from the incentive constraints they face whe
cooperate, receives a zero payoff according to Myerson’s solution. On the contrary, the rand
der arrival procedure attributes a strictly positive payoff to him. Our example is thus an ana
the banker game of Owen [Values of games without side payments. Int. J. Game Theory 1
95–109] that was designed for evaluating Shapley’sλ-transfer value under complete informatio
Asymmetric information now takes up the role that was formerly attributed to the lack of tra
ability of utilities.
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1. Introduction

Cooperative game theory proposes models explaining how the benefits of coop
are shared between the participants.

The Shapley (1953) value plays a prominent role in the class of fair solutions de
for games with transferable utility (TU). Numerous axiomatic and non-cooperative ju
cations were given.

Later on, techniques were developed in order to extend the Shapley value to gam
non-transferable utility (NTU). For instance, the fictitious-transfer procedure of Sh
(1969) (see also Myerson, 1992) allows to extend any solution concept defined f
games to some larger class of NTU games. When applied to the Shapley (1953)
it gives the so-calledλ-transfer value or the Shapley NTU value. The pertinence of
λ-transfer value was tested afterwards in many different ways. In particular, the b
game of Owen (1972) appeared to be a very constructive example. Two players ge
some surplus by cooperating (e.g. via the provision of a public good, or via mutually
ficial exchanges), but are limited in their ability to share this surplus. The third playe
“banker”) can only release them from this restriction. In this context, should he rece
strictly positive payoff? According to theλ-transfer value, the answer is no. Other fairn
criteria, such as the random order arrival procedure (see Maschler and Owen, 1989)
a positive answer to the question.

Adding the possibility of asymmetric information raises two conceptual issues.
the players may have an interest to communicate and hence to agree on mechanism
consequence of the revelation principle, we have to restrict ourselves to direct mech
that are Bayesian incentive compatible. Second, the bargaining stage itself may con
formation, a player insisting heavily on a particular incentive compatible mechanism
be a signal about his private information. Myerson (1984b) proposed a general no
value that takes both aspects into account. He generalized the fictitious-transfer pro
in order to extend the Shapley (1953) value to a large class of cooperative games w
complete information. Computing the solution can be difficult and, as far as we kno
example with more than two players has ever been studied before.

The solution focuses among other things on the strength of the incentive constra
the solution for determining the power of coalitions. Starting from the bargaining pro
studied in Section 10 of Myerson (1984a), we add a third player whoseonly contribution
is to partly release the two original players from the incentive constraints they face
they cooperate. Some may consider this contribution important enough for giving a s
positive payoff to the third player in any fair solution. The random order arrival proce
appears to abide to this principle, while Myerson’s (1984b) solution does not. Our ex
is thus an analog of the banker game of Owen (1972) where asymmetric informatio
takes up the role that was formerly attributed to the lack of transferability of utilities.

Other values for exchange economies under asymmetric information have bee
posed by Allen (1991) and by Krasa and Yannelis (1994). Their main objective is to
fair solutions when bargaining takes place at the ex-ante stage, i.e. before the agen
their private information. This constitutes an important difference with respect to M
son’s model. We show in section 5 that, in this context, the third player does not ge
any additional surplus by cooperating with the two other players. Hence he receives
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payoff according to both theλ-transfer value and the random order arrival procedure. T
is no puzzle.

2. The example

We consider a three-player cooperative game whose intuitive interpretation goes
lows. Players 1 and 2 face a bilateral trade problem under asymmetric information. P
owns one unit of a good that has no value for himself, but that has some value for pla
This value can be relatively low ($30), with probability 0.2, or relatively high ($90), with
probability 0.8. The problem is then to determine the quantity sold by player 2 an
price paid by player 1. Thus far, the example is quite similar to the one treated by My
(1979, 1984a). Although utilities are transferable ex-post, the two players are limi
their abilities to share the cooperative gains at the interim stage. For instance, the
nism that gives the entire surplus to player 2 in both states (i.e. “give the good to pl
in exchange of 30 or 90 dollars depending on the value he attributes to the good”)
incentive compatible. Player 3 allows to weaken these incentive constraints. We mod
fact by adding collective decisions that give the whole surplus in both states to eithe
ers 2 or 3 when the three players cooperate. The question is then: how much should
1 and 2 reward the third player for his services?

Following the formalism introduced by Myerson (1984b), we define the game a
lows: N = {1,2,3}, T1 = {L,H }, T2 = T3 = {∗}, Prob(L) = 0.2, D{1} = {d1}, D{2} =
{d2}, D{3} = {d3}, D{1,3} = {[d1, d3]}, D{2,3} = {[d2, d3]}, D{1,2} = {[d1, d2], d12, d21},
D{1,2,3} = {[d1, d2, d3], [d12, d3], [d21, d3], d213, d312}, and

[d1, d2, d3] [d12, d3] [d21, d3] d213 d312

u1(·,L) 0 30 −60 0 0
u1(·,H) 0 90 0 0 0
u2(·,L) 0 0 90 30 0
u2(·,H) 0 0 90 90 0
u3(·,L) 0 0 0 0 30
u3(·,H) 0 0 0 0 90

For each coalitionS, DS represents the set of collective decisions available to its m
bers. As far as coalition{1,2} is concerned, decision[d1, d2] represents the no-exchan
alternative. Decisiond12 (respectivelyd21) represents the situation where player 2 rece
the good from player 1 for free (respectively in exchange of $90). Any other trans
money from player 1 to player 2 (between $0 and $90) can be represented by a lott
fined on{d12, d21}. As far as the grand coalition is concerned, the collective decisionsd213
andd312 are added toD{1,2} × D{3}. Decisiond213 (respectivelyd312) amounts to give the
whole surplus to player 2 (respectively 3) in both states of the world. Putting some po
weight ond312 allows to reward player 3 for his services.

Let S be a coalition. Amechanism for S is a functionmS : TS → �(DS). WhenS

is different from {1,2} or {1,2,3}, there exists only one mechanism, asDS then cor-
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responds to a singleton. LetS be the coalition{1,2} or the grand coalition and le
mS be a mechanism. Then,mS is incentive compatible if 1 ∑

d∈DS
mS(d|t)u1(d, t) �∑

d∈DS
mS(d|t ′)u1(d, t), for each(t, t ′) ∈ {L,H } × {L,H } such thatt �= t ′. In other

words,mS is incentive compatible if and only if player 1 does not have a strict in
est to misreport his type. Letm and m′ be two mechanisms for the grand coalitio
Then,m′ interim Pareto dominates m if u1(m

′(L),L) � u1(m(L),L), u1(m
′(H),H) �

u1(m(H),H), 0.2u2(m
′(L),L)+0.8u2(m

′(H),H) � 0.2u2(m(L),L)+0.8u2(m(H),H)

and 0.2u3(m
′(L),L) + 0.8u3(m

′(H),H) � 0.2u3(m(L),L) + 0.8u3(m(H),H), with at
least one of the four inequalities being strict. The mechanismm is interim incentive effi-
cient if it is incentive compatible and there does not exist any other incentive comp
mechanism that interim Pareto dominates it.

3. Virtual utility solution

A game with transferable utility is a functionv : P(N) → R. Shapley’s (1953) value i
denotedSh, i.e.

Shi (v) :=
∑

S∈P(N) s.t. i∈S

(s − 1)!(n − s)!
n!

(
v(S) − v(S \ {i})),

for eachi ∈ N . We assume that it appropriately represents fairness for TU-games
complete information.

Myerson’s (1984b) solution is an extension of theλ-transfer value (see Shapley, 196
defined for cooperative games with incomplete information. Thevirtual utilities used in or-
der to express interpersonal comparisons of utilities do not only involve a possible res
of the individual utilities, but also some adjustment associated to the presence of inc
constraints. For our example, a mechanismm for the grand coalition is anM-solution if it
is incentive compatible and there exists a vector(λ1.L, λ1.H ;λ2;λ3) ∈ R

4++ and a vector
(α(L|H),α(H |L)) ∈ R

2+ such that


(1) α(H |L)(u1(m(L),L) − u1(m(H),L)) = 0,

(2) α(L|H)(u1(m(H),H) − u1(m(L),H)) = 0,

(3) v
(λ,α)
1 (m(L),L) = Sh1(v

(λ,α)(L)),

(4) v
(λ,α)
1 (m(H),H) = Sh1(v

(λ,α)(H)),

(5) 0.2v
(λ,α)
2 (m(L),L) + 0.8v

(λ,α)
2 (m(H),H) = 0.2Sh2(v

(λ,α)(L))

+ 0.8Sh2(v
(λ,α)(H)),

(6) 0.2v
(λ,α)
3 (m(L),L) + 0.8v

(λ,α)
3 (m(H),H) = 0.2Sh3(v

(λ,α)(L))

+ 0.8Sh3(v
(λ,α)(H)),

1 Let S ∈ P(N), let dS ∈ DS , let t ∈ T and leti ∈ S. Then,ui(dS, t) is well-defined, asui((dS, dN\S), t) =
ui((dS, d ′

N\S), t) for each(dN\S, d ′
N\S) ∈ DN\S × DN\S . The coalitions areorthogonal in the terminology of

Myerson (1984b).
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where, for eachd ∈ D{1,2,3},


v
(λ,α)
1 (d,L) := 1

0.2[(λ1.L + α(H |L))u1(d,L) − α(L|H)u1(d,H)],
v

(λ,α)
1 (d,H) := 1

0.8[(λ1.H + α(L|H))u1(d,H) − α(H |L)u1(d,L)],
v

(λ,α)
2 (d,L) := λ2u2(d,L),

v
(λ,α)
2 (d,H) := λ2u2(d,H),

v
(λ,α)
3 (d,L) := λ3u3(d,L),

v
(λ,α)
3 (d,H) := λ3u3(d,H),

and, for eacht ∈ {L,H }, v(λ,α)(t) is the TU-game whose value is zero for each coali
different from{1,2} and{1,2,3}. WhenS equals{1,2} or {1,2,3}, then

v(λ,α)(S, t) := max
dS∈DS

∑
i∈S

v
(λ,α)
i (dS, tS).

Conditions (1) and (2) are traditional complementary slackness conditions. Giλ

andα, the numberv(λ,α)
i (d, t) is thevirtual utility of decisiond in statet for player i.

It amounts to a rescaling ofui(d, t) that is then adjusted by the utility received ford by
the other types of playeri. The vectorα influences the virtual utility for player 1 only
some incentive constraint is binding at the solution. It can be shown that the M-so
is interim incentive efficient, that the vectorλ supporting it is orthogonal to the set
interim allocations achievable by incentive compatible mechanisms at the interim a
tion (u1(m(L),L);u1(m(H),H);0.2u2(m(L),L) + 0.8u2(m(H),H);0.2u3(m(L),L) +
0.8u3(m(H),H)), and that the vectorα corresponds to a list of dual variables associa
to the incentive constraints involved in this linear programming problem. Thewarrant
equations (3)–(6) can be interpreted as follows. Considering that, in(λ,α)-virtual utilities,
types are verifiable and utilities are transferable, the players should agree on a
anism that generates the(λ,α)-virtual utility profile (Sh1(v

(λ,α)(L)),Sh1(v
(λ,α)(H));

0.2Sh2(v
(λ,α)(L)) + 0.8Sh2(v

(λ,α)(H));0.2Sh3(v
(λ,α)(L)) + 0.8Sh3(v

(λ,α)(H))). Follow-
ing Shapley’s (1969) philosophy the vector(λ,α) specifying the relevant virtual utility
scales, is then determined endogenously in order to obtain the feasibility of the
sponding(λ,α)-virtually fair utility profile.

Proposition 1. (15,45;39;0) is the only interim allocation that can be supported by some
M-solution.

Proof. The pooling mechanism2 (1
2[d12, d3]+ 1

2d213,
1
2[d12, d3]+ 1

2d213) is an M-solution.
Indeed, the conditions are satisfied forλ = (0.2,0.8;1;1) andα = (0,0). It is natural to
takeα(L|H) = α(H |L) = 0 as the mechanism is ex-post optimal, which means tha

2 By convention, a mechanism is denoted by a couple, the first (respectively second) component corres
to the lottery chosen after player 1 reported a low (respectively high) type.
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incentive constraints are not essential. In fact, the mechanism gives the Shapley v
both ex-post games. It generates the interim allocation(15,45;39;0).

We now show that no other interim allocation can be supported by some M-sol
Let m be an M-solution. Let(λ1.L, λ1.H ;λ2;λ3) ∈ R

4++ and(α(L|H), α(H |L)) ∈ R
2+ be

the associated vectors.

(1) u1(m(L),L) � 10 andu1(m(H),H) � 30.
We have{

Sh1(v
(λ,α)(L)) � 1

0.2[(λ1.L + α(H |L))10− α(L|H)30],
Sh1(v

(λ,α)(H)) � 1
0.8[(λ1.H + α(L|H))30− α(H |L)10].

Indeed, player 1 of typet has non-negative marginal contributions in the gamev(λ,α)(t), for
botht ∈ {L,H }, v(λ,α)(N,L) � 1

0.2[(λ1.L+α(H |L))30−α(L|H)90], andv(λ,α)(N,H) �
1

0.8[(λ1.H + α(L|H))90− α(H |L)30].
Developing conditions (3) and (4) appearing in the definition of M-solutions and u

the complementary slackness conditions, the two previous inequalities may be rewr
follows:

A ·
(

u1(m(L),L)

u1(m(H),H)

)
� A ·

(
10
30

)
,

where

A :=
[

λ1.L + α(H |L) −α(L|H)

−α(H |L) λ1.H + α(L|H)

]
.

The matrixA is invertible and its inverse has non-negative entries.3 It is then easy to con
clude.

(2)
∑3

i=1 v
(λ,α)
i (m(t), t) = v(λ,α)(N, t) for eacht ∈ {L,H }.

Indeed, taking a weighted sum of the warrant equations, we obtain that 0.2
∑3

i=1 v
(λ,α)
i

(m(L),L) + 0.8
∑3

i=1 v
(λ,α)
i (m(H),H) = 0.2v(λ,α)(N,L) + 0.8v(λ,α)(N,H).

(3) v(λ,α)(N,L) = 1
0.2[(λ1.L + α(H |L))30− α(L|H)90].

Let us suppose on the contrary thatv(λ,α)(N,L) > 1
0.2[(λ1.L + α(H |L))30− α(L|H)90].

By item (2),m([d12, d3]|L) = 0. So,u1(m(L),L) � 0 which contradicts item (1).

(4) v(λ,α)(N,H) = 1
0.8[(λ1.H + α(L|H))90− α(H |L)30]: similar to item (3).

(5) Sh(v(λ,α)(t)) = (1
2v(λ,α)(N, t), 1

2v(λ,α)(N, t),0) for both t ∈ {L,H }.
Indeed, the third player is a null player (given items (3) and (4)) and the two first pl
are symmetric inv(λ,α)(t), for botht ∈ {L,H }.

(6) m(d312|L) = m(d312|H) = 0.

3 This observation constitutes in fact a particular case of Lemma 1 in Myerson (1983).
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Indeed, given item (5), Eq. (6) appearing in the definition of M-solutions beco
λ3(0.2u3(m(L),L) + 0.8u3(m(H),H)) = 0. In particular, the third player expects a n
payoff fromm.

(7) u1(m(L),L) = 15 andu2(m(H),H) = 45.
Using items (3)–(5), as well as the complementary slackness conditions, the warran
tions (3) and (4) may be rewritten as follows:

A ·
(

u1(m(L),L)

u1(m(H),H)

)
= A ·

(
15
45

)
,

where the matrix A was defined in item (1). A being invertible, it is easy to conclude.

(8) Player 2 expects a payoff of 39 fromm.
By item (7), m([d12, d3]|H) = 1/2. As m is incentive compatible,m([d12, d3]|L) �
1/2 and we must have equality together withm([d21, d3]|H) = 0 in order to have
u2(m(L),L) = 15. At the same time,m([d1, d2, d3]|L) = m([d1, d2, d3]|H) = 0 by item
(2). Then,m(d213|L) = 1/2 andm(d213|H) + m([d21, d3]|H) = 1/2. Anyway,d213 and
[d21, d3] are utility equivalent in the high state.�

4. Random order arrival

We observe that player 3 is considered de facto as a null player according to t
solution. This is due to the fact that the virtual value of coalition{1,2} is computed while
using the vector(λ,α) as specified for the grand coalition. By doing so, we act as if in
tive constraints do not matter in coalition{1,2}, although they do. Even though it is tru
that player 3 does not create any surplus per se, it could look fair to give him some p
payoff, as players 1 and 2 have to rely on him in order to weaken the incentive cons
they face when they cooperate. As it was the case for the banker game under co
information, therandom order arrival procedure generates an interesting alternative to
virtual utility solution in our example. This procedure could also be considered as bei
natural generalization of therandom dictatorship approach proposed by Myerson (1984
to games involving more than two players. We formalize explicitly the procedure
Bayesian game in extensive form, in order to be sure that we correctly take into a
the influence of asymmetric information.

After player 1 has learned his type, a specific ordero of the three players is cho
sen at random according to a uniform probability distribution. Playero(3) proposes a
mechanismm. Afterwards, playero(2) chooses whether to accept playero(3)’s pro-
posal. If he accepts, then playero(1) chooses whether to acceptm. If both players ac-
ceptm, then it is implemented. If playero(2) rejectsm, then he proposes a mechani
m′ : To(1) ×To(2) → D{o(1),o(2)} and playero(3) is left alone, having to choosedo(3). Player
o(1) chooses whether to accept playero(2)’s proposal. If he accepts, thenm′ is imple-
mented. Whenever playero(1) rejects some proposition, there is no cooperation and
outcome is[d1, d2, d3]. For simplicity, we assume that the players accept a proposal
they are indifferent between accepting and rejecting, and that player 1 tells the truth
he is indifferent between lying and telling the truth.
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A strategy for a player specifies an action at each of his information sets. For playe
is contingent on his type. Abelief system specifies a probability distribution over the set
types of player 1 at each information set of players 2 and 3. Aweak sequential equilibrium
(see Myerson (1991)) specifies a strategy for each player and a belief system such

(1) the belief system is consistent in the sense that the beliefs are obtained fro
initial beliefs (i.e. Prob(L) = 0.2) by Bayesian updating on the equilibrium path;

(2) the action of each player at each of his information sets is optimal given his b
and the equilibrium strategies played in the continuation games.

Proposition 2. (15,45;38;1) is the only interim allocation that can be supported by some
weak sequential equilibrium.

Proof. We characterize the set of allocations that can be supported by some weak s
tial equilibrium in each sub-game starting after some specific order of the players ha
chosen. Ifo(3) = 2, player 2 obtains an expected payoff of 78 in equilibrium. Inde
for any proposal of player 2, his expected payoff in the continuation game is low
equal to 78(= 0,2.30+ 0,8.90). On the other hand, he can obtain 78 by proposing, fo
stance, the mechanism(d213, d213). If o = (1,2,3), then player 2 proposes the mechani
([d1, d2], d21) to player 1. This amounts to solve a simple screening game. Given the
ciated reservation utilities(0,0;72) for players 1 and 2, each proposal of player 3 will g
him at most an expected payoff of 6. He can obtain this expected payoff of 6 by prop
for instance, the mechanism(d312, d213). When player 1 is the first mover, matters cou
be more complicated as we have to solve a signaling game. Nevertheless, in our c
mechanism([d12, d3], [d12, d3]) is the most preferred by both types of player 1 and it
isfies the ex-post individual rationality constraints of both players 2 and 3 (it is a
of strong solution using the terminology introduced by Myerson, 1983). In equilibr
player 1 of typeL (respectivelyH ) obtains a payoff of 30 (respectively 90). Similar
for the enumeration(2,1,3), players 1 and 2 “agree” on the mechanism(d12, d12), so
that there is no more surplus left for player 3 who has to distribute the reservation u
(30,90;0) to players 1 and 2. We record the various orderings and the associated “ma
contribution vectors” in Table 1.

The result is obtained by computing the mean of the vectors appearing in the
column. �

Table 1

o MCV (o)

(1,2,3) (0,0;72;6)

(1,3,2) (0,0;78;0)

(2,1,3) (30,90;0,0)

(2,3,1) (30,90;0;0)

(3,1,2) (0,0;78;0)

(3,2,1) (30,90;0;0)
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5. Ex-ante bargaining

Let us briefly study our example when bargaining takes place at the ex-ante stag
Allen (1991) and in Krasa and Yannelis (1994). The players are symmetrically info
at the time of contracting but are asymmetrically informed at the time of implementin
contracts. The main conceptual issue amounts to determine the set of feasible agre
for each coalition. The two previous papers focused on measurability conditions. O
impose incentive compatibility constraints, see Section 4.1.1 of Forges et al. (200
a thorough discussion on that point. Once the set of feasible agreements is specifi
have a characteristic function and we may apply any solution concept defined for
games. Allen, Krasa and Yannelis study, for instance, theλ-transfer value. Let us follow
this approach in our example.

The analysis is valid for both the private measurability and the incentive
straints because of the simple information structure. The ex-ante characteristic
tion is given by: V ({1}) = V ({2}) = V ({3}) = {0}, V ({1,3}) = V ({2,3}) = {(0,0)},
V ({1,2}) = ch{(0,0), (78,0), (−12,90)} and V ({1,2,3}) = ch{(0,0,0), (78,0,0),

(−12,90,0), (0,0,78)}, where ch denotes the convex hull operator. The uniqueλ-
transfer value is(36;36;0). Although player 3 receives a null payoff, there is no p
zle in the present case. Indeed, players 1 and 2 are not constrained at the
stage by the information that player 1 will acquire. Interim individual rationality c
straints are not relevant anymore. For instance, the incentive compatible mech
( 2

15d12 + 13
15d21,

2
15d12 + 13

15d21) for coalition {1,2} gives the whole ex-ante surplus
player 2 as it generates the ex-ante allocation(0;78).4 It is not surprising then that th
random order arrival procedure supports the same ex-ante allocation(36;36;0).

6. Conclusion

The banker game highlighted the fact that theλ-transfer value defined for NTU gam
does not reward the players for some kinds of contribution. This example was at the
of various papers that increased our understanding of the concepts of fairness fo
games. Aumann (1985) axiomatized theλ-transfer value, Maschler and Owen (1989, 19
proposed the consistent Shapley value, an attractive alternative value based on the
order arrival procedure, and Hart and Mas-Colell (1996) developed explicit barga
procedures in order to support it non-cooperatively.

Our example shows that Myerson’s (1984b) value for games with incomplete info
tion is itself insensitive to some informational contributions. Far from being a criti
against Myerson’s approach, we hope that it will stimulate further research on the to
cooperative games with incomplete information.

4 The associated interim allocation(−48,12;78) is not interim individually rational.
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