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Abstract

Myerson’s [Cooperative games with incomplete information. Int. J. Game Theory 13 (1984) 69—
96] extension of the.-transfer value to cooperative games with incomplete information focuses
among other things on the strength of the incentive constraints at the solution for determining the
power of coalitions. We construct an intuitive three-player game where the player wilgson-
tribution is to partly release the two other players from the incentive constraints they face when they
cooperate, receives a zero payoff according to Myerson’s solution. On the contrary, the random or-
der arrival procedure attributes a strictly positive payoff to him. Our example is thus an analog of
the banker game of Owen [Values of games without side payments. Int. J. Game Theory 1 (1972)
95-109] that was designed for evaluating Shapleytsansfer value under complete information.
Asymmetric information now takes up the role that was formerly attributed to the lack of transfer-
ability of utilities.

0 2004 Elsevier Inc. All rights reserved.

JEL classification: C71; C78; D82

Keywords. Cooperative games; Incomplete information; Virtual utility

Y The present paper is a revised version of the fifth chapter of my PhD dissertation written at CORE (Université
Catholique de Louvain, Belgium).
E-mail address: declippel@brown.edu.

0899-8256/$ — see front mattér 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.geb.2004.09.004



74 G. de Clippel / Games and Economic Behavior 53 (2005) 73-82

1. Introduction

Cooperative game theory proposes models explaining how the benefits of cooperation
are shared between the participants.

The Shapley (1953) value plays a prominent role in the class of fair solutions defined
for games with transferable utility (TU). Numerous axiomatic and non-cooperative justifi-
cations were given.

Later on, techniques were developed in order to extend the Shapley value to games with
non-transferable utility (NTU). For instance, the fictitious-transfer procedure of Shapley
(1969) (see also Myerson, 1992) allows to extend any solution concept defined for TU
games to some larger class of NTU games. When applied to the Shapley (1953) value,
it gives the so-called.-transfer value or the Shapley NTU value. The pertinence of the
A-transfer value was tested afterwards in many different ways. In particular, the banker
game of Owen (1972) appeared to be a very constructive example. Two players generate
some surplus by cooperating (e.g. via the provision of a public good, or via mutually bene-
ficial exchanges), but are limited in their ability to share this surplus. The third player (the
“banker”) can only release them from this restriction. In this context, should he receive a
strictly positive payoff? According to the-transfer value, the answer is no. Other fairness
criteria, such as the random order arrival procedure (see Maschler and Owen, 1989), imply
a positive answer to the question.

Adding the possibility of asymmetric information raises two conceptual issues. First,
the players may have an interest to communicate and hence to agree on mechanisms. As a
consequence of the revelation principle, we have to restrict ourselves to direct mechanisms
that are Bayesian incentive compatible. Second, the bargaining stage itself may convey in-
formation, a player insisting heavily on a particular incentive compatible mechanism could
be a signal about his private information. Myerson (1984b) proposed a general notion of
value that takes both aspects into account. He generalized the fictitious-transfer procedure
in order to extend the Shapley (1953) value to a large class of cooperative games with in-
complete information. Computing the solution can be difficult and, as far as we know, no
example with more than two players has ever been studied before.

The solution focuses among other things on the strength of the incentive constraints at
the solution for determining the power of coalitions. Starting from the bargaining problem
studied in Section 10 of Myerson (1984a), we add a third player wbalsecontribution
is to partly release the two original players from the incentive constraints they face when
they cooperate. Some may consider this contribution important enough for giving a strictly
positive payoff to the third player in any fair solution. The random order arrival procedure
appears to abide to this principle, while Myerson’s (1984b) solution does not. Our example
is thus an analog of the banker game of Owen (1972) where asymmetric information now
takes up the role that was formerly attributed to the lack of transferability of utilities.

Other values for exchange economies under asymmetric information have been pro-
posed by Allen (1991) and by Krasa and Yannelis (1994). Their main objective is to study
fair solutions when bargaining takes place at the ex-ante stage, i.e. before the agents learn
their private information. This constitutes an important difference with respect to Myer-
son’s model. We show in section 5 that, in this context, the third player does not generate
any additional surplus by cooperating with the two other players. Hence he receives a zero
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payoff according to both thie-transfer value and the random order arrival procedure. There
is no puzzle.

2. Theexample

We consider a three-player cooperative game whose intuitive interpretation goes as fol-
lows. Players 1 and 2 face a bilateral trade problem under asymmetric information. Player 2
owns one unit of a good that has no value for himself, but that has some value for player 1.
This value can be relatively low ($30), with probability20 or relatively high ($90), with
probability Q8. The problem is then to determine the quantity sold by player 2 and the
price paid by player 1. Thus far, the example is quite similar to the one treated by Myerson
(1979, 1984a). Although utilities are transferable ex-post, the two players are limited in
their abilities to share the cooperative gains at the interim stage. For instance, the mecha-
nism that gives the entire surplus to player 2 in both states (i.e. “give the good to player 1
in exchange of 30 or 90 dollars depending on the value he attributes to the good”) is not
incentive compatible. Player 3 allows to weaken these incentive constraints. We model this
fact by adding collective decisions that give the whole surplus in both states to either play-
ers 2 or 3 when the three players cooperate. The question is then: how much should players
1 and 2 reward the third player for his services?

Following the formalism introduced by Myerson (1984b), we define the game as fol-
lows: N ={1,2,3}, Th = {L, H}, T> = T3 = {x}, Proh(lL) = 0.2, D1y = {d1}, Dy =
{d2}, D3y = {d3}, D3y = {ld1,d3l}, D23y = {ld2,d3l}, D12y = {[d1, d2], d12, d21},

Dy1,2.3y = {[d1, d2, d3], [d12, d3], [d21, d3], d213, d312}, and

| [d1,do,d3] [di2,d3] [d21,d3] do13  d312

ur(-, L) 0 30 —60 0 o0
ur(-, H) 0 90 0 0 o0
uz(-, L) 0 0 90 30 0
uz(-, H) 0 0 90 90 0
us(-, L) 0 0 0 0 30
us(-, H) 0 0 0 0 90

For each coalitior, Dg represents the set of collective decisions available to its mem-
bers. As far as coalitiofil, 2} is concerned, decisiofl1, d»] represents the no-exchange
alternative. Decisiod;, (respectivelyd,1) represents the situation where player 2 receives
the good from player 1 for free (respectively in exchange of $90). Any other transfer of
money from player 1 to player 2 (between $0 and $90) can be represented by a lottery de-
fined on{d12, d»1}. As far as the grand coalition is concerned, the collective decigigns
anddzyo are added tdyy 2, x Dyg). Decisiondzy3 (respectivelydz;2) amounts to give the
whole surplus to player 2 (respectively 3) in both states of the world. Putting some positive
weight onds;» allows to reward player 3 for his services.

Let S be a coalition. Amechanism for S is a functionmg : Ts — A(Dgs). When S
is different from {1, 2} or {1, 2, 3}, there exists only one mechanism, Bg then cor-
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responds to a singleton. Let be the coalition{1, 2} or the grand coalition and let
ms be a mechanism. Them;s is incentive compatible if! ZdeDsmS(du)ul(d, ) >
ZdeDsmS(dW)ul(d, t), for each(s,¢’) € {L, H} x {L, H} such thatr # ¢'. In other
words, mg is incentive compatible if and only if player 1 does not have a strict inter-
est to misreport his type. Letz and m’ be two mechanisms for the grand coalition.
Then,m’ interim Pareto dominates m if uy(m’(L), L) > ui(m(L), L), ur(m’(H), H) >
ur(m(H), H), 0.2uz(m’(L), L)+ 0.8uz(m’(H), H) > 0.2uz(m(L), L)+0.8ux(m(H), H)

and 02u3(m’(L), L) 4+ 0.8us(m’(H), H) > 0.2u3(m(L), L) + 0.8uz(m(H), H), with at
least one of the four inequalities being strict. The mechamisia interim incentive effi-
cient if it is incentive compatible and there does not exist any other incentive compatible
mechanism that interim Pareto dominates it.

3. Virtual utility solution

A game with transferable utility is a functionv : P(N) — R. Shapley’s (1953) value is
denotedh, i.e.

— Dl —s)!
sw= Y IR s ),

n!
SeP(N) S.t.ieS

for eachi € N. We assume that it appropriately represents fairness for TU-games under
complete information.

Myerson'’s (1984b) solution is an extension of théransfer value (see Shapley, 1969)
defined for cooperative games with incomplete information.vitteal utilitiesused in or-
der to express interpersonal comparisons of utilities do not only involve a possible rescaling
of the individual utilities, but also some adjustment associated to the presence of incentive
constraints. For our example, a mechanisrfor the grand coalition is am-solution if it
is incentive compatible and there exists a vectar,, A1.4; A2; A3) € Ri+ and a vector
(a(L|H),a(H|L)) € R? such that

(1) a(HIL)(u1(m(L), L) —ur(m(H), L)) =0,
(2 a(L|H)(u1(m(H), H) —u1(m(L), H)) =0,

@ v mL), L) = S (9 (L)),
@ o n(H), H) = Sy (™ (H)),
(5) 0.205“(m(L), L) + 0.805"“ (m(H), H) = 0.2Sp (v (L))

+0.85p (vM) (H)),
6) 0.208"*(m(L), L) +0.805"* (m(H), H) = 0.2Sh3(v**) (L))
+0.8S3 (v (H)),

1 LetSe P(N), let dg € Dg, lett € T and leti € S. Then,u; (dg, t) is well-defined, as; ((ds, dy\s), 1) =
u,-((dg,d}’\, ) 1) for each(dys, dI/V\S) € Dy\s x Dy\s- The coalitions arerthogonal in the terminology of
Myerson (1984b).
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where, for eacld € D12 3,

v, L) i= g5l +a(HIL)u(d, L) — e(LIH)uy(d, H)),
v, H) == v + a(LIH)ui(d, H) — a(H|L)ui(d, L)],
(“‘)(d L) :=Apuz(d, L),

vSH(d, H) := houa(d, H),

v;} (d, L) = rgus(d, L),

v (d, H) == Agus(d, H),

and, for each € {L, H}, v»%(r) is the TU-game whose value is zero for each coalition
different from{1, 2} and{1, 2, 3}. WhensS equals{1, 2} or {1, 2, 3}, then

v (S 1) = mava(’\ ) (ds, t5).

dse

Conditions (1) and (2) are traditional complementary slackness conditions. &iven
and«, the numbervl.(k"")(d, t) is thevirtual utility of decisiond in stater for playeri.
It amounts to a rescaling of; (d, t) that is then adjusted by the utility received fbiby
the other types of player The vectorx influences the virtual utility for player 1 only if
some incentive constraint is binding at the solution. It can be shown that the M-solution
is interim incentive efficient, that the vectarsupporting it is orthogonal to the set of
interim allocations achievable by incentive compatible mechanisms at the interim alloca-
tion (u1(m(L), L); ur(m(H), H); 0.2u2(m(L), L) + 0.8us(m(H), H); 0.2uz(m(L), L) +
0.8u3(m(H), H)), and that the vectaz corresponds to a list of dual variables associated
to the incentive constraints involved in this linear programming problem. Wéreant
equations (3)—(6) can be interpreted as follows. Considering that).irx)-virtual utilities,
types are verifiable and utilities are transferable, the players should agree on a mech-
anism that generates th@., )-virtual utility profile (Shy(v*® (L)), Shy(v*® (H));
0.2 (v*¥ (L)) + 0.8 (v*¥ (H)); 0.2Shg(v**) (L)) + 0.8S3(v*% (H))). Follow-
ing Shapley’s (1969) philosophy the vectgr, «) specifying the relevant virtual utility
scales, is then determined endogenously in order to obtain the feasibility of the corre-
sponding(}, «)-virtually fair utility profile.

Proposition 1. (15, 45; 39; 0) isthe only interim allocation that can be supported by some
M-solution.

Proof. The pooling mechanist(3[d12, d3]+ 3d213. 3[d12. d3l+ 3d213) is an M-solution.
Indeed, the conditions are satisfied foe= (0.2,0.8; 1; 1) anda = (0, 0). It is natural to
takea(L|H) = a¢(H|L) = 0 as the mechanism is ex-post optimal, which means that the

2 By convention, a mechanism is denoted by a couple, the first (respectively second) component corresponding
to the lottery chosen after player 1 reported a low (respectively high) type.
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incentive constraints are not essential. In fact, the mechanism gives the Shapley value in
both ex-post games. It generates the interim allocatl&n45; 39; 0).

We now show that no other interim allocation can be supported by some M-solution.
Letm be an M-solution. LetA1z, A1 m; A2 A3) € RY, and(a(L|H), a(H|L)) € R? be
the associated vectors.

(1) ur(m(L), L) > 10 andu1(m(H), H) > 30.

We have
S (*9(L)) > 55l(Aer +@(H|L)10— a(L|H)30],
SV (H)) > gal(Arn +a(LIH))30— a(H|L)10].

Indeed, player 1 of typehas non-negative marginal contributions in the gaMé’ (r), for
bothr e {L, H}, v**(N, L) > le[(m +a(H|L))30—a(L|H)90], andv»*) (N, H) >
Tlg[()\l.H +a(L|H))90— a(H|L)30].

Developing conditions (3) and (4) appearing in the definition of M-solutions and using
the complementary slackness conditions, the two previous inequalities may be rewritten as
follows:

u1(m(L), L) 10
A (ul(m(H), H)> ZA- (30) :

where

Ao | ALt alHIL) —a(L|H)
' —a(H|IL)  Ag+a(L|H) |

The matrixA is invertible and its inverse has non-negative enttiiss then easy to con-

clude.

2 Y3, vfk’a)(m(t), 1) =v*® (N, 1) for eachr € {L, H}.
Indeed, taking a weighted sum of the warrant equations, we obtain .ﬁ@:fglv
(m(L), L) +0.8Y"2_ v (m(H), H) =020 (N, L) + 0.80* (N, H).

()

i

(3) v* (N, L) = g5[(h1.L +(H|L)30— a(L|H)90].
Let us suppose on the contrary thé&t* (N, L) > le[(kl,L +a(H|L))30— a(L|H)90].
By item (2),m([d12, d3]|L) = 0. So,u1(m (L), L) < 0 which contradicts item (1).

(@) v (N, H) = g5[(h1n + a(L|H))90— a(H|L)30]: similar to item (3).

(5) Sh(w* (1)) = (Fv* (N, 1), 2> (N, 1),0) for bothr e {L, H}.
Indeed, the third player is a null player (given items (3) and (4)) and the two first players
are symmetric in»%(r), for bothr € {L, H}.

(6) m(ds12lL) =m(dz12/H) = 0.

3 This observation constitutes in fact a particular case of Lemma 1 in Myerson (1983).
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Indeed, given item (5), Eq. (6) appearing in the definition of M-solutions becomes
A3(0.2u3(m (L), L) + 0.8uz(m(H), H)) = 0. In particular, the third player expects a null
payoff fromm.

(7) ur(m(L), L) =15 anduz(m(H), H) = 45.
Using items (3)—(5), as well as the complementary slackness conditions, the warrant equa-
tions (3) and (4) may be rewritten as follows:

e ur(m(L), L) _A. 15
ur(m(H),H) ) 45 )
where the matrix A was defined in item (1). A being invertible, it is easy to conclude.

(8) Player 2 expects a payoff of 39 fram
By item (7), m([d12,d3]|H) = 1/2. As m is incentive compatiblem([d12, d3]|L) <
1/2 and we must have equality together with([d21,d3]|H) = O in order to have
up(m(L), L) = 15. At the same timen([d1, d2, d3]|L) = m([d1, d2, d3]|H) = 0 by item
(2). Then,m(d13L) = 1/2 andm(d213|H) + m([d21, d3]|H) = 1/2. Anyway, d213 and
[d21, d3] are utility equivalent in the high state.

4. Random order arrival

We observe that player 3 is considered de facto as a null player according to the M-
solution. This is due to the fact that the virtual value of coaliffty?} is computed while
using the vecto(, o) as specified for the grand coalition. By doing so, we act as if incen-
tive constraints do not matter in coalitigh, 2}, although they do. Even though it is true
that player 3 does not create any surplus per se, it could look fair to give him some positive
payoff, as players 1 and 2 have to rely on him in order to weaken the incentive constraints
they face when they cooperate. As it was the case for the banker game under complete
information, therandom order arrival procedure generates an interesting alternative to the
virtual utility solution in our example. This procedure could also be considered as being the
natural generalization of thendom dictatorship approach proposed by Myerson (1984a)
to games involving more than two players. We formalize explicitly the procedure via a
Bayesian game in extensive form, in order to be sure that we correctly take into account
the influence of asymmetric information.

After player 1 has learned his type, a specific ordeof the three players is cho-
sen at random according to a uniform probability distribution. Play&y proposes a
mechanismm. Afterwards, playero(2) chooses whether to accept playgi3)'s pro-
posal. If he accepts, then playefl) chooses whether to accept If both players ac-
ceptm, then it is implemented. If playes(2) rejectsm, then he proposes a mechanism
m’ : Tyy X To2) = Dio(1),0(2)) @and playen(3) is left alone, having to choosk 3. Player
0(1) chooses whether to accept play€R)’s proposal. If he accepts, them' is imple-
mented. Whenever player1) rejects some proposition, there is no cooperation and the
outcome igds, d2, d3]. For simplicity, we assume that the players accept a proposal when
they are indifferent between accepting and rejecting, and that player 1 tells the truth when
he is indifferent between lying and telling the truth.



80 G. de Clippel / Games and Economic Behavior 53 (2005) 73-82

A strategy for a player specifies an action at each of his information sets. For player 1, it
is contingent on his type. Aelief system specifies a probability distribution over the set of
types of player 1 at each information set of players 2 andweak sequential equilibrium
(see Myerson (1991)) specifies a strategy for each player and a belief system such that

(1) the belief system is consistent in the sense that the beliefs are obtained from the
initial beliefs (i.e. ProllL) = 0.2) by Bayesian updating on the equilibrium path;

(2) the action of each player at each of his information sets is optimal given his beliefs
and the equilibrium strategies played in the continuation games.

Proposition 2. (15, 45; 38; 1) isthe only interim allocation that can be supported by some
weak sequential equilibrium.

Proof. We characterize the set of allocations that can be supported by some weak sequen-
tial equilibrium in each sub-game starting after some specific order of the players has been
chosen. Ifo(3) = 2, player 2 obtains an expected payoff of 78 in equilibrium. Indeed,
for any proposal of player 2, his expected payoff in the continuation game is lower or
equal to 78= 0, 2.30+ 0, 8.90). On the other hand, he can obtain 78 by proposing, for in-
stance, the mechanisf13, d213). If 0 = (1, 2, 3), then player 2 proposes the mechanism
([d1, d2], d21) to player 1. This amounts to solve a simple screening game. Given the asso-
ciated reservation utilitie®, 0; 72) for players 1 and 2, each proposal of player 3 will give
him at most an expected payoff of 6. He can obtain this expected payoff of 6 by proposing,
for instance, the mechanis(s12, d213). When player 1 is the first mover, matters could
be more complicated as we have to solve a signaling game. Nevertheless, in our case, the
mechanism([d12, d3], [d12, d3]) is the most preferred by both types of player 1 and it sat-
isfies the ex-post individual rationality constraints of both players 2 and 3 (it is a kind
of strong solution using the terminology introduced by Myerson, 1983). In equilibrium,
player 1 of typeL (respectivelyH) obtains a payoff of 30 (respectively 90). Similarly,
for the enumeratior{2, 1, 3), players 1 and 2 “agree” on the mechanigiy, d12), SO
that there is no more surplus left for player 3 who has to distribute the reservation utilities
(30, 90; 0) to players 1 and 2. We record the various orderings and the associated “marginal
contribution vectors” in Table 1.

The result is obtained by computing the mean of the vectors appearing in the right
column. O

Table 1

o MCV (o)
1,2,3 (0,0, 72, 6)
1,3,2 (0,0; 78, 0)
(2,13 (30,90; 0,0)
(2,31 (30,90; 0, 0
3,12 (0,0; 78,0

(3,21 (30,96, 0, 0
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5. Ex-ante bargaining

Let us briefly study our example when bargaining takes place at the ex-ante stage as in
Allen (1991) and in Krasa and Yannelis (1994). The players are symmetrically informed
at the time of contracting but are asymmetrically informed at the time of implementing the
contracts. The main conceptual issue amounts to determine the set of feasible agreements
for each coalition. The two previous papers focused on measurability conditions. Others
impose incentive compatibility constraints, see Section 4.1.1 of Forges et al. (2002) for
a thorough discussion on that point. Once the set of feasible agreements is specified, we
have a characteristic function and we may apply any solution concept defined for NTU
games. Allen, Krasa and Yannelis study, for instance pttr@ansfer value. Let us follow
this approach in our example.

The analysis is valid for both the private measurability and the incentive con-
straints because of the simple information structure. The ex-ante characteristic func-
tion is given by: V({1}) = V({2}) = V({3}) = {0}, V({1,3}) = V({2 3}) = {(0,0)},
V{1,2}) = ch{(0,0),(780),(—1290} and V({1,2,3}) = ch{(0,0,0),(78,0,0),
(—12,90,0), (0,0, 78}, where ch denotes the convex hull operator. The unigue
transfer value ig36; 36; 0). Although player 3 receives a null payoff, there is no puz-
zle in the present case. Indeed, players 1 and 2 are not constrained at the ex-ante
stage by the information that player 1 will acquire. Interim individual rationality con-
straints are not relevant anymore. For instance, the incentive compatible mechanism
(&dvz + Bdo1, Zdio + 22dry) for coalition {1, 2} gives the whole ex-ante surplus to
player 2 as it generates the ex-ante allocati@78).* It is not surprising then that the
random order arrival procedure supports the same ex-ante allo¢a6a36; 0).

6. Conclusion

The banker game highlighted the fact that thgansfer value defined for NTU games
does not reward the players for some kinds of contribution. This example was at the origin
of various papers that increased our understanding of the concepts of fairness for NTU
games. Aumann (1985) axiomatized #x&ransfer value, Maschler and Owen (1989, 1992)
proposed the consistent Shapley value, an attractive alternative value based on the random
order arrival procedure, and Hart and Mas-Colell (1996) developed explicit bargaining
procedures in order to support it non-cooperatively.

Our example shows that Myerson’s (1984b) value for games with incomplete informa-
tion is itself insensitive to some informational contributions. Far from being a criticism
against Myerson’s approach, we hope that it will stimulate further research on the topic of
cooperative games with incomplete information.

4 The associated interim allocatigr-48, 12; 78) is not interim individually rational.
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