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Strategy Choice in The Infinitely Repeated Prisoners’ Dilemma 

BY PEDRO DAL BÓ AND GUILLAUME R. FRÉCHETTE 

We use a novel experimental design to reliably elicit subjects’ strategies in an 

infinitely repeated prisoners’ dilemma experiment with perfect monitoring. We find 

that three simple strategies represent the majority of the chosen strategies: Always 

Defect, Tit-For-Tat, and Grim. In addition, we identify how the strategies 

systematically vary with the parameters of the game. Finally, we use the elicited 

strategies to test the ability to recover strategies using statistical methods based on 

observed round by round cooperation choices and find that this can be done fairly 

well, but only under certain conditions.  
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I. Introduction 

The theory of infinitely repeated games has been an active area of research in recent decades 

and is central to many applications.1 A key insight from this literature is that repeated interactions 

may allow people to overcome opportunistic behavior. While a series of experiments has supported 

this theory, less is known about the types of strategies people actually use to overcome 

opportunistic behavior.2 

Learning which strategies people actually use is of interest for many reasons. First, it can help 

future theoretical work to identify refinements or conditions that lead to these strategies being 

played. Rubinstein (1998, p.142) argues that folk theorems are statements about payoffs and that 

more attention could be paid to the strategies supporting those payoffs. Identifying the set of 

strategies used to support cooperation can provide a tighter test of theory than efforts based on the 

study of outcomes. For example, it allows us to test whether the strategies used coincide with the 

ones that theory predicts should be used (i.e., are the strategies used part of a subgame perfect 

equilibrium?). Second, it can help theorists focus on the most relevant set of strategies. For 

example, an influential literature in biology considers which strategies are likely to survive 

evolution. Given the complexities of working with the infinite set of possible strategies, 

researchers focus on finite subsets of strategies that include those usually studied by theorists (e.g., 

Imhof, Fudenberg and Nowak 2007). If we can identify the strategies that people use, we can better 

define the finite set of strategies that should be considered. Third, it can also help identify those 

environments in which cooperation is more likely to emerge. That is, the results can be used to 

modify the theoretical conditions needed for cooperation.  

Previous papers have estimated the use of strategies from the observed realization of behavior, 

but there are serious hurdles for identification. First, the set of possible strategies is infinite 

(uncountable). Second, while a strategy must specify an action after each possible history, for each 

repeated game, we observe only one actual finite history and not what subjects would have done 

under other histories. Two different approaches have been used to overcome these hurdles. Both 

                                                 
1 Within economics, repeated games have been applied to many areas: industrial organization (see Friedman 1971, Green and Porter 1984 and 

Rotemberg and Saloner 1986), informal contracts (Klein and Leffler 1981), theory of the firm (Baker et al. 2002), public finance (Phelan and 
Stacchetti 2001) and macroeconomics (Rotemberg and Saloner 1986 and Rotemberg and Woodford 1990) to name just a few. 

2 Roth and Murnighan (1978) and Murnighan and Roth (1983) were the first papers to induce infinitely repeated games in the lab by considering 
a random continuation rule. The probability with which the game continues for an additional round induces the discount factor. A large experimental 
literature now exists on infinitely repeated games and is reviewed in Dal Bó and Fréchette (2018). 
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methods start by specifying a family of strategies to be considered, but they differ in how, among 

these, the best-fitting strategies are selected. One approach trades off goodness-of-fit of a set of 

strategies versus a cost of adding more strategies (see Engle-Warnick and Slonim 2004 and 2006; 

and Camera, Casari, and Bigoni 2012; for a related but Bayesian approach to this, see Engle-

Warnick, McCausland, and Miller 2004). A second approach uses maximum likelihood estimation 

either to estimate the prevalence of each strategy in the set under consideration (see Dal Bó and 

Fréchette 2011; Fudenberg, Rand, and Dreber 2012; Camera, Casari, and Bigoni 2012; Fréchette 

and Yuksel 2013; Jones 2014; Breitmoser 2015; Rand, Fudenberg, and Dreber 2015; Vespa 2015; 

Vespa and Wilson 2015; Arechar, Dreber, Fudenberg; and Rand 2016, and others) or to estimate 

the best-fitting strategy while allowing for subject-specific heterogeneity in the transitions across 

states of the strategy (Aoyagi and Fréchette 2009). In this paper, we propose an alternative 

approach to studying strategies: the elicitation of strategies (i.e., a modified strategy method, Selten 

1967 – at the end of the introduction we discuss related work on elicitation of strategies in repeated 

games). We ask subjects to design strategies that will play in their place. A major challenge to the 

use of the strategy method is that it can affect behavior. 3 We introduce our modified strategy 

method in ways that limit the chances that the procedure will affect behavior.  

Note that a distinct advantage of strategy elicitation is that it allows us to consider many more 

strategies than the previously mentioned estimation methods. Consider the following example: a 

repeated game where the researcher thinks it is likely that subjects would use trigger strategies 

with a finite number of periods of punishments. For each possible punishment length, estimation 

requires the addition of one strategy to the set, and this could result in a very large (and difficult 

to identify) set of possibilities. When using elicitation, this can be included as a single strategy 

“type,” where subjects simply determine one parameter, namely the number of periods of 

punishment. This makes elicitation potentially particularly attractive to study environments that 

are not well understood. 

The main findings of the current study fall in two categories: new results about the strategies 

subjects use in infinitely repeated prisoner’s dilemma games with perfect monitoring and an 

assessment of the ability to recover strategies from choices econometrically using experimental 

(as opposed to simulated) data. 

                                                 
3 Hoffman, McCabe, and Smith (1998), Gueth et al. (2001), and Brosig et al. (2003) report evidence that the strategy method may affect behavior. 

Brandts and Charness (2000) find that it does not. See Brandts and Charness (2011) for a review of the literature. 
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With respect to strategies, we find that a majority of subjects choose simple strategies that only 

condition on the outcome from the previous round when allowed complex strategies. In fact, three 

simple strategies represent the majority of the chosen strategies: Always Defect (AD), Tit-For-Tat 

(TFT), and the Grim trigger strategy (Grim). This result holds for both short and long expected 

supergames. We also find that the strategies used to support cooperation depend on the parameters 

of the game in a systematic way: as the probability of continuation increases subjects tend to 

choose shorter punishments (i.e. TFT over Grim).4 In addition, a low payoff to joint cooperation 

is associated with a higher preponderance of a variant of TFT that starts by defection: Suspicious-

Tit-For-Tat (STFT). 

Our elicitation method also provides an opportunity to test the validity of the methodology 

proposed by Dal Bó and Fréchette (2011), called Strategy Frequency Estimation Method (SFEM), 

to estimate the prevalence of strategies using observed round by round cooperation decisions. 

Using the laboratory to generate data that allows evaluating the performance of an estimation 

method is a recent approach (see Bajari and Hortacsu 2005, Fréchette et al. 2005, and Salz and 

Vespa 2019). It has the advantage, over simulation methods, that it does not require the researcher 

to assume the specific way in which the data differs from the assumptions of the model. In a 

simulation, the potential problems are thought of and generated by the researcher (sample size, 

incorrect assumptions about the error distribution, etc.).5 Here, the laboratory serves as an 

alternative, “organic,” data generating process. As such, it can reveal problems we would not have 

considered.6 Furthermore, although a simulation can identify situations where the SFEM does not 

perform well, it does not speak to whether these situations are more or less likely to occur.7 For 

instance, a simulation can identify situations where the SFEM systematically misattributes 

                                                 
4 The only prior studies of strategy choice under perfect monitoring over several parameter combinations are Dal Bó and Fréchette (2011) and 

Fudenberg et al. (2012). Both estimate strategic prevalence from round-by-round behavior; the former considers 6 strategies and the latter 11 in 
their estimation. Neither article studies how strategy choices vary with the payoff parameters or probability of continuation nor games that are as 
long, on average, as the ones considered here. 

5 Even if there is agreement on potential concerns, the exact form they take can be unclear. For instance, many experimenters think session 
effects are present in certain experiments, yet they rarely specify what form they take. These are many, and could be simple to model or come about 
in complicated ways from the interactions of subjects (see Fréchette 2011 for a discussion). The performance of an estimation method will be 
sensitive to the specific way in which these session effects come about. The current approach does not require specifying what, if anything, session 
effects are. 

6 This is, for instance, what Fréchette et al. (2005) report. They find that in using coalition governments data to test theories of bargaining, a 
potential problem that had not been considered is that the specific way people play these games in the laboratory suggests there will be identification 
problems. 

7 Bajari and Hortacsu (2005) use the laboratory in this way when they use experimental data to select which of four structural models performs 
best at recovering the underlying value distribution. They are either establishing the model whose assumptions are “closest” to how people play, or 
the approach that is most robust to the actual deviations from the assumption. Vespa and Salz (2019) illustrate that a potential problem in doing 
counterfactual analysis in a repeated game setting (namely changing equilibrium selection as the parameters change) is indeed an actual problem 
that appears in the laboratory and find that its magnitude is non-negligible in practice. 
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behavior to the wrong strategies. However, it cannot determine whether such strategies are used 

and thus to what extent this is an actual problem. Clearly, elicitation is not a substitute for 

simulations, as they both have advantages, but we believe using the laboratory in this way, as a 

data generating process to study econometric estimation techniques, has much to offer. 

We find that despite the aforementioned hurdles for identification, the estimation methodology 

SFEM does well under certain conditions. In fact, the qualitative results are often correct, even if 

games are relatively short, on average, or if some of the strategies are not included in the 

estimation. However, if a strategy that is excluded is relatively important, then results become 

misleading as the “closest” strategy is overestimated. In contrast, we find that including in the 

estimation strategies that are not used by subjects results only in small errors in the estimated 

prevalence of strategies. Overall, our results show that it is possible to learn about the strategies 

used by the subjects to support cooperation from their round by round cooperation decisions.  

There is related work asking subjects to construct strategies in repeated games. For example, the 

literature starting with Axelrod (1980b) studied how human generated strategies for infinitely 

repeated games perform in computer tournaments. That literature focused on the relative 

performance of different strategies.8 Axelrod’s (1980a) first competition was a finitely repeated 

game. Another study that elicits strategies but focuses on the case of finite repetitions is that of 

Selten et al. (1997). Bruttel and Kamecke (2012) provide a partial elicitation of infinitely repeated 

game strategies. They are not interested in strategies, however; their motivation is to find 

alternative ways of inducing repeated games in the laboratory. Embrey et al. (2016a, 2016b) ask 

subjects for simple strategies in Cournot and Bertrand games allowing for (costly) deviations. 

Elicitation is used in this setting as estimation is not practical given the number of choices in their 

stage games. 

Recent work by Romero and Rosokha (2018, 2019a, and 2019b) uses an alternative method to 

elicit strategies in infinitely repeated games. Their method is more flexible than ours, as it does 

not restrict the set of strategies but rather lets subjects choose actions as a function of freely defined 

choice histories. This approach may be particularly useful in settings for which researchers are 

uncertain of the relevant types of strategies. One disadvantage, however, is that it requires the 

researcher to impose defaults for certain histories (or in case of conflicts). It is also not easy to 

                                                 
8 Most of that literature has moved towards simulations rather than tournaments. Examples of more recent papers using computer simulations 

are Nowak and Sigmund (1993), who introduce stochastic strategies, and Nowak et al. (1995), who add mutations. 
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program, and thus less accessible. Moreover, our design includes several features to reduce or 

eliminate the impact of elicitation on behavior as we will discuss. Romero and Rosokha (2019a) 

use their method to explore the impact of making strategy changes costly, and Romero and 

Rosokha (2019b) extend their approach to allow for mixed strategies and confirm the result that 

most subjects use simple memory-one strategies.  

The next section describes the main experimental design, in particular how we elicit strategies. 

Section III shows that there is no clear evidence that elicitation affected behavior and describes the 

chosen strategies and how their prevalence is affected by the parameters of the game. Section IV 

uses the elicited strategies as a benchmark to study the performance of SFEM (the methodology 

developed in Dal Bó and Fréchette (2011) to estimate the prevalence of strategies using observed 

round by round cooperation decisions). Section V revisits the impact of elicitation, this time 

focusing on strategies.  

II. Experimental Design 

The experimental design is in three phases.9 In all phases, subjects participate in randomly 

terminated repeated prisoners’ dilemma games. A repeated game or supergame consists of multiple 

rounds. After each supergame, subjects are randomly rematched.  

In Phase 1 subjects simply play the randomly terminated supergames. Between supergames, they 

are reminded of the decisions they made in the last supergame and of the choices of the person 

they were matched with in that supergame. The first supergame to end after 20 minutes of play 

marks the end of Phase 1. 

In Phase 2, subjects are first asked to specify a plan of action — i.e., a strategy. The type of plan 

of actions they can specify depends on the session. In some sessions, subjects specify their plan of 

action by answering five questions: “In round 1 select {1, 2},” and the answer to the four questions 

covering all permutations of “After round 1 if, I last selected [1, 2] and the other selected [1, 2], 

then select {1, 2}.”  That is, in these sessions, elicitation is limited to strategies with memory one 

or less.10 We call this the memory-one elicitation interface. The choices are presented as drop-

                                                 
9 When first reading the instructions, subjects are informed that there are multiple phases, but they are only told the procedures for Phase 1. They 

receive additional instructions after Phase 1. Instructions and screen-shots are available in the online appendix A. 
10 While this elicitation is based on the outcome of the previous round, subjects can still report the two memory zero pure strategies, AD and 

AC, by choosing the same action in each of the five questions. For simplicity we will refer to all the strategies that can be elicited with these five 
questions as memory-one. 
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down menus, and the order in which the four questions appear after round 1 is randomized. In 

other sessions, subjects have a larger set of strategies to choose from. In addition to the memory-

one strategies, subjects can choose from a menu of strategies. The menu includes some of the 

strategies they can build under memory-one (for example AD), but it also includes some additional 

strategies allowing for more lenient and forgiving behavior. The complete list of strategies in the 

menu elicitation can be found in online appendix C. The order strategies appear on the screen is 

randomized.  We call this the menu elicitation interface. 

After having specified their plan of action, subjects then play the supergame just as in Phase 1, 

making decisions in every round. At this point, the plan of action they specified is irrelevant. After 

the first supergame in Phase 2, they are shown the decisions they made in this supergame, the 

decisions the person they were matched with made, and the decisions that would have been made 

according to the plan of action they specified, had it been playing instead. They are then asked to 

specify a plan of action for the next supergame. This process (specify a plan; play a supergame 

round by round; receive feedback; and specify a plan) is repeated for 20 minutes. After 20 minutes 

of play in Phase 2, the plan of action takes over for the subjects, finishes the ongoing supergame, 

and plays an additional 14 supergames; this is Phase 3. That is, in Phase 3 the computers follow 

the plans of action elicited in the final supergame of Phase 2 and subjects make no choices.11 

The stage game is as in Table 1. Each subject is exposed to only one treatment (between-subjects 

design). The main treatment variables are the payoff from mutual cooperation R, the probability 

of continuation δ, and the elicitation method. In the main treatments, the payoff from mutual 

cooperation R takes values 32 or 48, δ takes values ½, ¾, or 9/10, and the elicitation interface is 

memory-one or menu.12 Not all combinations of parameters and elicitation methods were used.13 

Three sessions are conducted per treatment with the memory-one interface, and two sessions for 

treatments with the menu interface.14 Payments are based on the sum of the points accumulated in 

the three phases converted to dollars, with 100 points equaling $0.45. Given those parameters, 

                                                 
11 Thus, the data from Phase 2 is composed of round-by-round cooperate-defect choices over multiple supergames, and strategy choices (which 

we will sometimes refer to as the elicited strategies)—one for each supergame. 
12 Appendix D presents results that show the robustness of the results in section III in several dimensions: even longer games (δ = 95/100, R = 

32), as well as richer feedback and an even more flexible elicitation interface for the case of δ = 9/10 and R = 32. 
13 The treatment δ = ½, R = 32 is only implemented with the memory-one interface, while all other main treatments (δ =1/2, R = 48, δ = 3/4, R 

= 32, δ = 3/4, R = 48, and δ = 9/10, R = 32) are implemented using both memory-one and menu interfaces. 
14 The original set of treatments involved the 2x2 factorial of δ = ½ and ¾ and R = 32 and 48 with the memory-one interface. These treatments 

correspond to the ones in Dal Bó and Fréchette (2011). Following a suggestion by James Andreoni we added δ = 9/10, R = 32. Later, based on 
reactions to our initial results, we added sessions using the menu interface for all treatments except δ = ½, R = 32 as that treatment was unlikely to 
yield interesting results. Finally we added the treatments discussed in Appendix D to further stress test the robustness of our findings. 
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cooperation can be supported as part of a subgame perfect equilibrium (henceforth SPE) in all 

treatments, except for the one where δ = 1/2 and R = 32. 

                 TABLE 1—STAGE GAME PAYOFFS 

 C D 

C R, R 12, 50 

D 50, 12 25, 25 
 

 

The main design considerations are the following. First, one concern is that asking subjects for 

a strategy might affect their behavior. For this reason, the design includes Phase 1, where subjects 

have time to learn what they want to do in this environment before the elicitation of strategies 

starts. An additional concern is that subjects may not think in terms of strategies and may not know 

how to describe their plan. To address that concern, the design gives feedback about what both 

subjects did and what the plan of action would have done during Phase 2. This gives subjects an 

opportunity to determine the situations in which the specified plan of action is not doing what they 

actually want to do. Finally, subjects are incentivized to choose the plan of action that is closest to 

what they want to do since whenever they specify a plan of action, this may be the supergame 

where Phase 2 ends and where the plan of action takes over. 

A final concern is whether the possible plans of action that subjects can specify are sufficient to 

express the strategies they want. Note that despite its simplicity, even the memory-one elicitation 

allows subjects to specify 32 strategies. These strategies include those that are independent of the 

past, such as AD and Always Cooperate (AC), and memory-one strategies for which behavior 

depends only on the past round, such TFT.15 The memory-one elicitation also allows subjects to 

construct plans of action that behave exactly as some strategies with memory greater than one. For 

example, the plan of action that starts by cooperating and will keep cooperating if there was mutual 

cooperation in the previous round functions exactly as the strategy Grim in this setup without 

mistakes in implementation.16 The strategy Grim was also directly available in the menu sessions. 

In conclusion, many of the strategies most often mentioned in the literature can be specified by the 

memory-one interface. Moreover, the menu interface allows subjects to construct many strategies 

with memory greater than one. 

                                                 
15 TFT starts by cooperating, and in subsequent rounds, matches what the other subject did in the previous round. 
16 Since Grim can be implemented by this memory-one plan of action, we will call both “Grim.” 



9 

 

III. Experimental Results 

III.a Data Summary 

The main treatments involved a total of 372 NYU undergraduates who participated in 23 

sessions, with an average of 16.51 subjects per session, a maximum of 22 and a minimum of 12. 

The subjects earned an average of $27.10, with a maximum of $43.45 and a minimum of $12.26. 

The average number of rounds per supergame was 1.92, 3.66, and 9.42, in treatments with δ=1/2, 

δ=3/4, and δ=9/10, respectively; and the maximum was 9, 22, and 44, respectively. The number 

of supergames per session (including Phase 3) ranged between 25 and 92. Table A1 in the online 

appendix provides details on each session. 

III.b The Impact of the Elicitation of Strategies on Behavior 

Before studying the subjects’ strategy choices, we briefly establish whether the elicitation of 

strategies affects behavior. We start by studying differences between recommended actions by the 

plan of action and actual actions during phase 2, and how subjects change their plans of action. 

In phase 2, only 7.7 percent of decisions by the subjects disagree with what their plan of action 

would have chosen in that round. This number goes from 11.6 percent in the first supergame to 

6.9 percent in the last one, suggesting that most subjects are learning to express their desired 

strategies. Consistent with this idea, Figure 1 shows that the ratio of subjects who change their 

strategy from supergame to supergame decreases with experience. While 37 percent of subjects 

change their plan of action between the first and the second supergame of phase 2, only 14 percent 

do so between the last two supergames in phase 2. 
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FIGURE 1.  EVOLUTION OF THE FRACTION OF SUBJECTS CHANGING THEIR PLAN OF ACTION (PHASE 2) 

 

The first two columns in Table 2 show that subjects are much more likely to change a plan of 

action if that plan was inconsistent with their actions in the previous supergame. The last column 

shows that the majority (59 percent) of these changes resolve the previous inconsistency. 

 

                TABLE 2—ON CHANGES OF STRATEGIES IN PHASE 2 

 

 
 

Percent of Supergames in which the 
Strategy Is Changed 

 

Percent of New Strategies 
that Solve Previous 

Disagreement 

  

 
Disagreement between Actions and 

Strategy 
in Prior Supergame 

 

δ  R No Yes   

½ 
32 10.08 27.33   74.55 

48 14.19 35.65  59.63 

¾ 
32 12.85 41.51  60.43 

48 13.06 38.10  48.61 

9/10 32 17.00 58.11   58.81 

Overall   12.99 39.60   59.48 

 

Given that not all subjects come up with their desired plan of action immediately, could the 

strategy elicitation affect subjects’ behavior? 
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To answer this question, we use data from Dal Bó and Fréchette (2011) —where the 

experimental design is identical to the one in this paper with the exception that strategies are not 

elicited—as a benchmark to compare with behavior in sessions featuring elicitation.17 The 

comparison of behavior in sessions with and without elicitation needs to overcome three 

difficulties: first, elicitation did not start in the same supergame in all sessions; second, behavior 

evolves across supergames as subjects gain experience (see Figure A1 in online appendix); and, 

third, there are random variations in the cooperativeness of subjects across sessions. To overcome 

these difficulties, we will compare behavior when strategies are being elicited (phase 2) with 

behavior when strategies are not being elicited (phase 1 of this experiment and all supergames in 

Dal Bó and Fréchette 2011) after controlling for experience variables and average cooperativeness 

in each session (this is analogous to a difference-in-difference estimation). To do this we perform 

the following regression analysis at the treatment level: 

௦௠ܥ ൌ ݉ߙ ൅ ௦௠ିଵ݄ݐ݃݊݁ܮߚ ൅ ௦௠݊݋݅ݐܽݐ݈݅ܿ݅ܧߛ ൅ ௦ܧܨ ൅  ,௦௠ߝ

 

where ܥ௦௠ denotes the rate of cooperation in supergame m in session s (this is the actual behavior 

and not the one suggested by the chosen strategy in phase 2), the variable m denotes the supergame 

number (to control for the evolution of behavior), ݄ݐ݃݊݁ܮ௦௠ିଵ	is the number of rounds in the 

previous supergame (which has been shown to affect cooperation), ݊݋݅ݐܽݐ݈݅ܿ݅ܧ௦௠ is a dummy 

equal to one if strategies were elicited in that supergame, ܧܨ௦ are fixed effects at the session level 

(to control for differences in cooperative tendencies across sessions already present in Phase 1), 

and ߝ௦௠ is an error term which may be correlated within a session. The unit of observation is a 

supergame in a session. We consider, alternatively, all rounds, round 1 only, and round 2 after 

each of the possible histories. Studying behavior for each of the possible round 2 histories is 

important as it allows us to study whether elicitation affects contingent behavior (at least for round 

2, for which we have a large enough number of observations). The regression results are presented 

in Table A3 in the online appendix, which shows that the estimated coefficient for Elicitation is 

sometimes positive and sometimes negative, reaching statistical significance at the 10 percent level 

                                                 
17 Procedures for Phase 1 are almost identical to procedures in Dal Bó and Fréchette (2011). Besides issues of timing (Phase 1 is shorter than 

the entire experiment in Dal Bó and Fréchette 2011), the only difference is that subjects were not reminded of the choices they, and the other player, 
had made in the previous supergame between supergames in Dal Bó and Fréchette (2011). Remember that the elicitation instructions were not 
shown to subjects until the start of phase 2, so any differences in behavior in phase 1 cannot be attributed to the elicitation or the expectation of 
future elicitation. 
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in only two of 24 cases.18 Overall, there is little evidence that elicitation affects behavior. An 

additional piece of evidence suggesting that elicitation did not affect behavior is that the order of 

the five questions in the memory-one interface did not affect choices (the fact that behavior is not 

affected by the specific details of the elicitation suggests that elicitation overall does not have an 

effect either). In summary, we have not found evidence that the proposed method for the elicitation 

of strategies systematically affects behavior. We come back to the topic of the effect of the 

elicitation on behavior in section V. 

III.c Is Memory One Enough? 

Before analyzing the strategies subjects use, we discuss whether the memory-one interface is 

sufficient for subjects to express their preferred strategy in this environment. Note that in their 

estimation of strategies, Dal Bó and Fréchette (2011) essentially assumed that the relevant 

strategies were memory-one (all but one of the strategies considered have memory one, and the 

one that did not turned out not to be relevant). By contrast, Fudenberg et al. (2012) allow for four 

memory-2 strategies and two memory-3 strategies among the eleven strategies they consider in 

their estimation and find that a majority of strategies have memory greater than one under 

imperfect public monitoring but that is not the case under perfect monitoring. Their estimated 

prevalence of memory-one strategies under perfect monitoring is between 40 and 100 percent 

depending on the treatment. Hence, whether or not memory-one strategies are sufficient to describe 

play under perfect monitoring is an open question, which the elicitation with an infinite number of 

possible strategies can address more directly and comprehensively than estimation with a small 

number of strategies. 

The results from the menu interface suggest that indeed memory one is sufficient for most 

subjects. Although 76 percent of the subjects chose a strategy from the menu and not from the 

memory-one interface to specify strategies when both are available to them, most of the menu 

strategies selected are equivalent to those available in the memory-one set (for example, AD, Grim, 

and TFT). The main result from the menu interface sessions is that 91 percent of the final strategies 

could be defined using the memory-one interface. More specifically, 97 percent of the strategies 

                                                 
18 A similar conclusion is reached if the same analysis is done without including the data from Dal Bó and Fréchette (2011). In this case, for 

identification, we exploit the fact that elicitation (phase 2) started at different supergames across sessions. 
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in the last supergame for δ=1/2 and R=32 can be defined using the memory-one set of strategies; 

96 percent and 87 percent when δ=3/4 and R=32 or 48, respectively; and 85 percent for δ=9/10 

and R=32. Furthermore, in all treatments, the most popular strategy that cannot be expressed using 

the memory-one interface ranks among the least popular strategies. In only one treatment (δ=9/10 

and R=32), where it ranks fifth, it is not the least popular.19  

In addition to the above, which directly shows that when given the choice, subjects use memory-

one (or less) strategies, we note the following. In the sessions with the memory-one interface, 95 

percent of actions by the last supergame of phase two correspond to what the elicited strategy 

would do. This corresponds to 88 percent of subjects playing exactly as their elicited strategy 

would in all rounds of the last supergame of phase 2. This is another way of seeing that memory-

one strategies are, for the most part, adequate to represent how subjects play in these games. 

III.d Description of strategies 

We start by defining and discussing some key strategies, after which we show their popularity 

by the end of Phase 2 for each treatment. The simplest strategies are Always Cooperate (AC) and 

Always Defect (AD). Another much studied strategy is Tit-For-Tat (TFT), which starts by 

cooperating, and in subsequent rounds matches what the other subject did in the previous round. 

The Grim trigger strategy (Grim) also starts by cooperating, cooperates as long as both players 

have cooperated in the last round, and defects otherwise.20 A strategy that is often discussed in the 

literature is Win-Stay-Lose-Shift (WSLS, also known as Perfect TFT, or Pavlov). It starts by 

cooperating, and cooperates whenever both players made the same choice last round, and defects 

otherwise. WSLS is considered desirable because when it plays itself, it would not defect forever 

after a deviation. Finally, another strategy of interest is suspicious Tit-For-Tat (STFT). It starts by 

defecting and, from then on, matches what the other subject did in the previous round. 

What can be expected? Both subjects choosing AD is a SPE in every treatment, and previous 

experiments on infinitely repeated games have observed situations in which some subjects defect. 

Hence, it seems plausible to expect that AD will be selected. What about strategies that support 

                                                 
19 In online Appendix D we show that these results are robust to considering higher δ (δ=0.95), and elicitation with a larger set of strategies and 

more complete feedback. 
20 More precisely, Grim is the strategy that starts by cooperating and cooperates unless there has ever been a defection in the past. It is not 

possible to exactly construct this strategy using the memory-one interface. However, it is possible to construct a memory-one machine that will be 
equivalent to Grim in how it plays against any other strategy. 
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cooperation? TFT is a likely candidate given that it was the winner in Axelrod’s (1980b) 

tournament. It is also a very intuitive strategy to specify. However, TFT is not subgame perfect in 

general (and in all the treatments we consider). Thus, TFT may not be popular, while WSLS, which 

has performed well in simulations and is a SPE for high δ, could. However, WSLS cannot support 

cooperation for as many values of δ as Grim. The Grim strategy, in that sense, is more robust, and 

it can support cooperation for much lower values of δ. However, once it starts defecting, Grim 

never stops. Thus, in that sense, it is not forgiving, which may make it less appealing. These 

different tensions make it unclear which strategy one should expect to see most. 

Table 3 shows the distribution of chosen strategies at the end of Phase 2 by treatment with a 

focus on the strategies that reach more than 10 percent prevalence in at least one treatment: TFT, 

Grim, STFT and AD.21 To those, we add the two commonly studied strategies: AC and WSLS. 

 

                              TABLE 3—DISTRIBUTION OF CHOSEN STRATEGY IN 

PERCENTAGE 

                          (ELICITED STRATEGIES IN THE LAST SUPERGAME OF PHASE 2) 

      
  δ = ½  δ = ¾  δ = 9/10 

R R R 

Strategy:  32 48  32 48  32 

AC  0.00 2.22  1.39 5.26  1.19 

TFT  6.00 18.89  9.72 28.95  34.52 

Grim  6.00 41.11  13.89 36.84  15.48 

WSLS  0.00 1.11  0.00 2.63  2.38 

STFT  12.00 3.33  11.11 0.00  10.71 

AD  58.00 25.56  43.06 14.47  15.48 

Other   18.00 7.78   20.83 11.84   20.24 
         

Memory 1 or equivalent 
strategies in Menu Interface 

97.06  96.43 86.67  85.29 

SPE  58.00 71.11  65.28 56.58  35.71 

NE  86.00 90.00  65.28 86.84  71.43 
TFT/(TFT+Grim)  50.00 31.48  41.18 44.00  69.05 

                  

Observations:  50 90  72 76  84 

 

                                                 
21 Tables A5 and A6 in the online appendix show the full distribution of strategies. 
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 Four main results emerge from the direct observation of the choice of strategies. First, the most 

popular strategies across treatments are TFT, Grim, and AD.22 These three strategies on their own 

correspond to more than 65 percent of the data in each treatment and as much as 80 percent in two 

treatments. In contrast, WSLS has a very limited presence. These results are largely consistent 

with previous estimation-based results for perfect monitoring environments.23 Second, the two 

most popular strategies to support cooperation, Grim and TFT, vary in systematic ways across 

treatments.24 In the treatments where cooperation can be supported in equilibrium (that is, all 

treatments but δ = ½ and R=32), the ratio of TFT to TFT + Grim increases as the continuation 

probability increases. The difference, going from δ = ¾ to δ = 9/10 when R = 32, is significant at 

the 10 percent level, but the difference is not significant when going from δ = 1/2 to δ = 3/4 when 

R = 48; and the p-value of the joint test is 0.16 (without clustering, p-values are 0.05, 0.19, and 

0.06 respectively).25 This suggests that how subjects choose to support cooperation depends on the 

particular parameters of the game in a systematic way—that is, as the expected length of the game 

increases, subjects choose to use shorter punishments. 

We think that there are two possible reasons behind this difference: 1) Greater δ makes it possible 

to support cooperation with shorter periods of punishment. To see this, consider supporting 

cooperation using a trigger strategy with finite punishment. As δ increases, the value of 

cooperation is higher as compared to the temptation of deviating and a shorter punishment is 

sufficient to maintain incentives. 2) Another potential reason has to do with robustness (see for 

example the work of Fudenberg and Maskin 1990 and 1993, and Dal Bó and Pujals 2012). Higher 

                                                 
22 One may wonder if the popularity of Grim for some parameter combinations may be an attempt to commit to strong punishments even if 

subjects are unlikely to follow through with them. We can use the analysis of disagreement between round-by-round actions and the strategy 
recommendation to shed light on this issue. Consider the following histories: a subject first cooperate, while his partner defects, then in round two 
he defects while the other cooperates. Grim indicates that this subject should continue defecting in round 3, and those who select Grim fail to do so 
in only 17% of supergames. As a point of comparison, faced with the same situation, subjects who select TFT fail to choose cooperate (as TFT 
dictates) in 16% of cases. It does not appear less likely that a subject follows through with a “harsh” punishment strategy. 

23 See Dal Bó and Fréchette (2011), Fudenberg et al. (2012), Fréchette and Yuksel (2016), and Dal Bó and Fréchette (2018). The exception is 
Breitmoser (2015), who argues that a majority of subjects follow a strategy (semi-Grim) that randomizes with a higher probability of cooperation 
after mutual cooperation than under mutual defection, and in all other cases cooperates with the same intermediate probability. However, as 
discussed in Dal Bó and Fréchette (2018), if subjects followed a strategy that includes random behavior, there should be an amount of variability 
that is not observed in the data. In fact, most of the behavior can be perfectly accounted for by the simple pure strategies in Table 3. We find that 
this is the case even in very long supergames. In long supergames, the probability that a strategy involving randomizations would behave exactly 
like one of the simple strategies is negligible. Moreover, the difference in behavior documented in footnote 22 directly refutes semi-Grim. If subjects 
played semi-Grim, they should all cooperate at the same rate in those histories. 

24 While Dal Bó and Fréchette (2011) and Fudenberg et al. (2012) estimated the prevalence of strategies for several combinations of δ and R, 
they did not study how the prevalence of Grim and TFT changed with these parameters.  

25 These statistical tests are assessed using linear probability models with indicator variables for each treatment. Standard errors are clustered at 
the level of the session. All tests are two-sided. However, it seems unlikely that strategy choice is correlated within session since this requires that 
subjects can determine the strategies of the other players simply by observing their choices. This is a challenging task even for the econometrician, 
who has much more data than the subjects. For this reason, we also provide results that do not cluster standard errors when comparing strategy 
propensities across treatments. In the case of these tests, the independent variable is a dummy for TFT, and the observations are limited to subjects 
who chose TFT or Grim as a strategy.  
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δ implies that reverting to defection forever will be more costly since the expected number of 

future rounds increases. Although not relevant on the equilibrium path, if agents consider the 

possibility that others may make mistakes, or tremble, then such considerations are relevant. 

The third main result about strategy choice refers to STFT. When the payoff to joint cooperation 

(R) is low, STFT is observed, and its popularity decreases as R increases. Of the two possible 

comparisons, one is significant at the 5 percent level, when δ = ¾, and one at the 10 percent level, 

when δ = 1/2; the joint test is significant at the 5 percent level (p-values 0.01, 0.05, and 0.005 

respectively without clustering). Note that STFT also decreases with δ, but these differences are 

not statistically significant. Also note that the treatments with R = 32 are the ones with the lowest 

cooperation rates. Hence, the higher frequency of STFT could be coming from subjects who have 

a “preference” for cooperating, but do not want to be taken advantage of, a type of strategic 

conditional cooperator.26 

Finally, as shown by the fact that many subjects chose TFT or STFT, we find that subjects are 

willing to choose strategies that are not part of a symmetric pure-strategy subgame perfect 

equilibria.27 

Hence, the results confirm some of the earlier observations about the use of simple strategies 

under perfect monitoring (Dal Bó and Fréchette 2018) but using direct elicitation, which allows 

for a much larger set of possible strategies than used in the estimation of strategies in previous 

papers. The fact that subjects still chose simple strategies when many more complicated strategies 

are available provides clear evidence that a vast majority of subjects prefer to use simple strategies 

under perfect monitoring. In addition, the current experiment extends this result to longer 

supergames than studied in previous papers. And although we do not expand on this, the cooperate-

defect choice data confirm previous results on how changing R and δ impact cooperation rates and 

also extends those to longer games. Finally, the elicitation of strategies provides the first direct 

evidence of a systematic relationship between the environment (payoffs and continuation 

probability) and the strategies subjects use to support cooperation. We now consider how our 

                                                 
26 We note that this observation, as well as the ones above relating to the effect of increasing δ on strategies, are speculative. Our experiment is 

not designed to tease apart the motives behind these changes. 
27 It could be argued that what is important is whether the distribution of strategies is a Nash equilibrium. Figure A2 in the Appendix reports the 

expected payoff of each strategy elicited when playing the population of strategies. Two observations can be made; the most popular strategies are, 
for the most part, among the ones that perform best. However, there is a minority of strategies that earn significantly lower payoffs. In that sense, 
behavior is not in line with the distribution of strategies being a Nash equilibrium. 
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experimental design allows us to understand better our ability to recover strategies from round-by-

round choices. 

IV. Does econometric estimation recover the same strategies? 

Our direct observation of subjects’ choice of strategies provides a benchmark to evaluate 

whether the strategies used by subjects can be recovered econometrically from observed behavior. 

We can compare the estimated prevalence of strategies using the cooperate-defect choices from 

Phase 2 to the prevalence of strategies that subjects actually chose (i.e. the elicited strategies).28 

We study the performance of the estimation procedure proposed in Dal Bó and Fréchette (2011) 

and also used in Fudenberg et al. (2012), Camera et al. (2012), Fréchette et al. (2013), Fréchette 

and Yuksel (2013), Jones (2014), Breitmoser (2015), Rand et al. (2015), Bigoni et al. (2015), 

Vespa (2015), Vespa and Wilson (2015), Fréchette et al. (2016), Arechar et al. (2016), to name a 

few. Let us refer to this approach as the Strategy Frequency Estimation Method (SFEM). The 

SFEM assumes that subject i chooses strategy k with probability for all supergames. In each 

round the subject plays according to the chosen strategy with probability ߚ ∈ ቀଵ
ଶ
, 1ቁ and makes a 

mistake with probability (1-β). We can derive the likelihood function as follows. By , denote 

the choice that subject i would make in round r of supergame m if he followed strategy k.  is a 

function of past choices by both players and is coded as 1 for cooperate and 0 for defect. The 

choice that subject i actually made in that round and supergame is denoted by  (also coded 1 

for cooperate and 0 for defect), and the indicator function taking value 1 when the two are the same 

and 0 otherwise is  . The likelihood that the observed choices were generated 

by strategy k is  for a given subject and strategy (where M and R 

represent the sets of supergames and rounds) where β  is a parameter to be estimated.  When  is 

close to ½, choices are almost random, and when it is close to 1, choices are almost perfectly 

predicted.29 

                                                 
28 Readers should be careful not to confuse our use of elicited strategies (that are directly elicited from subjects) and estimated strategies (that 

are inferred—estimated using round-by-round cooperate-defect choices). 
29 Note that we assume that the error probability is the same for all strategies. Fudenberg et al. (2012) report that allowing the error probability 

to differ across strategies does not affect their estimates much. We also explored such a case and found no important changes. 
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From this, we obtain a loglikelihood  where K represents the set of strategies 

we consider, labeled  to , and  are the parameters of interest—namely, the proportion of 

the data attributed to strategy . One can think of this in a large sample as giving the probability 

of observing each strategy. The SFEM estimate is the vector of strategy prevalence that maximizes 

this loglikelihood function.30 

To get a better sense of this approach, think about the case where only one strategy is considered; 

then, the only parameter to be estimated is β. Suppose that the estimate is 0.8. In other words, when 

the strategy suggests cooperation [defection], cooperation [defection] is predicted to occur 80 

percent of the time. The quality of the fit can be compared to chance, which would predict 

cooperation with a 50 percent probability (since there are only two choices). Now, consider the 

case of more than one strategy. Imagine that the strategies included are: AD, TFT, and Grim, and 

that the estimates of their proportion is one third for each of them, and β is still 0.8. This implies 

that in round 1 of a supergame, the estimated model predicts a 60 percent cooperation rate. Now, 

suppose that we look at a specific subject who first cooperated, but he was matched with someone 

that defected; then, in round 2, the estimated model predicts that he will cooperate with a 20 percent 

probability. If the person they are matched with cooperated in round 2, the estimated model’s 

prediction for round 3 would now be a 40 percent chance of cooperation.31 

This model is estimated on Phase 2 data (from both memory-one and menu sessions—note that 

there are no menu sessions for δ = 1/2 and R = 32 and, thus, a smaller sample) after dropping the 

first one-quarter of the data (as a function of the total number of rounds played). The first quarter 

of Phase 2 is dropped to limit the importance of supergames where behavior is still changing. The 

variance-covariance matrix is obtained by bootstrap.32 

The comparison of the estimated prevalence of strategies with the strategies actually chosen 

allows us to study the performance of the SFEM. When evaluating the performance, our main 

                                                 
30 Some conditions are required for the vector of strategy prevalence to be identified. It has to be the case that the data includes behavior for 

histories in which two of the considered strategies differ, as otherwise it would be impossible to distinguish between them. Fudenberg et al. (2012) 
and online Appendix E provide support for the SFEM’s ability to uncover the true distribution of strategies based on Monte Carlo simulations.  

31 In round 1, AD predicts cooperation with probability 0.2, while the other two strategies with probability 0.8. In round 2, all three strategies 
predict defection with probability 0.8. In round 3, only TFT has cooperation as more likely than defection. 

32 1000 samples are drawn. A session is selected, then subjects within that session are drawn, finally supergames for each subject are randomly 
chosen. We use bootstrapping as it provides a simple way to compute the variance-covariance matrix while respecting the structure of the data 
generating process. 
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concern will be whether the SFEM identifies the key strategies, the ones that are most prevalent, 

and whether it can establish their relative importance.33  

We start by studying the performance of the SFEM when the set of strategies the estimation allows 

for is the “right” one. To do this, the sample is restricted to the cases where the elicited strategies 

are among the strategies presented in Table 3: AC, AD, TFT, Grim, WSLS, or STFT. In addition, 

we first estimate the model with all six strategies and then re-estimate it keeping only the strategies 

for which the estimated proportion is not 0.34 These results are presented in Table 4 (WSLS is not 

included in Table 4 because its frequency is always estimated to be 0). First, notice the high value 

of β, which indicates a very good fit. Qualitatively, the SFEM performs well at identifying the 

most important strategies. For instance, the most prevalent strategy is correctly identified in all 

treatments. In two of the five treatments, it correctly identifies the three most popular strategies 

and their order of popularity (the treatments with δ = ½) while in a third treatment (δ = 9/10) it 

identifies the three most popular strategies but mistakes the ranking of the second and third 

strategy. The table also reports whether the hypothesis that the estimated proportions equal the 

frequency elicited in the data can be rejected.35 As can be seen, there are three cases (out of 22) 

for which the estimated and elicited frequencies are statistically different.  Note, also, that although 

they are statistically different, the differences tend to be small in magnitude. In only one of these 

cases is the difference meaningful in terms of size (the proportion of TFT in the treatment with δ 

= ¾ and R = 48). When considering the joint hypothesis that all the estimated frequencies are equal 

to the elicited ones, that treatment is the only one for which the hypothesis of equality can be 

rejected.36 

 

 

                                                 
33 From a practical point of view, our approach here takes the elicited strategies as the benchmark to assess estimation results. However, one 

could view these results as providing evidence that the elicitation method “works,” in other words taking the estimation results as the point of 
comparison. We think one can reasonably take both of these positions, and we suspect different readers will feel differently about this. Our position 
(more broadly) is that both approaches accumulate evidence about what strategies people use. The fact that both methods point in the same direction 
makes it more likely that this is indeed the case. We do not take for granted that either approach is “correct,” but rather they provide different 
sources of evidence. 

34 Estimates close to or at the boundary of the parameter space cause difficulties for the estimation of the variance (see, for instance, Andrews 
1998). Since this is a challenging issue with no straightforward solution and is not important for the point being made here, we simply re-estimate 
the model ignoring the strategies that have 0 weight in this case. 

35 To perform these hypothesis tests, we do a bootstrapped Wald test to take into account the variability in both the SFEM estimator and the 
variance in the elicited strategies. More specifically, when we randomly select the sample on which to perform the estimation, we also select the 
associated elicited strategies. The bootstrapped Wald statistic is the average of the Wald statistic for each bootstrapped sample testing that the 
estimator and the elicited frequencies are equal.  

36 To keep Table 4 easy to read, we do not include the standard errors, but these are available in the appendix and include tests of equality to 0 
to show that the estimates have a reasonable amount of precision. 
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         TABLE 4—ELICITED VS ESTIMATED STRATEGY PREVALENCE, RESTRICTED SAMPLES 

         Joint 

    AC TFT Grim STFT AD β Testa 

δ = ½, R = 32 Elicited   0.082 0.187 0.730   

  Estimated   0.000 0.243 0.757° 0.98 0.154 

δ = ½, R = 48 Elicited 0.036 0.217 0.412 0.039 0.295   

  Estimated 0.059 0.132 0.476 0.059 0.274 0.96 0.520 

δ = 3/4, R = 32  Elicited 0.023 0.122 0.131 0.130 0.593   

  Estimated 0.000° 0.133 0.103 0.281 0.483 0.94 0.369 

δ = 3/4, R = 48  Elicited 0.091 0.356 0.414  0.139   

  Estimated 0.165 0.130°°° 0.557°  0.148 0.99 0.044 

δ = 9/10, R = 32 Elicited 0.022 0.504 0.220 0.071 0.183   

  Estimated 0.086 0.499 0.115 0.073 0.227 0.96 0.179 

Significantly different from the elicited frequency: ° at 10 percent; °° at 5 percent; °°° at 1 percent. 

a Reports the p-value of the joint hypothesis test that each estimated proportion equals the elicited proportion. 

 

The exercise of Table 4 is meant mainly to facilitate hypothesis testing between the estimated 

proportions and the elicited proportions; however, in practice, the sample will not be restricted and 

certain strategies that subjects use may not be included in the SFEM. Hence, a natural question is 

whether the results would be qualitatively misleading once all the data are included. These results 

are presented in Table 5.  

The larger the frequency of “Other” strategies, the more difficult it has to be for the estimates to 

be good. However, in this case, the estimates are still fairly close to the elicited frequencies. The 

estimates pick up the most popular strategies and, in most cases, the estimates are not statistically 

different from the elicited strategies. In particular, the strategy estimated to be the most popular is 

always the one that is most popular according to the elicitation. It is also interesting to consider 

which strategies are statistically different from 0, since this would typically be the standard used 

to determine if a strategy is important or not. In all but one treatment (namely, δ = 3/4 and R = 48), 

the two most popular strategies are identified as statistically different from 0. What seems to be 

more difficult is to identify the relative importance of TFT and Grim when cooperation rates are 

high. This is not particularly surprising since higher rates of cooperation result in fewer 
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observations differentiating between those two strategies. However, in treatments where 

substantially more subjects choose Grim over TFT, Grim is estimated to be more popular than 

TFT and vice-versa. Note that, in the treatment with δ = 1/2 and R = 32, the difference between 

the elicited and estimated for AD can easily be understood. As can be seen in Tables A5 and A6, 

strategies that here fall under “other” are almost all variants of AD that behave exactly as AD in 

our data. 

                          TABLE 5—ELICITED AND ESTIMATED STRATEGY PREVALENCE, FULL SAMPLE 

    AC TFT WSLS Grim STFT AD Other 

δ = ½, R = 32 Elicited 0.00  0.04  0.00  0.06  0.14  0.53  0.22  
 Estimated 0.00  0.02  0.00  0.02°°° 0.24  0.72°°  
    (0.00) (0.03)   (0.02) (0.10) (0.11)   

δ = ½, R = 48 Elicited 0.03  0.19  0.03  0.35  0.03  0.25  0.12  

 Estimated 0.07  0.06°  0.00  0.55  0.05  0.26   

    (0.04) (0.07)   (0.13) (0.05) (0.10)   

δ = 3/4, R = 32 Elicited 0.02  0.10  0.01  0.10  0.10  0.47  0.20  
 Estimated 0.04  0.09  0.00 0.10  0.29°  0.48   
    (0.02) (0.05)   (0.09) (0.10) (0.09)   
δ = 3/4, R = 48 Elicited 0.08  0.30  0.03  0.35  0.00  0.12  0.14  
 Estimated 0.18°  0.11  0.00°°° 0.57°  0.01  0.13   
    (0.06) (0.12)   (0.14) (0.02) (0.05)   

δ = 9/10, R = 32 Elicited 0.02  0.39  0.01  0.17  0.05  0.14 0.22  
 Estimated 0.08  0.42  0.00°°° 0.18  0.11  0.21   

    (0.07) (0.10)   (0.10) (0.06) (0.06)   

Significantly different from the elicited frequency: ° at 10 percent; °° at 5 percent; °°° at 1 percent. 

 

Also note that the strategies that represent less than 10 percent of the data are rarely identified 

as statistically significant. Hence, and to some extent not surprisingly, strategies that are present, 

but that are not very popular, are difficult to detect. A more interesting observation has to do with 

the ability to identify strategies in short games. Ex ante, it would have seemed reasonable to think 

that long supergames are required to identify strategies, since one needs many transitions to 

uncover the strategy. With δ = ½, half the games last only 1 round, and, thus, strategy estimation 

may seem hopeless. However, there is no clear evidence from Table 5 that proportions are 

estimated any better in the longer games. A reason for this might be that, in the treatments we 

study, most subjects use memory-one strategies; thus, one does not need many interactions to 

uncover the strategies being used.37 Another reason may be that when δ is low, we have many 

supergames. 

                                                 
37However, Appendix E.iii. shows that even strategies with longer memories can be identified in treatments with low . 
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In the estimation above, although some of the elicited strategies do not correspond to the 

strategies allowed by the estimation, the most popular ones are all allowed for. Without prior 

knowledge, this may be difficult to guarantee. For instance, in Dal Bó and Fréchette (2011), six 

strategies were considered: AC, AD, Grim, TFT, WSLS, and T2: a trigger strategy that starts by 

cooperating and defects for two rounds following a defection of the other before returning to 

cooperation. Thus, considering this set of possible strategies allows us to study the effect of not 

having a prevalent strategy in the set of possible ones (STFT), while having one that is not used 

(T2). 

Results for that specification are presented in Table 6 (table with standard errors in the online 

appendix). As can be seen by comparing the results in Tables 5 and 6, in the two treatments where 

STFT is more important, not including it (in addition to other missing strategies) in the estimation 

leads to a statistically significant overestimation of the fraction of AD. However, having T2 in the 

set of possible strategies, instead, has no effect on the estimation as it is correctly estimated that 

no one chooses it. 

 

                TABLE 6—ELICITED VS ESTIMATED STRATEGY PREVALENCE, STRATEGY SET FROM DAL BÓ AND FRÉCHETTE (2011) 

  AC TFT WSLS Grim STFT AD T2 

δ = ½, R = 32 Elicited 0.00 0.05 0.00 0.06 0.14 0.53 0.00 

 Estimation 0.00 0.02 0.00 0.02°°°  0.96°°° 0.00 

δ = ½, R = 48 Elicited 0.03 0.19 0.03 0.35 0.03 0.25 0.00 

 Estimation 0.06 0.06° 0.00°° 0.55  0.31 0.02 

δ = 3/4, R = 32 Elicited 0.02 0.10 0.01 0.10 0.10 0.47 0.00 

 Estimation 0.04 0.12 0.00°°° 0.10  0.74°° 0.00 

δ = 3/4, R = 48 Elicited 0.08 0.30 0.03 0.35 0.00 0.12 0.00 

 Estimation 0.18° 0.11 0.00 0.57°  0.14 0.00 

δ = 9/10, R = 32 Elicited 0.02 0.39 0.01 0.17 0.05 0.14 0.00 

 Estimation 0.08  0.52°°°  0.00°°° 0.16   0.24 0.00 

Significantly different from the elicited frequency: ° at 10 percent; °° at 5 percent; °°° at 1 percent. 
The prevalence of elicited strategies that were not included in the estimation was 0.22, 0.12, 0.2, 0.14, and 0.22 for each treatment 
respectively. 

 

One might be interested in understanding what happens when the set of strategies considered is 

enlarged to include many strategies that are not used by the subjects.38 To see most directly the 

effect of having strategies that are not used, we restrict the data sample to that of subjects whose 

elicited strategy is among AD, AC, Grim, TFT, and STFT (as done for the analysis shown in Table 

                                                 
38 Although not directly motivated by this question, online Appendix E.iii. explores this question via simulations and suggests that the estimator 

still performs well when multiple strategies are included but not relevant.  
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4), but include in the estimation additional strategies that are not used by these subjects. The set of 

strategies considered for estimation includes the five strategies used by the subjects in the data 

sample plus six additional strategies (TF2T, TF3T, 2TFT, 2TF2T, and Grim 2).39 This is the set of 

strategies used for estimation in Fudenberg et al. (2012).Table 7 shows the estimates from this 

specification. 

The estimated prevalence of the additional strategies is never statistically significant and the 

estimated prevalence is mainly small. For two treatments (δ = ½, R = 32 and δ = 3/4, R = 32) none 

of the additional strategies are given any positive weight and the effect on the recovered 

prevalence’s of the strategies actually present in the sample is either minimal or nonexistent. For 

the other three treatments, the prevalence incorrectly attributed to the additional strategies is 

modest, being at most 15 percent. However, in these three treatments, the impact on the estimated 

prevalence of the five relevant strategies is not distributed evenly across them; rather it tends to 

impact one of the cooperative strategies, either TFT or Grim depending on the case, given that the 

additional strategies are cooperative ones as well. 

 

                     TABLE 7—ESTIMATED STRATEGY PREVALENCE, FUDENBERG ET AL. (2012) SPECIFICATION 

                                            RESTRICTED SAMPLES (OF TABLE 4) 

   δ = ½, R = 32 δ = ½, R = 48 δ = 3/4, R = 32 δ = 3/4, R = 48 δ = 9/10, R = 32 
AD 0.77 0.27 0.48 0.15 0.23 

 (0.12) (0.09) (0.10) (0.06) (0.07) 
AC 0.00 0.06 0.00 0.12 0.00 

 (0.00) (0.03) (0.01) (0.06) (0.02) 
Grim 0.00 0.46 0.10 0.52 0.02 

 (0.00) (0.15) (0.09) (0.15) (0.06) 
TFT 0.02 0.00 0.13 0.09 0.53 

 (0.01) (0.04) (0.05) (0.09) (0.10) 
STFT 0.21 0.06 0.28 0.00 0.07 

 (0.12) (0.06) (0.11) (0.00) (0.05) 
TF2T 0.00 0.00 0.00 0.02 0.00 

 (0.00) (0.01) (0.01) (0.03) (0.04) 
TF3T 0.00 0.00 0.00 0.03 0.03 

 (0.00) (0.03) (0.01) (0.03) (0.06) 
2TFT 0.00 0.14 0.00 0.00 0.00 

 (0.00) (0.11) (0.02) (0.11) (0.08) 
2TF2T 0.00 0.01 0.00 0.02 0.07 

 (0.00) (0.02) (0.00) (0.03) (0.06) 
Grim2 0.00 0.00 0.00 0.05 0.05 

 (0.00) (0.04) (0.01) (0.06) (0.06) 
Grim3 0.00 0.00 0.00 0.00 0.00 
β	 0.98 0.96 0.94 0.99 0.96 

 

                                                 
39 See online appendix C or Fudenberg et al. (2012) for the definition of these strategies. 
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 Instead of considering the restricted sample, the set of strategies can be enlarged as above, 

but using the entire sample. In that case however, the set of strategies considered for estimation is 

not necessarily larger than the set of strategies used by the subjects, since a few of the elicited 

strategies are not included in the estimation. Table A18 of Appendix E.iii. presents those results. 

The specifications of this table and of the one that produces Table 5 overlap for five strategies 

(including the most popular ones): AD, AC, Grim, TFT, and STFT. Comparing estimates for these 

five strategies, only nine of the 25 estimates (across the five treatments) change. Of those nine that 

change, six actually move closer to the elicited value. 

Hence, overall it appears that having too large a set of strategies for estimation can affect the 

results, but these changes are for the most part modest. It seems reasonable to argue that these 

effects are smaller than the large impact documented in Table 6 from not including an important 

strategy. This being said, as the number of strategies included increases, identification may (in 

practice) become more challenging.40 

In summary, our comparison of the SFEM estimated prevalence of strategies and the elicited 

ones, show that the SFEM will work well if the set of considered strategies includes the relevant 

ones used by the subjects, but the results will be misleading if even only one important strategy is 

not included. Given that our previous analysis finds that estimates from the SFEM are fairly robust 

to including strategies that are not used, erring on the side of caution by including more, rather 

than less, strategies seems appropriate. 

V. More Evidence on the Effect of Elicitation on Behavior 

Having studied how well the SFEM performs, now we use the SFEM to study whether the 

elicitation of strategies affects behavior in terms of the strategies used, complementing the analysis 

in Section III. We do this by comparing the SFEM estimated strategy prevalence in this paper, 

while subjects were being asked to construct strategies at the same time as they were making round 

by round decisions in phase 2, to those from Dal Bó and Fréchette (2011) where there is no strategy 

elicitation. These comparisons are reported in Table 8. 

The specification used is the same as in Table 4, and it includes all treatments that were included 

in both Dal Bó and Fréchette (2011) and the current experiments. Beside the estimates and standard 

                                                 
40 Arechar et al. (2016) suggests a procedure for considering extremely large strategy sets. 
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errors, the table also reports the results of the tests of equality for each strategy frequency estimate 

across samples, as well as a test considering all equalities jointly. 

First note that many pairs are very close in magnitude: more than half of the estimates are within 

five percentage points of one another and 17 of the 24 pairs of estimates are within 10 percentage 

points. 

 

                 TABLE 8—ESTIMATES FROM DF 2011 VS THIS PAPER 

    AC TFT WSLS Grim STFT AD β 

δ = ½, R = 32 DF 2011 0.00 0.05 0.00 0.00 0.23 0.72 0.97 
  (0.00) (0.05)   (0.00) (0.14) (0.17)  
 This Paper 0.00 0.02 0.00 0.02 0.24 0.72 0.97 
   (0.00) (0.03)  (0.02) (0.11) (0.12)  

 P-value of equality 1.00 0.66 1.00 0.41 0.97 0.99  
 of joint equality 1.00  

δ = ½, R = 48 DF 2011 0.07 0.33 0.02 0.02 0.15 0.41 0.94 
  (0.05) (0.10)  (0.06) (0.09) (0.07)  
 This Paper 0.07 0.06 0.00 0.55 0.05 0.26 0.95 
   (0.04) (0.07)  (0.13) (0.05) (0.10)  

 P-value of equality 0.96 0.03 0.63 0.00 0.34 0.63  

 of joint equality 0.01  

δ = 3/4, R = 32 DF 2011 0.02 0.25 0.00 0.00 0.34 0.39 0.92 

  (0.02) (0.10)  (0.02) (0.11) (0.11)  
 This Paper 0.04 0.09 0.00 0.10 0.29 0.48 0.92 
   (0.02) (0.06)  (0.09) (0.10) (0.10)  

 P-value of equality 0.60 0.18 1.00 0.28 0.72 0.55  
 of joint equality 0.69  

δ = 3/4, R = 48 DF 2011 0.05 0.42 0.00 0.53 0.00 0.00 0.96 
  (0.10) (0.18)  (0.19) (0.01) (0.00)  
 This Paper 0.18 0.11 0.00 0.57 0.01 0.13 0.97 
   (0.06) (0.12)  (0.13) (0.02) (0.04)  

 P-value of equality 0.26 0.14 1.00 0.86 0.51 0.01  
 of joint equality 0.03  

Note: “p-value of equality” reports the p-value for the test that the fraction of a strategy is the same in the DF 2011 data and in 
this data. In the case of WSLS, this is obtained as the test that the sum of all the other coefficients is equal across the two samples.  

“p-value of joint equality” tests that the estimates for AC, TFT, Grim, STFT, and AD, are respectively equal across samples. 

The number of observations per treatment was 4174, 6012, 4546, and 4724 for each treatment respectively. 

 

Second, most pairs are not statistically distinguishable. Out of the 48 parameter estimates (24 

pairs) of strategy frequencies, only three pairs are statistically different, and these come from the 

two treatments in which cooperation rates were already different before the strategy elicitation 

phase (see Table A9 in the online appendix), and thus these differences are most likely due to 

sampling variation. 

In the two treatments with statistically significant differences, not only were there cooperation 

rate differences before phase 2, but there were also differences in strategies before phase 2. Table 
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A10 in the online appendix presents the SFEM results for the last three quarters of phase 1 in the 

current experiment and for the Dal Bó and Fréchette (2011) data.41 There are already some 

differences in strategy choices in phase 1 for the two treatments where some estimates are 

statistically different in phase 2.42  

Note that even if the data generating process were identical in both cases (the 2011 experiments 

and the current ones), one would expect that some of these comparisons would be statistically 

different. That is why, to be exact, these hypothesis tests would require an adjustment, for instance 

a Bonferroni correction. Given that this would only result in even fewer statistical differences, we 

omit such an analysis. 

In summary, the comparison of SFEM results from sessions with elicitation and sessions without 

elicitation finds no significant differences in strategies in two treatments. In the other two 

treatments there are already differences before the elicitation of behavior starts; suggesting that the 

elicitation itself has little or no effect on behavior, consistent with the analysis in section III.b. 

VI. Conclusions 

Several identification hurdles make it difficult to infer strategies from observed behavior in 

infinitely repeated games. We overcome these hurdles by asking subjects to design strategies that 

will play in their place. The elicitation method we propose has a few potentially important features. 

1) It first introduces the game without strategy elicitation, allowing subjects to “learn” what they 

would do without confusion, interference, or influence of a different presentation. 2) The 

elicitation method is then introduced in a way such that subjects have opportunities to learn, 

through feedback, how to specify a strategy that corresponds to the way they play. 3) Finally, the 

incentives to specify the strategy correctly become greater as subjects gain experience, since the 

strategy they specify is more likely to be implemented. Although we do not investigate which of 

these features is important, they are present here and may be the reason why we find no clear 

evidence that such strategy elicitation affects behavior in significant ways, supporting the validity 

of this method. 

                                                 
41 Phase 1 for the Dal Bó and Fréchette (2011) data is defined as the first half of the experiment (which is about the same number of supergames 

as the phase 1 for the current study). We use the last three quarter of the supergames to keep the sample size similar to that in Table 8. 
42 We note in passing that there are large differences in strategies used between phase 1 and phase 2, suggesting important changes over time. 

These are apparent from cooperation rates but understanding the specific patterns of strategic learning over time would be an interesting question 
to pursue. 
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We find that the strategies chosen by the subjects include some commonly mentioned strategies, 

such as AD, TFT and Grim. Most subjects seem to rely on strategies that have, at most, memory 

one. This result holds even in the treatments with high probability of continuation. However, this 

result probably does not hold in general, as there is evidence that subjects use more complex 

strategies in other environments such as those with imperfect monitoring (see Fudenberg et al. 

2012). Understanding the features of the environment that lead people to use simple or more-

complex strategies is an interesting question for future work. 

The results also reveal systematic patterns in how the environment, i.e. the specific game 

parameters and continuation probability, affect strategy choices. As cooperation becomes “more 

valuable,” either because the payoff to joint cooperation increases or the continuation probability 

increases, subjects are more likely to use strategies that can support some cooperation. Moreover, 

as the continuation probability increases, TFT becomes more popular relative to Grim, suggesting 

that the choice of the particular cooperative strategy depends on the parameters of the game. Also, 

at low levels of joint cooperation payoff, STFT is more likely to be present, but its popularity 

decreases as the continuation probability increases. These new results could offer a starting point 

for modeling strategy selection. 

The elicited frequencies of strategies offer a benchmark with which we compare the SFEM 

estimated frequencies based on the cooperate-defect decisions. We find that the SFEM performs 

reasonably well in terms of identifying the important strategies. This is encouraging, as many 

experiments do not elicit strategies directly, yet inferring strategies may prove important to 

understanding behavior. We also highlight the limits of such an estimation method. In particular 

we find that the SFEM can lead to misleading results if one of the key strategies is omitted, as it 

shifts most of the weight onto the “closest” strategy. It also has difficulty identifying strategies that 

are present, but only in small numbers. One surprising result is that, at least in the environment 

studied here, estimation results are as reliable for treatments with supergames that are short on 

average as they are for treatments with supergames that are long on average. Moreover, results 

from the estimation are still qualitatively in line with the elicitation—even when omitting up to 20 

percent of the strategies used, if none of them on their own represents a large fraction. Overall, our 

results show that it is possible to learn about the strategies used by the subjects to support 

cooperation from their round by round cooperation decisions. 
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