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Nerve impulse conduction in nonmyelinated nerve fibers is analyzed by considering this
process as a direct consequence of the coexistence of two structurally distinct regions, active
and resting. Assuming that the active (i.e. swollen) region of the fiber is in direct contact
with the resting (i.e. shrunken) region, a simple procedure for deriving the conduction
velocity equation is described. The physico-chemical significance of the quantities in this
velocity equation is briefly discussed.
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1. Introduction

In 1977, Dr. Gen Matsumoto and I closely examined the cable properties of squid
giant nerve fibers under internal perfusion and derived the following simple equation
relating the conduction velocity to the electric parameters of the fibers [8]:

v =

√
d

8ρC2R∗ (1)

where v is the conduction velocity, d the diameter, ρ the resistivity of the fiber
interior, C the membrane capacitance per unit area, and R∗ the unit area resistance
of the membrane in its excited state. We were gratified to find that the velocity
calculated by means of this equation is in good agreement with the values observed
under various experimental conditions. Furthermore, by varying the salt concentra-
tion in the internal perfusion solution, we examined the dependence of the velocity
on the resistivity of the fiber interior, ρ, and found that the results obtained are
quite consistent with those expected from the above relationship. The well-known
dependence of the velocity on the fiber diameter (d) [13] is correctly described by
the equation.
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In the present paper, dedicated to the memory of Dr. Matsumoto, it will be
demonstrated that this conduction velocity equation can be readily derived from
the distribution of the local current which links the resting region of the nerve fiber
with its active (excited) region. We deal in this paper primarily with normal nerve
fibers of which the membrane resistance falls during excitation far below its value at
rest. Under these circumstances, a graphic representation of the cable property of
the fiber is quite revealing and the derivation of the velocity equation is very simple.
In this connection, the physical basis of the present approach to problems of nerve
impulse conduction will be briefly discussed.

In the theory of propagation of the rising phase and peak of the action poten-
tial formulated by Hodgkin and Huxley [6], the conduction velocity is given by
υ = [Kd/(4ρC)]1/2, where the quantity K depends on the conductance gNa(V, t) in
their theory, in an intricate fashion (see [6], pp. 524, 528). When the quantity K is
replaced simply with 1/(2R∗C), their velocity equation is converted to Eq. (1). In
general it seems difficult to obtain relationship between the membrane conductances
and the conduction velocity explicitly from the Hodgkin-Huxley equations. A more
recent approach to approximate the relationship between the membrane conduc-
tances and conduction velocity explicitly from the Hodgkin-Huxley equations was
undertaken by Muratov [10].

2. Cable Properties of Nonmyelinated Nerve Fibers

The microscopic structure of the cortical gel layer (“axolemma-ectoplasm complex”
[9, 14]) of a living nonmyelinated nerve fiber is extremely complicated and highly
vulnerable to various chemical and mechanical disturbances. It is to be noted, how-
ever, that a simple, quantitative description of the process of nerve impulse con-
duction is possible solely in terms of course-grained variables, such as membrane
capacitance, resistance, emf, etc., without reference to the details of the microscopic
structure of the fiber. The present treatment of the process of nerve conduction may
be considered as being comparable to the familiar theory of sound wave in which
the propagation velocity is discussed without reference to complex structures and
movements of individual air or water molecules in the medium. In other words, we
do not assume an explicit representation for the ionic conductances (see [10] for a
discussion based on a variety of simplified assumptions).

When a weak electric current of a constant strength is delivered to a squid
giant nerve fiber by use of a long internal wire electrode [7], the potential difference
across the cortical layer changes, as is well known, exponentially with time. The
membrane capacitance and resistance of the nerve fiber are determined by this
operation. To determine these quantities at the peak of an action potential, more
elaborate techniques, such as the A.C. impedance method [1] or voltage clamping [5],
are required (see e.g., Fig. 2 in [8]). The transient changes in the membrane emf can
be determined by use of a glass micro-pipette [11] or internal wire electrode [7]. In
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Fig. 1. Electrical network used for explaining the distribution of the local current in the vicinity of
the boundary between the active and resting regions of a nonmyelinated nerve fiber carrying a nerve
impulse. “OUT” indicates a large volume of the salt solution outside the fiber; “IN” represents the
salt solution inside the fiber. The symbol “∆X” signifies the length (infinitesimal) of the element
of the fiber. Other symbols are explained in the text.

the present treatment of the subject, we do not care to inquire after the behavior of
the microscopic components in the cortical layer involved in these measurements.

The distribution of the local current, set up by the difference between the emfs
in the active and resting regions, is illustrated by the diagram shown in Fig. 1.
In the diagram, the element of the fiber located between X∗

0 and X0 constitutes the
boundary between the active and resting regions of the fiber. Note that variable X

denotes the distance along the nerve fiber measured from the boundary which is
moving at a constant velocity v (see [8, 17]). The resting region extends from X0

formally to +∞ and the active region from X∗
0 toward −∞.

The equation describing the distribution of the membrane potential in its resting
region of the fiber is

V = Er − (Er − V0)e−ξ(X−X0) (2)

where Er is the membrane emf in the resting state, V0 denotes the membrane poten-
tial at position X = X0 and 1/ξ is the characteristic length, termed “space param-
eter”, of the fiber at rest. When ξ is properly chosen, Eq. (2) satisfies the following
cable equation for the resting region of the fiber:

1
ri

d2V

dX2
= −Cmv

dV

dX
+

1
rm

(V − Er) (3)

where ri(= 4ρ/πd2) denotes the longitudinal resistance, Cm(= πCd) the membrane
capacitance and rm the membrane resistance of a unit length of the fiber. This
equation states that the membrane current [see the right-hand side of the Eq. (3)],
consisting of the capacitive and resistive components at position X, is equal to the
derivative of the longitudinal current, (1/ri) dV/dX.
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In normal squid nerve fibers, the membrane resistance (rm) is relatively high.
Hence, in discussing the nerve conduction process, the last term Eq. (3) may be
neglected. Then, this equation becomes

1
ri

dV

dX
+ Cmv(V − Er) = 0 (4)

Substituting Eq. (2) in this equation, we then have

ξ = vCmri (5)

Note that ξ/v is the time-constant for the process of charging the membrane capac-
itance (Cm) by way of the longitudinal resistance (ri).

Analogously, the potential distribution in the active region is given by

V = Ea − (Ea − V ∗
0 )e−η(X∗

0−X) (6)

where Ea is the emf of the membrane in the active state, V ∗
0 is the membrane

potential at the advancing end of the active region (located at X = X∗
0 ), and 1/η is

the space parameter of the active region. The cable equation which Eq. (6) has to
satisfy can be obtained simply by replacing Er and rm in Eq. (3) with Ea and r∗m,
respectively.

3. The Case in which the Transitional Region is Extremely Short

It is known that the cortical layer of the nerve fiber undergoes a discrete struc-
tural transformation in association with the process of nerve excitation (see [14]).
The results of our recent model experiments using cross-linked polyacrylate gels
(see [15, 16]) strongly suggest that this structural transformation, involving redis-
tribution of water molecules in and around the layer, proceeds with great rapidity.
It appears likely, therefore, that the transition from the resting to active region of
the fiber is wholly abrupt. It is possible that the transitional region between the
active and resting region is extremely short.

Since the potential inside the fiber, V , and its derivative, dV/dX, are continuous
functions of X, let us suppose that

V ∗
0 = V0 (7)

and
dV

dX

∣∣∣∣
X∗

0

=
dV

dX

∣∣∣∣
X0

(8)

Let us now examine the distribution of the electric current in the vicinity of the
boundary between the active and resting regions under these circumstances.

From Eq. (8), it follows immediately that the capacitive current,
Cmv(dV/dX)∆X, at position X0 is equal to that at X∗

0 (see Fig. 1). [Note that
the boundary is moving at a constant velocity, v.] Since we are assuming addition-
ally that V0 is equal to V ∗

0 , the inwardly-directed current generated by the mem-
brane emf of the element located at X∗

0 , is divided into two equal portions passing
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through the two capacitive pathways. Consequently, the (net) inwardly-directed cur-
rent, −i∗m in the figure, through the membrane element at X∗

0 is equal to that of the
outwardly-directed current, im, through the element at X0:

im = −i∗m (9)

We now proceed to relate these membrane currents with the potential (V ) inside
the nerve fiber. According to the cable equation mentioned above (see Eq. 3),
the spatial distribution of the membrane currents along the fiber can be given by
(1/ri)d2V/dX2 in the resting region of the fiber as well as in the active region. Thus,
from Eq. (9), we have

im = lim
x→x0

1
ri

d2V

dX2
= −i∗m = lim

x→x∗
0

−1
ri

d2V

dX2
(10)

From this, we obtain

d2V

dX2

∣∣∣∣
X∗

0

= − d2V

dX2

∣∣∣∣
X0

(11)

By combining Eqs. (2) and (6) with Eq. (11), we finally arrive at the relation:

ξ = η (12)

expressing the symmetric distribution of the local current with respect to the bound-
ary between the active and resting regions (see p. 1073 in [17] for experimental
verification of this relation).

The condition of Eq. (12) is satisfied when a nerve fiber is carrying an impulse at
a constant velocity (v). Since the boundary is moving at a constant velocity along
the nerve fiber, this symmetry of the local current is expected to be directly reflected
on the rate of potential rise associated with a propagated action potential. In fact,
it is known that the rising phase of the action potential is nearly symmetric with
respect to the half-maximum point [8, 17].

Now, it is very simple to derive the conduction velocity equation. It is to be
noted in Fig. 1 that the strength of the inwardly-directed current generated by the
emf of the element located at X∗

0 is twice that of the outwardly-directed current
passing through the element located at X0. Thus,

Ea − V ∗
0

r∗0/∆X
= 2v

dV

dX

∣∣∣∣
X0

Cm∆X (13)

This equation can be rewritten in the following form:
1
r∗0

= 2Cmvξ

or

v =
1

Cm
√

2r∗mri
(14)

[Note that ∂/∂t = −v d/dX,Ea − V ∗
0 = V0 − Er, and ξ = Cmvri under these

circumstances.]
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It is easy to show that Eq. (14) is nothing but an alternative form of the conduc-
tion velocity Eq. (1). When the membrane capacitance and resistance per unit length
of the fiber, Cm, and r∗m, are converted to the conventional quantities of per unit
area, and the longitudinal resistance per unit length (ri) is converted into the specific
resistance of the fiber interior (ρ), then Eq. (14) is transformed into Eq. (1). This
seems to be the most expedient way of deriving our conduction velocity equation.

4. Structural Changes in the Transitional Zone

In this section, we consider the most probable case in which it is assumed that
there is a gradual change in the membrane structure from a fully active state to a
fully resting state in the transitional region, X∗

0 ≤ X ≤ X0. Let us define α(X) as
representing the fraction of the membrane in its active state. Furthermore, let us
assume that this active fraction varies continuously from 1 to 0 in the transitional
region.

The membrane potential V of the fiber in this region can now be described by

1
ri

d2V

dX2
+ Cmv

dV

dX
− α

(Ea − V )
r∗m

+ (1 − α)
(V − Er)

rm
= 0 (15)

By integrating each term of the above equation with respect to X from one end of
the transitional region to the other, the following relation is obtained:

1
ri

[
dV

dX

∣∣∣∣
X∗

0

− dV

dX

∣∣∣∣
X0

]
+ Cmv(V ∗

0 − V0) − (Iin − Iout) = 0 (16)

where Iin and Iout represent the total inward and outward resistive currents travers-
ing the entire surface of the transitional region, respectively. Since r∗m � rm,

−(Iin−Iout) is negative. Clearly, the second term in Eq. (16) is positive (see Fig. 1).
Now, it is noted that the transitional region is short and the quantity dV/dX attains
its minimum within this region. Hence, the first term, which represents the differ-
ence in the longitudinal current at the two ends of this region, is infinitesimal. From
this it follows that the sum of the last two terms, representing the net membrane
current in the transitional region, is also infinitesimal and can be ignored.

On these grounds, it may be concluded that this transitional region behaves like
a short inert longitudinal resistance element. It is not difficult to derive Eqs. (12)
and (1) under these circumstances (see [8, 17]).

5. Numerical Evaluation

In the past, the electric parameters of the squid giant nerve fiber have been thor-
oughly determined and richly documented. Particularly, giant fibers of about 0.04 cm
in diameter, available in Woods Hole, MA, had been extensively examined under
internal perfusion with a 0.4 equiv./l KF solution and yielded highly reproducible
results. In these fibers, the amplitude of the action potential, Ea −Er, was roughly



July 9, 2004 17:39 WSPC/179-JIN 00041

On the Conduction Velocity of Nonmyelinated Nerve Fibers 121

110 mV at room temperature. The membrane resistance at the peak of the action
potential, R∗ (= r∗mπd), was approximately 22 Ω · cm2. The specific resistance of the
salt solution flowing inside the fiber (ρ) was 36.1 Ω · cm, and the conduction velocity
was (2.35 ± 0.8) × 103 cm/s (see [8]). The membrane capacitance of the fiber in its
excited state was taken as being roughly equal to that in the resting state, approx-
imately 10−6 F/cm2 [1]. Based on this information, we now numerically evaluate
some of the relationships among these quantities.

5.1. Maximum current density

As a consequence of the symmetry of the local current with respect to the boundary
between the resting and active regions (see Eq. (12)), the minimum of the poten-
tial gradient, dV/dX, is located at the boundary. At the boundary, V0 − Er =
(Ea − Er)/2. Hence the maximum density of the inward current at the peak,
(1/2)(Ea − Er)/R∗, is 2.5 × 10−3 A/cm2.

The capacitive current Cm · ∂V/∂t in the immediate vicinity of the boundary is
given by Cmξv(V0 − Er). By using Eqs. (5) and (12), it can be easily shown that
this is equal to (1/2)(Ea −V ∗

0 )/r∗m which is half of the maximum inward current per
unit length of the fiber. [Note that V ∗

0 ≈ V0.]

5.2. Space parameter

The reciprocal of the space parameter, ξ(= η), given by Eq. (5) is

ξ = v · Cm · ri = v · Cπd · 4ρ
πd2

=
4ρνC

d
(17)

Introducing the numerical values of v,C and d listed above, 1/ξ is found to be
approximately 0.12 cm. Note that the space parameter 1/ξ is proportional to d.

5.3. Conduction velocity

We now introduce, into Eqs. (1) or (14), the aforementioned observed values of R∗

(membrane resistance at the peak of excitation) and ρ (resistivity of the internal salt
solution employed), together with the known value of the membrane capacitance per
unit area (C) and the diameter (d). The result of the calculation, 2.5× 103 cm/s, is
in good agreement with the observed value, 2.4 × 103 cm/s (see [8]).

In their classic experiments, Cole and Hodgkin [2] and Hodgkin and Huxley [5]
have established that the value of R∗ in intact (i.e., internally unperfused) giant
nerve fibers is in the range of 25∼40Ω · cm2. This classical value of R* is not signif-
icantly different from that encountered in internally perfused fibers. Furthermore,
since the dependence of the velocity on the fiber diameter [13] is correctly described
by Eq. (1), it seems safe in concluding that Eq. (1) is applicable to nonmyelinated
nerve fibers in general.
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6. Discussion

We have known for some time that a nerve impulse propagating along a squid giant
fiber is accompanied by simultaneous swelling of the cortical layer of the fiber [14].
It should be noted that the peak of this swelling coincides with the peak of the
propagating action potential. The falling phase of the action potential is associated
with shrinkage of the nerve fiber. Since these propagated mechanical changes were
totally unknown in classical neurophysiology, it seems worthwhile to briefly discuss
the significance of the non-electrical manifestation of the nerve impulse.

6.1. The requirement of the salt of Ca2+ in the external medium

Normal sea water contains about 400 mM NaCl and about 25 mM of the salts of
divalent cations, Ca2+ and Mg2+. Carefully excised squid giant nerve fibers maintain
their ability to generate propagated impulses for many hours in this medium. Taking
advantage of the ability of these fibers to respond to brief electric shocks repeatedly,
mechanical or optical signs of swelling have been detected. The nerve fibers do lose
their ability to respond to a brief shock with generation of a propagated impulse
when the salts of divalent cations in the medium are replaced with NaCl or sucrose.
These nerve fibers do not lose their excitability when the salt of Ca2+ is substituted
for the Mg2+ salt completely. However, a complete substitution of Mg2+ for Ca2+

leads to a loss of excitability of the fiber. The presence of Ca2+ in the medium is
required for the production of action potentials and associated mechanical responses.

6.2. The discreteness of the volume change associated

with Ca2+–Na+ exchange in anionic gels and in nerve

fibers: the cooperativity of the process

A clear understanding of the mechanical changes in nerve fibers was brought about
by comparing them with the structural changes associated with cation-exchange in
artificial polyelectrolyte gels. The volume of a swollen polyacrylate gel (bead or rod)
immersed in a Na-salt solution was shown to undergo an abrupt reduction (to about
1/10) when the amount of the Ca2+ salt added to the solution by gradual steps
reaches a certain critical level [14–16]. This volume transition is remarkably sharp,
indicating that this reversible Ca2+–Na+ exchange process is highly cooperative.
An extensive comparison of the ion-exchange process in nerve fibers with that in
anionic gels suggests that this high cooperativity of the process is at the base of the
all-or-none behavior of the nerve excitation and conduction.

6.3. The relationship between the electric parameters

and the swelling of nerve fibers

In the resting state of the nerve fiber, the negatively charged sites in its cortical
layer are occupied predominantly by Ca2+ from the external salt solution. Because
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the Ca2+ concentration in the fiber interior is very low, a brief pulse of outwardly-
directed membrane current is effective in triggering a cooperative replacement of
Ca2+ in the layer with monovalent cations from both in- and outside of the layer.
A rise in the water-content of the layer associated with this cation-exchange process
brings about a marked enhancement of the mobilities of the cations in the layer.
This is considered to be the mechanism by which the transition rm → r∗m is induced
during nerve conduction. The selectivity and the mobility ratio for these cations are
also expected to change in association with this transition, causing a sudden shift of
the membrane emf, Er → Ea. The relaxation process which follows this transition
brings about a gradual fall in the membrane potential [14].

6.4. A problem encountered in neurophysiological studies

In studies of the potential difference across a cation-exchanger membrane, it is known
that serious difficulty is encountered in predicting the sign and magnitude of the
potential when there is a mixture of divalent and univalent cations in the surround-
ing solutions (see e.g., [4], pp. 379 and 382). There seems little doubt that the cortical
layer of the nerve fiber has properties of a cation-exchanger membrane. The situa-
tion is more complicated when the solutions surrounding the membrane cannot be
stirred (see e.g., Fig. 8.14 in [4]). Furthermore, the interior of the normal nerve fiber
is not an aqueous solution of simple salts, but rather a gel containing a considerable
amount of filamentous macromolecules (see e.g., [9, 14]). From a strict thermody-
namic point of view, the electric potential difference across the intact nerve fiber
membrane may be considered as indefinable (see e.g., Overbeek [12]; and pp. 374
and 378 in Guggenheim [3]). This seems to be one of the knotty problems which
neurophysiologists had to tackle in the past.

7. Conclusion

The conduction velocity equation (Eq. 1), relating the velocity to the classical
parameters of the nonmyelinated nerve fiber, was derived by analyzing the distri-
bution of the local current in the vicinity of the boundary between the resting and
active regions of the fiber. In this derivation, we have employed only those quantities
which are amenable to direct experimental determination, such as (Ea − Er), r∗m,
etc. There seems to be only little ambiguity as to the physical significance of the
quantities in this conduction velocity equation.
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