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1. In this problem you will modify your cable spreadsheet from homework 5 to calculate 

the shape of an elastic cable (modulus of elasticity E and cross sectional area A)  with 

weight per unit length (along the cable) , and distributed load w(x)=w0 (across the 

span). 

 
As described in class, the cable will be approximated as a series of N short segments.  

Each segment has original length s =LO/N and weight s.When deformed, the  length 

of each segment will be si with si>s. The shape of the cable is determined by the 

angles 0 1 2 1, , .... N      and lengths 0 1 2 1, , .... Ns s s s  of  each segment. 
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The coordinates of successive points on the curve follow as 
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Use the solver on Excel to find the values of the angles 0, 1, 2, … N-1 and 

0 1 2 1, , .... Ns s s s   that minimize the potential energy V for the cable, subject to the 
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constraint (xN,yN) =(xe,ye). Note that the total energy for the cable will include the 

gravitational potential energy of the cable’s self weight (as before), the energy 

associated with the load w(x)=w0 distributed evenly across the span, and the elastic 

energy in each segment of the cable: 
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Calculate the tension in each segment. You will have to modify the expression for the 

tension in the cable near the left endpoint to account for the distributed load w0: 
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The tension in successive segments is again found from the fact that the horizontal 

component of force in the cable is constant: Ti=T0cos/cosi. Plot the cable tension as a 

function of position in the cable. Note that you are actually finding the tension at the 

midpoint of each segment. 

 

Show your results for the following cases: 

a. L0=2 m with xe=1 m,  ye=0 and EA=10 Newtons, =1 Newton per meter, w0=0. Show 

plots which compare the cable shape and tension in the elastic and inelastic cables 

(see hw 5 for the inelastic case) 

b. L0=2 m with xe=1 m,  ye=0 and EA=10 Newtons, =1 Newton per meter, w0=0.5 

Newtons per meter.  



2. The George Washington Bridge is supported by 4 main cables, each with a cross 

sectional area of 800 in
2
. The cables are cold-drawn steel, with weight density 0.283 

lbs/in
3
 and Young’s Modulus 30,000 ksi. The yield stress of the steel is 184 ksi. The 

towers are separated by a linear distance of 3500 feet.  The bridge was initially 

designed to carry 8 lanes of traffic and 4 lanes of rail. It was later modified to carry 

14 lanes of traffic. In what follows, the initial design loads are considered. Note on 

units: kips=kilopounds=10
4 
pounds. ksi=kips/in

2
, ksi=kips/foot

2
,
 
kpf=kips/ft, etc. 

 
 

The cables carry the weight of the suspenders, deck and traffic, which may be 

calculated as follows: 

i. Suspenders (average) 0.6kpf 

ii. Deck steel structure: 11kpf 

iii. Concrete slabs: 6kpf 

iv. Nonstructural elements (lights, rails, etc) 10kpf 

The total dead load is therefore 27.6kpf and is evenly distributed across the span 

 

The worst case live load, the sidewalks, rail, and roads are simultaneously filled to 

capacity, bumper-to-bumper and side-to-side, with the heaviest trucks, trains, and 

pediestrians. This resulting load is estimated as 

v. 100 psf for each of two 10 ft-wide sidewalks: 2 kpf 

vi. 250 psf for each of the 8 lanes of roadway, 10 ft wide: 20 kpf  

(The 250 psf comes from the weight of a 25-ton truck distributed over it’s 

footprint area of 8’25’=200 ft
2
.) 

vii. 6 kpf for each of the railway tracks: 46 kpf 

 

This worst-case live load comes to 46 kpf. The design live load was actually much 

less; two reduction factors were applied. One is a factor Cl =0.25, which takes into 

account a more realistic spacing between trucks, and the low probability of having 

any lane filled to capacity across its length. The second factor comes from the low 



probability of having all lanes simultaneously fully loaded with the heaviest vehicles. 

This factor is 
2
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, where n is the number of lanes. For the 8-lane bridge, 

the reduction factor is C=0.682. The design live load is therefore 46 kpf  

0.250.682=7.8kpf, evenly distributed across the span. 

 

a. The desired cable sag is 316 feet for each cable carrying its self weight and ¼ 

of the total deck+design live load. Use your spreadsheet to calculate the 

original (unstretched) length L0 of cable needed, and the maximum cable 

tension. Compare the maximum stress in the cables with the yield stress.  

Compute a safety factor equal to the yield stress/actual stress. 

b. For the L0 found above, load the bridge with the unreduced live load. Find 

the sag and maximum cable tension in this case and compare the cable stress 

with the yield stress. Compute a safety factor equal to the yield stress/actual 

stress. 

 

 

 

 



3.  The Salginotabel Bridge in the Swiss Alps is considered by many to be a highlight of 

20th century bridge architecture. The bridge was designed by a visionary engineer, 

Robert Maillart and was completed in 1930. It has been named one of 30 “world 

Monuments” by the American Society of Civil Engineers. (The list of other World 

Monuments includes the Eiffel Tower and the Panama Canal.) 

 

 
 

The bridge is a three-hinged arch with a span of d=90 meters and a rise of h=13 meters. 

The total weight of the bridge is estimated at W=7500kN.  

 

a. As a first estimate, assume that the weight is evenly distributed across the span, so 

that wy(x)=-W/d. Find the reactions due to the bridge weight and plot the internal 

bending moment, shear, and axial force. What is the magnitude and location of the 

maximum bending moment? 
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b. Now consider a more refined estimate of the dead loads. The load at the center of the 

arch is taken to be 57kN/m and extends linearly to the supports, where it has the value 

of 109kN/m.  Determine the reactions due to the bridge weight and plot the internal 

bending moment, shear, and axial force. Compare the two bending moment 

distributions. Use symmetry! 
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