## In General

- 1. Express M member elongations  $\delta_{ij}$  in terms of  $\underline{u}$  (M eqns)
- 2. Enforce the boundary constraints on the displacements (R eqns)
- 3. Express M member forces  $F^{ij}$  in terms of  $\delta_{ij}$  (M eqns)
- 4. Enforce static equilibrium at each node (2J or 3J eqns)

Total number of equations: 2M+R+DJ

## **Unknowns**

Nodal displacements u: DJ

Member elongations  $\delta_{ij:}$  M

Member forces Fi: M

Reaction forces  $R^{k:}R$ 

Total number of unknowns: 2M+R+DJ

## Member Forces and elongations in terms of <u>u</u>:

For a member connecting joints (j) and (k):



$$L^{jk} = |(\mathbf{x}^k - \mathbf{x}^j)|, \quad \mathbf{n}^{jk} = (\mathbf{x}^k - \mathbf{x}^j) / L^{jk}$$



 $\approx L^{jk} \left( 1 + (\mathbf{u}^k - \mathbf{u}^j) \cdot (\mathbf{x}^k - \mathbf{x}^j) / L^{jk} \right)$ 

 $= L^{jk} + (\mathbf{u}^k - \mathbf{u}^j) \cdot \mathbf{n}^{jk}$ 



Axial Force in the member: (j)



$$F^{jk} = \frac{E^{jk}A^{jk}}{L^{jk}} \delta^{jk} \equiv F^{kj} = \left(\frac{EA}{L}\right)^{jk} (\mathbf{u}^k - \mathbf{u}^j) \cdot \mathbf{n}^{jk}$$

Vectorial force on joint j through the member jk:

$$\mathbf{F}^{jk} = F^{jk} \mathbf{n}^{jk}$$