
1

1

Principle of Stationary Potential Energy

For a system in stable static equilibrium, 

the potential energy of the structure is minimized
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Find the values of the joint displacements for which the potential energy

of the structure and its applied loads is a minimum.

PE consists of elastic energy stored in members + energy due to applied loads.
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Equlibria by Energy considerations
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If L<d: equilibrium at x=0 only

If L>d: 3 equilibria!
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Stable Equilibrium: Minimum PE
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Snap Through Buckling: L<L0

P

http://www.ansys.com/applications/nonlinear/examples/sodacan_bg.htm
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Snap Through Buckling
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Potential energy of a structure
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Find the set of joint displacements that minimizes V. 

These minimizing displacements are those attained by the structure in static equilibrium
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Note that reaction forces do not contribute 

to the system PE!

PE due to reaction forces: 
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Potential Energy of a Single Member

(small deformations!)

For a member connecting joints (j) and (k):
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Quadratic in the displacements. 

Minimization leads to linear    

equations for u
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ReMember this?
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Minimize Px
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Notes:
• For this problem, we used a 

linearized expression for the 
elongations, assuming small u. 

• For the snap through buckling 
problem, we used the full, 
nonlinear expressions for member 
elongations. 

• Since energy minimization does 
not enforce equilibrium on the 
undeformed geometry it can 
predict things like snap-through 
buckling. Strains are still small (as 
required for the linear stress-strain 
behavior)
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