

Arches

Arches ideally are in a state of pure compression

Cable under its own weight

Arch under its own weight

Ideal shape: cosh

Arch with dead and self-load

- Suspension cable weight is usually small compared with distributed load it carries
- Arch self weight ω is often comparable to constant distributed load w_0

Ideal Arch shape equation:

$$\frac{d^2y}{dx^2} = -\frac{w}{R_x} = -\frac{w_0}{R_x} - \frac{\omega}{R_x} \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

BC: y(0)=y(d)=0, y(d/2)=h

Can solve by reduction of order, but the solution is messy.

Solve for the cable shape by energy minimization.

Given sag h. Arch length L_0 is not known.

Vary $\theta_0, \theta_1, \dots \theta_{N-1}$ and segment length s to minimize the total PE $V = \sum_{i=0}^{N-1} V_i$ Constraints: $(x_N, y_N) = (d, \theta)$ and $\max(y_i) = h$

