Structural Vibrations

Big Trouble!

Typical General Vibration Response

Cycle: One back and forth motion

Period: T Time to complete one cycle

Amplitude: X Max departure from equilbrium=2A

Frequency: $f = \frac{1}{T}$ (Hertz, or cycles per sec),

Angular Frequency $\omega = 2\pi f = \frac{2\pi}{T}$ (radians per sec)

Common Features of Vibrations

As systems vibrate, they typically pass through their equilibrium state.

Displacement typically follows a sinusoidal variation with time

$$x(t) = X_0 \sin(\omega t + \phi)$$

Parameters in the typical response

$$x(t) = X_0 \sin(\omega t + \phi)$$

Angular Frequency: ω (radians per unit time)

Frequency: $f = \frac{\omega}{2\pi}$ (cycles per unit time, eg Hertz=cycles/sec),

Period: $T = \frac{1}{f} = \frac{2\pi}{\omega}$ (Time to complete one cycle)

Amplitude: X_o (Maximum displacement from equilibrium)

Phase: $\phi = \sin^{-1}(x_0/X_0)$ (Describes ratio of initial displ x(0) to the amp X_0)

Example: Pendulum

Period:
$$T=2\pi\sqrt{\frac{l}{g}}$$
 seconds
Frequencies $f=\frac{1}{2\pi}\sqrt{\frac{g}{l}}$ Hertz,
 $\omega=\sqrt{\frac{g}{l}}$ radians per sec

$$x(t) = X_0 \sin(\omega t - \phi)$$

Example: Spring-Mass

Period: $T = 2\pi \sqrt{\frac{m}{k}}$ seconds

Frequencies $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ Hertz,

 $\omega = \sqrt{\frac{k}{m}}$ radians per sec

$$x(t) = s(t) - d = X_0 \sin(\omega t + \phi)$$

Frequency and Period are **System Dependent**

$$T = 2\pi \sqrt{\frac{m}{k}}$$
 seconds

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \quad \text{Hertz,} \qquad \qquad f = \frac{1}{2\pi} \sqrt{\frac{g}{l}} \quad \text{Hertz,}$$

$$\omega = \sqrt{\frac{k}{m}} \quad \text{radians per sec} \qquad \omega = \sqrt{\frac{g}{l}} \quad \text{radians per sec}$$

$$T = 2\pi \sqrt{\frac{l}{g}}$$
 seconds

$$f = \frac{1}{2\pi} \sqrt{\frac{g}{l}}$$
 Hertz,
 $\omega = \sqrt{\frac{g}{l}}$ radians per sec

Amplitude and Phase depend on **Initial** Conditions: $x(0)=x_o$ and $v(0)=v_o$

Amplitude: Maximum displacement from static equilib. position

$$X_0 = \sqrt{x_o^2 + v_o^2 / \omega^2}$$

Phase: Describes the ratio of the initial displacement x_0 to the amplitude of vibration X_0

 $\phi = \sin^{-1}\left(\frac{\omega x_o}{X_o}\right)$ (radians)