
Engineering 1620 – Spring 2020 

Homework Set 4 Answers 

 

1) Here is the basic hybrid-pi model of a BJT transistor. It is probably too simplistic as it ignores parasitic 
resistances in series with each terminal of the device, the inductance of the package connections, and 
additional capacitance from the package to ground in the board on which the transistor gets mounted. 
My purpose in setting the problem was just to remind you of where the principal effects come from and 
give you a sense of the numbers.  

 Filling in values for the BFP640 from its data sheet in no particular order: From figure 12 at VCB = 2.5 – 
VBE = 1.9 volts, CCB = 0.093 pf (estimate); from figure 3 at 20 mA and VCE = 2.5 volts, the output resistance 
r0 is >> 2 K so can be treated as infinite for high frequency calculations; from the usual formula for 
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On substitution: Cπ  is 3.1 pf. 
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2) Here are parts 2.1 and 2.3 in an Excel graph: 

 

2.2) D2 prevents the opamp from going into output stage saturation when the input signal is negative 
and thus reduces the response time of the circuit when the signal becomes positive again. It limits the 
negative output swing to a single diode forward voltage drop.  

2.4) The average value of a rectified sinusoid is 
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the output is 1240 Hz so the ripple is roughly .637/124 = 5.1 mV. 

3.1) While this might be used as a current mirror, it probably should be called a current source because 
the input side of the mirror has a fixed current rather than a time dependent signal.  M3 and M1 are the 
matched pair that have the same VGS and nearly the same VDS that forces the current in M3 to be 
mirrored in M1.  M2 increases the output impedance by cascoding the output drain current of M1. M3 
provides the fixed gate voltage to the cascoding transistor but its primary purpose is to equalize the 
drain voltages of M1 and M3 to improve the current match. 

3.2) The output resistance of the circuit is the ratio of a change in output voltage to a consequent 
change in the output current. To calculate it, one needs the small signal equivalent circuit of the output 
side of the mirror.  At low frequencies when the gate-drain capacitance of M2 can be neglected, the 
gate voltages of M1 and M2 are constant and hence at small signal ground.  Because the small signal 
model has the gate of M1 grounded, the dependent current source in M1 is zero current; only the 
output resistance of M1 from channel length modulation is needed in the circuit model. Also add a test 
current, itest, to drive the output of the model. The final model is simply 

 



 

 

 

 

 

 

 

 

The current through rO1 is itest so 2 1gs test Ov i r= − .  The KCL equation at the drain is  
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Multiply through by rO2 and collect terms to get ( )2 1 2 11out m O O Oz g r r r= + + .  The term 2 1m Og r  reflects 

the effect of source (or emitter degeneration) on output impedance and is one of the standard results a 
designer has to keep in mind all the time.  

3.3) The input path has two gate-drain connected transistors in series and the resistance of each is the 

inverse of its transconductance. The total resistance is thus 
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3.4) All four transistors have the same current, ID = 20 uamp.  The transconductance is 
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3.5) The key observation here is that this circuit also acts like a current mirror. The gate-drain 
capacitance of M2 extends from the output to the input node. The input resistance is relatively low so 
any test voltage applied to the output terminal would largely appear across CGD and the current through 
that would be copied through the mirror thus doubling the effect of CGD. The total apparent capacitance 
would be 2OUT GD GSSC C C= +   
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4) The starting point is to write out the gain of the amplifier. It has a single dominant pole at GBW
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where fGBW is the gain-bandwidth product and AOL is the low frequency open-loop gain. With this: 
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where this assumes that AOL >> 1.  In this problem 54 10OLA = ⋅  ohms and 
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4.1) By Miller’s theorem, the input should appear to have an impedance equivalent to CINT scaled by the 

factor ( )1 A s+ . From the impedance of a capacitor this is   
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4.2) At 1 Hz, the phase angle of the pole-zero ratio in the brackets is negligible (or to be more exact 0.94 
degrees). So the impedance has a – 89.1 degree phase, and is essentially a 60 ufd capacitor with 
reactance of 2.75 K ohms. 

4.3) At 1 KHz, the phase angle in the bracket is 1 1000tan 86.6
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degrees. (The denominator still has 

negligible imaginary part.) This moves the phase of the impedance to 3.4 degrees making it essentially a 

resistor.  The magnitude is 
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4.4) The reactance of the 15 pf capacitance of the amplifier input impedance is 9.8 megohms so that is 
negligible in comparison to the 332 ohm resistor. 

4.5) At 1 MHz, the phase angle of the numerator of z is 90 degrees since the imaginary part of the 
numerator is 16,000 times bigger than the real part. The denominator contributes a phase of -2.4 
degrees so the impedance is still essentially a resistor. The magnitude is still 332 ohms. 

In the frequency range from somewhat above the dominant pole frequency until nearly the unity gain 
frequency, the input impedance stays constant and resistive. The decrease in reactance of CINT is offset 
because the amplification from the opamp is decreasing above the dominant pole frequency. The two 
effects have inverse dependence on frequency and so cancel.     Similarly CINT and the amplifier have 
offsetting phase shifts of nearly 90 degrees that net to near zero degrees.   



5.)  The problem requires writing the two KCL node equations and using the equality of the base 
currents in Q1 and Q2. The output current is beta times the base current of Q3. The full set of equations 
in some detail is: 
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The solution for the difference between the input and output currents is that the input current exceeds 

the output by 2 2
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6.1) Let the closed loop gain of the amplifier be 
21
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≡ +  . Let the voltage relative to ground at the 

node where C2 joins the two resistors, R, be 1v . Then the output voltage in terms of the voltage at 1v is 

by inspection: 
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where 1 1RCτ = .  The KCL current nodal equation at 1v is: 
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6.2) The easy part first: select an arbitrary value for R2, say 10 K, then R1 = 4 K.  If R = 1 megohm, then 
the numerical values of the two time constants are simply the values of the capacitors expressed in 

microfarads. The second order Butterworth polynomial is 2 2 1s s+ +  so by comparison we have: 
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Multiplying the second equation by C2 and eliminating C1 leaves 2
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which is C2 = 1.083 ufd. C1 = 0.924 ufd.  

6.3) For operation with a bandwidth of 3.1 KHz, we need to divide the capacitors by 
3 42 3.1 10 1.948 10π ⋅ ⋅ = ⋅  but scaling the resistor value from 1 megohm to 100 K increases the 

capacitors by a factor of 10. The net effect is that 2 3

1.08 555
1.948 10

C = =
⋅

pf and C1 = 474 pf. 

 

 


