Handout on the Design of a Diabolical Coke ™ Machine

In-class Example of a Finite State Machine

System Block Diagram:

State Register

ACK

Full Cup FULL i » Next State Logic L

Switch ! ' CUP R

EXC/INH g i | (Combinational) | SODA_V _

Select b ! "

\LD\J; | VINHLV

COIN (RE \ | "

. p R q (REQ) ., | EXC_V

Coin drop ! i >
- > ' I
signal - . |
bouncing B i :

CLK (Very slow clock —two cycles fills a cup)

Comments:

The system outputs drive a mechanical cup drop mechanism and three solenoid valves to dispense
carbonated water and two flavors. Shutoff is insured by both timing (fill is to last two and only two clock
cycles) and weight of the cup (FULL signal from a spring-loaded switch). The signal for the customer
having deposited sufficient coins is from a mechanical switch that closes only transiently with multiple
bounces. The REQ/ACK subsystem implemented in a REQ/ACK scheme is needed to capture the deposit
because the clock is not sufficiently fast to do so.

State Table:

Style 3
State Style 1 Style2 | (one-

State | Name Function (Binary) | (ad hoc) | hot)

A waiting Wait for money 000 0000 000000
B release Drop a cup 001 1000 000011
C soda_inhl | Dispense soda with inh 1 cycle 010 0001 000101
D soda_inh2 | Dispense soda with inh 2 cycle 011 0011 001001
E soda_excl | Dispense soda with exc 1 cycle 100 0101 010001
F soda_exc2 | Dispense soda with exc 2 cycle 101 0111 100001

Transition Table:

Pres. Next Pres. Next
COIN | INH | State | Q[2:0] State | D[2:0] COIN | INH | State | Q[3:0] State | D[3:0]
0 X A 000 A 000 0 X A 0000 A 0000
1 X A 000 B 001 1 X A 0000 B 1000
X 0 B 001 E 100 X 0 B 1000 E 0101
X 1 B 001 C 010 X 1 B 1000 C 0001
X 0 C 010 F 101 X 0 C 0001 F 0111
X 1 C 010 D 011 X 1 C 0001 D 0011
X 0 E 100 F 101 X 0 E 0101 F 0111
X 1 E 100 D 011 X 1 E 0101 D 0011
X X D 011 A 000 X X D 0011 A 0000
X X F 101 A 000 X X F 0111 A 0000
XX =COIN, INH

State-bit Assignment Styles:

The motivation for the second and third choices of state encoding was the possibility of simplifying the

logic for next state and output decoding, particularly in the case of style #2 the criterion was output

decoding. Here is the output decoding logic as it works out in terms of the state variables Qn, Qn-1,..Q0.

Output | Style#1 Style # 2 Style # 3

CuUP Q2-Q1-Q0 Q3 QB

INH_V | Q1-FULL Q2-Q0-FULL | (QC+QD)-FULL
EXC.V | Q2-FULL Q2-Q0-FULL | (QF +QE)-FULL
SODA_V | (Q2+Q1)-FULL | Q0-FULL QA-QB-FULL

The gain in output logic is minimal in this example. In a more serious design one would face the
problem of deciding which assignments made the best system and the criteria for that are the system
speed and its cost or equivalently the silicon area or number of gates. The approach would be to use
static timing analysis to see if any one choice would reduce logic delays enough to speed the system up.
That would be optimized against the size of the system. With luck, a design exists that minimizes both
time and dollars.

Verilog Functional Timing Diagram Simulating a Soda Sale with Mix of Half with INH and Half with EXC

e [P W e W e w e e
o I O ey DO s WU ey DU B
coin s

inh |

full |

cup = i

soda_v [l

inh_v]

exc_v []

pres_state (oo Xo3 X05 X2 X00

next_state (00 X03 X05 X09 00

Verilog Files: All Bit-assignment Styles

/l
/]
// Title : coke_stylel

// Design :coke_tm

// Company : Brown University

// : School of Engineering

/]

/]

// Description : Example of Verilog FSM coding - Coke (TM) machine
/l
//

‘timescale 1 ns/ 1 ps

module coke_stylel (input full ,inh ,coin ,clk , output reg cup ,inh_v ,exc_v,soda_v);
reg [2:0] pres_state, next_state; // State variables

// An "initial" block affects only simulation - you cannot count on it for operation
initial pres_state = 3'b000;

// State bit assighments
parameter [2:0] waiting = 3'b000,
cup_drop =3'b001,

dispense_il =3'b010,
dispense_i2 =3'b011,
dispense_el =3'b100,
dispense_e2 =3'b101;

// State register
always @ (posedge clk) pres_state <= next_state;

// Next state logic
always @ (pres_state, coin, inh) begin
case (pres_state)
waiting: if (coin == 1'b1) next_state = cup_drop;
else next_state = waiting;
cup_drop: if (inh == 1) next_state = dispense_il;
else next_state = dispense_el;
dispense_il: if (inh == 1) next_state = dispense_i2;
else next_state = dispense_e2;
dispense_el: if (inh == 1) next_state = dispense_i2;
else next_state = dispense_e2;
dispense_i2: next_state = waiting;
dispense_e2: next_state = waiting;
default next_state = waiting;
endcase

end

// Output logic - note that outputs are reg type even though not ff outputs
always @ (pres_state, full) begin
if (pres_state == cup_drop) cup = 1;

else cup =0;
if (pres_state == dispense_il | dispense_i2) begin
inh_v =~full;

soda_v = ~full;

end

if (pres_state == dispense_e1 | dispense_e2) begin
exc_v = ~full;
soda_v = ~full;

end
end
endmodule
//
//

// Title : coke_style2

// Design :coke_tm

// Company : Brown University

// : School of Engineering

/]

// Description : Example of Verilog FSM coding - Coke (TM) machine
/]
/]

‘timescale 1 ns/ 1 ps

//{module {coke_style2}} - ad hoc state bit assignments for simplified output logic
module coke_style2 (input full ,inh ,coin ,clk , output cup ,inh_v ,exc_v,soda_v);

reg [3:0] pres_state, next_state;

// An "initial" block affects only simulation - you cannot count on it for operation
initial pres_state = 4'b0000;

// State bit assighments - ad hoc for simple outputs
parameter [3:0] waiting = 4'b0000,

cup_drop =4'1000,

dispense_il = 4'b0001,

dispense_i2 =4'b0011,

dispense_el =4'b0101,

dispense_e2 =4'b0111;

// State register
always @ (posedge clk) pres_state <= next_state;

// Next state logic
always @ (pres_state, coin, inh) begin
case (pres_state)
waiting: if (coin == 1'b1) next_state = cup_drop;
else next_state = waiting;
cup_drop: if (inh == 1) next_state = dispense_i1;
else next_state = dispense_el;
dispense_il: if (inh == 1) next_state = dispense_i2;
else next_state = dispense_e2;
dispense_el: if (inh == 1) next_state = dispense_i2;
else next_state = dispense_e2;
dispense_i2: next_state = waiting;
dispense_e2: next_state = waiting;
default next_state = waiting;
endcase
end

// Output - expose direct boolean equations to show style effect

assign cup = pres_state[3];

assign soda_v = pres_state[0] & ~full;

assign inh_v = ~pres_state[2] & pres_state[0] & ~full;
assign exc_v = pres_state[2] & ~full;

endmodule

/!

/]
// Title : coke_style3

// Design :coke_tm

// Company : Brown University

// : School of Engineering

/]

// Description : Example of Verilog FSM coding - Coke (TM) machine
/]
/]

‘timescale 1 ns /1 ps

//{module {coke_style3}} - One-hot design for simplified state decoding
module coke_style3 (input full ,inh ,coin ,clk , output cup ,inh_v ,exc_v,soda_v);

reg [5:0] pres_state, next_state;

// An "initial" block affects only simulation - you cannot count on it for operation
initial pres_state = 6'b000000;

// State bit assighments - One-hot
parameter [5:0] waiting = 6'b000000,
cup_drop = 6'b000011,
dispense_il = 6'b000101,
dispense_i2 = 6'b001001,
dispense_el = 6'b010001,
dispense_e2 = 6'b100001;

// State register
always @ (posedge clk) pres_state <= next_state;

// Next state logic
always @ (pres_state, coin, inh) begin
case (pres_state)
waiting: if (coin == 1'b1) next_state = cup_drop;
else next_state = waiting;
cup_drop: if (inh == 1) next_state = dispense_il;
else next_state = dispense_el;
dispense_il: if (inh == 1) next_state = dispense_i2;
else next_state = dispense_e2;
dispense_el: if (inh == 1) next_state = dispense_i2;
else next_state = dispense_e2;
dispense_i2: next_state = waiting;
dispense_e2: next_state = waiting;
default next_state = waiting;
endcase
end

// Output - expose direct Boolean equations to show effect of style
assign cup = pres_state[1];

assign soda_v = ~pres_state[1] & pres_state[0] & ~full;

assign inh_v = (pres_state[2] | pres_state[3]) & ~full;

assign exc_v = (pres_state[4] | pres_state[5]) & ~full;

endmodule

