FALL 2019
PROF. IRIS BAHAR
SEPTEMBER 4, 2019
LECTURE I: INTRODUCTION

DIGITAL ELECTRONICS SYSTEM DESIGN

INSTRUCTORS \& TAS

- Iris Bahar
- Prof. of Engineering, Prof. of CS
- Office: CIT449
- Research interests: energy-efficient computing, computer architecture, robotics, emerging computing technologies
- Teaching interests: digital design, robotics, emerging technologies, VLSI
- Graduate TAs: Jiwon Choe and Pratistha Shakya
- We will also have several undergraduate students helping with labs

COURSE GOALS

- Design combinational and sequential logic for a wide range of systems
- Understand CMOS transistors and their use in logic circuits
- Realize logic designs in an appropriate choice of discrete logic, CPLD, or FPGA
- Use CAD tools for schematic capture, logic simulation, and programmable designs
- Understand role and advantages of hardware description languages
- Make use of memory and simple processors

CLASS MEETING TIMES

- Lectures M,W 3:00-4:20pm, B\&H I53
- Lab space: B\&H 196 (the fishbowl)
- Office hours:
- Mondays 4:30-5:30pm, ERC lobby
- Tuesdays I0-I I am, CIT449 (my office)
- by appointment
- TA Hours:
- Expect 25-35 hrs/wk of lab staffing total from the TAs
- Hours will be posted next week

LAB MANUAL, KITS, TEXTBOOK, ETC.

- Lab manual and kits are required for the course
- Pick up both from George Worth (B\&H 325)
- $\$ 60$ (payable by check to Brown University)
- \$50 rebate at end of semester if you return the major parts of the kit
- Textbook
- John F.Wakerly, Digital Design: Principles and Practices, 5Ed.
- OPTIONAL
- Very useful textbook, but hefty list price (sorry)
- Course webpage:
www.brown.edu/Departments/Engineering/Courses/En I 63/home.html

COLLABORATION POLICY

- Laboratory assignments are to be done alone
- You may collaborate on labs only by discussing them generally with classmates and TAs
- TAs will give hints or suggestions only
- Make sure you understand the problem and its solution for each lab (or you may not be able to answer questions from the TA)
- All labs need to be built, debugged, and demonstrated on your own boards. Copying someone else's software is also not allowed.
- You are responsible for taking your own data (for labs 2,6,9)
- Copying or using someone else's design as your own will not be tolerated!

DIVERSITY AND INCLUSION

- It is our intent that students from all diverse backgrounds be wellserved by this course.
- The diversity the students bring to this class is a resource, strength, and benefit.
- We aim to present materials and provide lab space that is inclusive and respectful of diversity
- Likewise, we expect all students in class to be respectful of diversity and do their part in creating an inclusive environment.
- Your suggestions are encouraged and appreciated.

BINARYVS. DIGITAL SYSTEMS

- Digital system: Finite number of values
- Binary (base 2) system: uses 2 states
- Basic unit of information: Binary digit (i.e., bit)
- Two values: 0,I
- 0 and I represented by voltage ranges
- Don't need to be exact
- Electronic circuits don't need to be perfect

ENCODING NUMBERS IN BINARY

- Each position represents a quantity; symbol in position means how many of that quantity

- Ten symbols: $0,1,2, \ldots, 8$, and 9
- More than 9 -- next position
- So each position is a power of 10

Nothing special about base 10 -- used because we have 10 fingers

- Base two (binary)
- Two symbols: 0 and I

More than I -- next position

- So each position is a power of 2

CONVERTING FROM DECIMAL TO BINARY: SUBTRACTION METHOD

Desired decimal number: 12

- Goal
- Get the binary weights to add up to the decimal quantity
- Work from left to right
- (Right to left - may fill in Is that shouldn't have been there - try it).

32	16	8	4	2	I	$=32$ too much
1						
32	16	8	4	2	I	
0	1					= 16
32	16	8	4	2	1	too much
0	0	1				=8
32	16	8	4	2	I	ep going
0	0	1	1			=8+4=12
32	16	8	4	2	1	DONE
0	0	1	1	0	0	answer
32	16	8	4	2		

CONVERTING FROM DECIMAL TO BINARY: SUBTRACTION METHOD

- Subtraction method

- To make the job easier (especially for big numbers), we can just subtract a selected binary weight from the
(remaining) quantity
- Then, we have a new remaining quantity and we start again (from the present binary position)
- Stop when remaining quantity is 0

Remaining quantity: II2

32	16	8	4	2		$\begin{aligned} & 32 \text { is } \\ & \text { too much } \end{aligned}$
1						
32	16	8	4	2		
0	1					16 is
32	16	8	4	2		oo much
0	0	I				$\underline{12-8=4}$
32	16	8	4	2		
0	0	1				4-4=0
32	16	8	4	2		DONE
0	0	1	1	0		answer
32	16	8	4	2		

BINARY CONVERSION EXAMPLE		
Q: Convert the number " 23 " fromdecimal to binary	A: Remamining quantity	
	$\frac{.88}{7}$	$\frac{0}{32} \frac{1}{16} \frac{0}{8} \frac{0}{4} \frac{0}{2} \frac{0}{}$
	$\frac{7}{3}$	
	$\stackrel{4}{1}$	$\frac{0}{32} \frac{1}{16} \frac{0}{8} \frac{1}{4} \frac{1}{2} \frac{0}{}$
	$\frac{-1}{0} \longrightarrow_{\text {Done } 23 \text { in }}$	$\frac{0}{32} \frac{1}{16} \frac{0}{8} \frac{1}{4} \frac{1}{2}+$ $\text { ecimal is } 10111 \text { in binary. }$

CONVERTING FROM DECIMALTO
 BINARY: DIVISION METHOD

Divide decimal number
by 2 , insert remainder
into new binary number.

- Continue dividing quotient by 2 until quotient is 0 .

Example: Convert decimal number 12 to binary

Continue dividing since quotient (3) is greater than 0

CONVERTING FROM DECIMAL TO
 BINARY: DIVISION METHOD

BASE 16

BASE 16					
				- Nice because each position represents four base two positions - Used as compact means to write binary numbers - Known as hexadecimal, or just hex	
hex	binar	hex	binary		
0	0000	8	1000		
	0001	-	1001		
${ }^{2}$	0010	A	1010		
4	0011 0100	B	1011 1100		
5	0101		1101		Q:Write LII I,0000 in hex
6	0110	E	1110		
7	0111	F	1111		

- Example:Convert
decimal number 12 to binary (continued)

Continue dividing since quotient (1) is greater than 0

Since quotient is 0 , we can conclude that 12 is 1100 in binary

TRUTH TABLES OF LOGICAL OPERATIONS

Table 1.8
Truth Tables of Logical Operations

AND		OR			NOT		
x	y	$x \cdot y$	x	y	$x+y$	x	x^{\prime}
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	1	1	1		

SYMBOLS FOR DIGITAL LOGIC CIRCUITS

(a) Two-input AND gate

(b) Two-input OR gate

(c) NOT gate or inverter

INPUT-OUTPUT SIGNALS FOR GATES

(a) Three-input AND gate
(b) Four-input OR gate

x	0	1	1	0	0
	0	0	1	1	0
AND: $x \cdot y$	0	0	1	0	0
OR: $x+y$	0	1	1	1	0
NOT: x^{\prime}	1	0	0	1	1

BOOLEAN ALGEBRA

- Set of axioms and theorems to simplify Boolean equations
- Like regular algebra, but in some cases simpler because variables can have only two values (I or 0)
- Axioms and theorems obey the principles of duality:
- ANDs and ORs interchanged, O's and I's interchanged

BOOLEAN AXIOMS				
	Axiom		Dual	Name
A1	$B=0$ if $B \neq 1$	A1 ${ }^{\prime}$	$B=1$ if $B \neq 0$	Binary field
A2	$\overline{0}=1$	A2 ${ }^{\prime}$	$\mathrm{T}=0$	NOT
A3	$0 \bullet 0=0$	A 3^{\prime}	$1+1=1$	AND/OR
A4	$1 \cdot 1=1$	A ${ }^{\prime}$	$0+0=0$	AND/OR
A5	$0 \cdot 1=1 \cdot 0=0$	A5'	$1+0=0+1=1$	AND/OR
	Theorem		Dual	Name
T1	$B \bullet 1=B$	T1'	$B+0=B$	Identity
T2	B - $0=0$	T2'	$B+1=1$	Null Element
T3	$B \bullet B=B$	T3'	$B+B=B$	Idempotency
T4		$\overline{\bar{B}}=B$		Involution
T5	$B \cdot \bar{B}=0$	T5'	$B+\bar{B}=1$	Complements

