

FALL 2019

PROF. IRIS BAHAR

SEPTEMBER 4, 2019

LECTURE I: INTRODUCTION

INSTRUCTORS & TAS

Iris Bahar

- Prof. of Engineering, Prof. of CS
- Office: CIT449
- Research interests: energy-efficient computing, computer architecture, robotics, emerging computing technologies
- Teaching interests: digital design, robotics, emerging technologies, VLSI
- Graduate TAs: Jiwon Choe and Pratistha Shakya
- We will also have several undergraduate students helping with labs

COURSE TOPICS

- This course covers the fundamentals of digital logic design:
 - Boolean algebra, logic minimization
 - Gates, logic families, flip-flops
 - Sequential circuits, finite state machines
 - Static and dynamic memory design
 - Binary arithmetic
 - Programmable logic (CPLDs and FPGAs)
 - CAD for schematic capture and timing analysis
- Prerequisites: Not open to freshman. Some familiarity with electronics and/or discrete math (e.g., ENGN520, CSCI220)
 - See me if you are unsure of your eligibility

COURSE GOALS

- Design combinational and sequential logic for a wide range of systems
- Understand CMOS transistors and their use in logic circuits
- Realize logic designs in an appropriate choice of discrete logic, CPLD, or FPGA
- Use CAD tools for schematic capture, logic simulation, and programmable designs
- Understand role and advantages of hardware description languages
- Make use of memory and simple processors

CLASS MEETING TIMES

- Lectures M,W 3:00-4:20pm, B&H 153
- Lab space: B&H 196 (the fishbowl)
- Office hours:
 - Mondays 4:30-5:30pm, ERC lobby
 - Tuesdays 10-11am, CIT449 (my office)
 - by appointment
- TA Hours:
 - Expect 25-35 hrs/wk of lab staffing total from the TAs
 - Hours will be posted next week

LABORATORY ASSIGNMENTS

- This is a lab-intensive course (14 lab assignments in all)
- This is no set due date for any particular lab
 - Labs are grouped into clusters with due dates assigned to each cluster:
 - Group 1: labs 0-3, due by Oct. 6
 - Group 2: labs 4-9, due Nov. 17
 - Group 3: labs A, B, due Dec. 6
 - Group 4: labs C, D, due Dec. 13
 - Grace period during the last week before finals (see lab manual for details)
- Required labs: 1, 2, (7 or 8), 9, (B, C, or D) + logic analyzer + schematic
- Pace yourself throughout the semester so you can complete approximately I lab per week
- You don't need to complete all labs to get a good grade.
- Need a minimum of 57 points on the lab part
- Aim to complete about 11-12 labs

GRADING

- Grade distribution:
 - Laboratory assignments: 55%
 - Midterm exam: 15%
 - Final exam: 25%
 - Class participation: 5%
- Labs are graded pass/fail and are worth a variable number of points depending on difficulty
- You need 57 out of a possible 101 points on the lab portion to pass the class
- You must receive a passing grade on both lab and exams portions of the course to get a passing grade

LAB MANUAL, KITS, TEXTBOOK, ETC.

- Lab manual and kits are required for the course
 - Pick up both from George Worth (B&H 325)
 - \$60 (payable by check to Brown University)
 - \$50 rebate at end of semester if you return the major parts of the kit
- Textbook
 - John F. Wakerly, Digital Design: Principles and Practices, 5Ed.
 - OPTIONAL
 - Very useful textbook, but hefty list price (sorry)
- Course webpage:

www.brown.edu/Departments/Engineering/Courses/En163/home.html

COLLABORATION POLICY

- Laboratory assignments are to be done alone
 - You may collaborate on labs only by discussing them generally with classmates and TAs
 - TAs will give hints or suggestions only
 - Make sure you understand the problem and its solution for each lab (or you may not be able to answer questions from the TA)
 - All labs need to be built, debugged, and demonstrated on your own boards. Copying someone else's software is also not allowed.
 - You are responsible for taking your own data (for labs 2, 6, 9)
- Copying or using someone else's design as your own will not be tolerated!

DIVERSITY AND INCLUSION

- It is our intent that students from all diverse backgrounds be wellserved by this course.
- The diversity the students bring to this class is a resource, strength, and benefit.
- We aim to present materials and provide lab space that is inclusive and respectful of diversity
- Likewise, we expect all students in class to be respectful of diversity and do their part in creating an inclusive environment.
- Your suggestions are encouraged and appreciated.

BOOLEAN ALGEBRA AND BINARY REPRESENTATION

BINARY VS. DIGITAL SYSTEMS

- Digital system: Finite number of values
- Binary (base 2) system: uses 2 states
 - Basic unit of information: Binary digit (i.e., bit)
 - Two values: 0, 1
 - 0 and 1 represented by voltage ranges
 - Don't need to be exact
 - Electronic circuits don't need to be perfect

ENCODING NUMBERS IN BINARY

1 0 1 Q: How much?

• + • = •

4 + 1 = 5

 $\frac{1}{2^4} \xrightarrow{2^3} \xrightarrow{2^2} \xrightarrow{2^1} \xrightarrow{2^1} \xrightarrow{2^0}$

- Each position represents a quantity; $\frac{10^4 \text{ I0}^3 \text{ I0}^2}{10^4 \text{ I0}^3 \text{ I0}^2} \frac{3}{10^4 \text{ I0}^3}$
 - Base ten (decimal)
 - Ten symbols: 0, 1, 2, ..., 8, and 9
 - More than 9 -- next position
 So each position is a power of 10
 - Nothing special about base 10 -- used because we have 10 fingers
 - Base two (binary)
 - Two symbols: 0 and 1
 - More than I -- next position
 - So each position is a power of 2

CONVERTING FROM DECIMAL TO **BINARY: SUBTRACTION METHOD** Desired decimal number: 12 32 16 8 4 2 1 =32 $\frac{1}{32}$ $\frac{1}{16}$ $\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{1}$ too much Goal $\frac{0}{32} \frac{1}{16} \frac{1}{8} \frac{1}{4} \frac{1}{2} \frac{1}{1} = \frac{16}{16}$ =16 Get the binary weights to add up to the decimal quantity =8 Work from left to right 0 0 | $\frac{0}{32}$ $\frac{0}{16}$ $\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{1}$ ok, keep going (Right to left – may fill in 1s that shouldn't have been there - try it). =8+4=12 0 0 1 1 $\frac{1}{32}$ $\frac{1}{16}$ $\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{1}$ DONE <u>0 0 | | 0 0</u> answer 32 16 8 4 2 1

CONVERTING FROM DECIMAL TO BINARY: SUBTRACTION METHOD

Subtraction method

- To make the job easier (especially for big numbers), we can just subtract a selected binary weight from the (remaining) quantity
 - Then, we have a new remaining quantity, and we start again (from the present binary position)
 - Stop when remaining quantity is 0

Rem	nain	ing	qua	anti	ty: 📘	2
32	16	8	4	2	1	
1		_				32 is
32	16	8	4	2	Т	too much
0	T					16 is
32	16	8	4	2	Τ	too much
0	0	1				<u>12</u> – 8 = <u>4</u>
0 32	0	 8	4	2		<u>12</u> – 8 = <u>4</u>
0 32 0	0	 8 	4	2	1	<u>12</u> – 8 = <u>4</u> 4-4=0
0 32 0 32	0 16 0 16	 8 8	4 4	2	 	<u>12 - 8 = 4</u> <u>4-4=0</u> DONE
0 32 0 32	0 16 0 16	 8 8	4 4	2	 	<u>12 - 8 = 4</u> <u>4-4=0</u> DONE
$\frac{0}{32}$ $\frac{0}{32}$ $\frac{0}{32}$	0 16 0 16 0	 8 8 	4 4 	2 2 0	 0	$\underline{12} - 8 = \underline{4}$ $\underline{4} - 4 = \underline{0}$ $DONE$ answer

TRUTH TABLES OF LOGICAL OPERATIONS

Table 1.8Truth Tables of Logical Operations

AND		OR			NOT		
x	y	$x \cdot y$	x	у	<i>x</i> + <i>y</i>	x	<i>x'</i>
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	1	1	1		

SYMBOLS FOR DIGITAL LOGIC CIRCUITS

BOOLEAN ALGEBRA

- Set of axioms and theorems to simplify Boolean equations
- Like regular algebra, but in some cases simpler because variables can have only two values (I or 0)
- Axioms and theorems obey the principles of duality:
 - ANDs and ORs interchanged, 0's and 1's interchanged

BOOLEAN AXIOMS

	Axiom		Dual	Name
A1	$B = 0$ if $B \neq 1$	A1'	$B = 1$ if $B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1	AND/OR

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1′	B + 0 = B	Identity
T2	$B \bullet 0 = 0$	T2′	B + 1 = 1	Null Element
T3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\overline{\overline{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5′	$B + \overline{B} = 1$	Complements