FALL 2019
PROF. IRIS BAHAR
SEPTEMBER 9, 2019
LECTURE 2: BOOLEAN ALGEBRA

INSTRUCTORS \& TAS

- Iris Bahar
- Office: CIT449
- Office hours: Mon. 4:30-5:30pm, Tues. 10-I I am
- Graduate TAs: Jiwon Choe and Pratistha Shakya
- Undergrad TAs: Monica Alves, Jarod Boone, McKenna Cisler, Eren Derman, Andrew Duncombe

- Grade distíribūtion:- - . . Updated from Laboratory assignments: 55\% , $\begin{aligned} & \text { sylabus handed } \\ & \text { out last week }\end{aligned}$
' - Midterm exam: 15%
: Final exam: 25\%
-‘Glass participation: 5%
- Labs are gräded páss/fail and are worth a variable number of points depending on difficulty
- You need 57 out of a possible IOI points on the lab portion to pass the class
- You must receive a passing grade on both lab and exams portions of the course to get a passing grade

- Lab manual and kits will be ready tomorrow
- Pick up both from George Worth (B\&H 325)
- \$60 (payable by check to Brown University, cash OK)
- $\$ 50$ rebate at end of semester if you return the major parts of the kit
- Course webpage:
www.brown.edu/Departments/Engineering/Courses/En/63/home.html

BOOLEAN ALGEBRA AND FUNCTION REPRESENTATIONS

BOOLEAN ALGEBRA

- Set of axioms and theorems to simplify Boolean equations
- Like regular algebra, but in some cases simpler because variables can have only two values (I or 0)
- Axioms and theorems obey the principles of duality:
- ANDs and ORs interchanged, O's and l's interchanged

BOOLEAN AXIOMS AND THEOREMS OF SINGLE VARIABLES

TI:IDENTITY THEOREM

Axiom		Dual		Name
A1	$B=0$ if $B \neq 1$	A1'	$B=1$ if $B \neq 0$	Binary field
A2	$\overline{0}=1$	A2'	$\mathrm{T}=0$	NOT
A3	$0 \cdot 0=0$	A3'	$1+1=1$	AND/OR
A4	$1 \cdot 1=1$	A4'	$0+0=0$	AND/OR
A5	$0 \cdot 1=1 \cdot 0=0$	A5'	$1+0=0+1=1$	AND/OR
	Theorem		Dual	Name
T1	$B \cdot 1=B$	T1'	$B+0=B$	Identity
T2	B • $0=0$	T2'	$B+1=1$	Null Element
T3	$B \cdot B=B$	T3'	$B+B=B$	Idempotency
T4		$\overline{\bar{B}}=B$		Involution
T5	$B \cdot \bar{B}=0$	T5'	$B+\bar{B}=1$	Complements

- $\mathrm{B} \cdot 1=$
- $\mathrm{B}+0=$

${ }_{B}-\triangle O_{-}-{ }^{-}={ }_{8}$

- $\mathrm{B} \cdot \overline{\mathrm{B}}=0$
 - $\mathrm{B}+\overline{\mathrm{B}}=1$

T5: COMPLEMENTTHEOREM

BOOLEAN THEOREMS: SUMMARY

	Theorem		Dual	Name
T1	$B \bullet 1=B$	T1 ${ }^{\prime}$	$B+0=B$	Identity
T2	$B \bullet 0=0$	T2 ${ }^{\prime}$	$B+1=1$	Null Element
T3	$B \bullet B=B$	T3 3^{\prime}	$B+B=B$	Idempotency
T4		$\overline{\bar{B}}=B$		Involution
T5	$B \bullet \bar{B}=0$	T5 5^{\prime}	$B+\bar{B}=1$	Complements

REVIEW OF BOOLEAN ALGEBRA AND SWITCHING FUNCTIONS

BOOLEAN THEOREMS OF SEVERAL VARIABLES

AND, OR, NOT

AND	A B	C	
	0	0	0
	0	1	0

| 0 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 0 |

| 1 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 1 |

| OR | A B | C |
| :--- | :--- | :--- | :--- |
| | $\left.\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1\end{array} \right\rvert\,$ | 1 |

NOT	A	C
	0	1
	1	0

0 dominates in AND
1 dominates in OR

	Theorem		Dual	Name
T6	$B \cdot C=C \cdot B$	T6'	$B+C=C+B$	Commutativity
T7	$(B \cdot C) \cdot D=B \cdot(C \cdot D)$	T7 ${ }^{\prime}$	$(B+C)+D=B+(C+D)$	Associativity
T8	$(B \cdot C)+B \cdot D=B \cdot(C+D)$	T8'	$(B+C) \bullet(B+D)=B+(C \cdot D)$	Distributivity
T9	$B \cdot(B+C)=B$	T9'	$B+(B \cdot C)=B$	Covering
T10	$(B \cdot C)+(B \cdot C)=B$	T10 ${ }^{\prime}$	$(B+C) \cdot(B+\bar{C})=B$	Combining
T11	$\begin{aligned} & (B \cdot C)+(B \cdot D)+(C \cdot D) \\ & =B \cdot C+B \cdot D \end{aligned}$	T11'	$\begin{aligned} & (B+C) \cdot(B+D) \cdot(C+D) \\ & =(B+C) \cdot(B+D) \end{aligned}$	Consensus
T12	$\begin{aligned} & B_{0} \cdot B_{1} \cdot B_{2} \ldots \\ & =\left(B_{0}+B_{1}+B_{2} \ldots\right) \end{aligned}$	T12 ${ }^{\prime}$	$\begin{aligned} & B_{0}+B_{1}+B_{2} \ldots \\ & =\left(\overline{B_{0}} \bullet \overline{B_{1}} \cdot B_{2}\right) \\ & \hline \end{aligned}$	De Morgan's Theorem

SIMPLIFYING BOOLEAN EXPRESSIONS: EXAMPLE I

SIMPLIFYING BOOLEAN EXPRESSIONS: EXAMPLE I

- $Y=A B+A B$

$$
\begin{aligned}
\because & =\overline{A B}+A B \\
& =B(\bar{A}+A) \quad \mathrm{T} 8 \\
& =B(I) \quad \text { T5 } \\
& =B \quad \text { TI }
\end{aligned}
$$

SIMPLIFYING BOOLEAN EXPRESSIONS: EXAMPLE 2

```
SIMPLIFYING BOOLEAN EXPRESSIONS: EXAMPLE 2
```

- $Y=A(A B+A B C)$
$=A(A B(I+C)) \quad T 8$
$=A(A B(I)) \quad T 2$
$=A(A B) \quad \mathrm{TI}$
$=(A A) B \quad$ T7
$=A B$
T3

DEMORGAN'S THEOREM

BUBBLE PUSHING

- Pushing bubbles backward (from output) or forward (from inputs) changes body of gate from AND to OR or vice versa.
- Pushing bubble from output back to inputs puts bubbles on all gate inputs.
$A-马 \quad-Y ~$
$B-Z$

- Pushing bubbles on all gate inputs forward toward output puts bubble on output and changes gate body.
- $Y=\overline{A+B}=\bar{A} \cdot \bar{B}$

OPERATOR PRECEDENCE

- What does $w \bullet x ’+y \cdot z$ mean?
- Operator precedence rules:
I. NOT (highest priority)

2. AND
3. OR (lowest priority)

- Literals $\quad x_{i}$ or x_{i}^{\prime}
- Product Term $x_{2} x_{1}$
- Canonical form: a unique representation for a Boolean
- Sum Term $\quad x_{2}+x_{1}{ }^{\prime}+x_{0}$ function
- Minterm of n variables: A product of n variables in which every variable appears exactly once.
- Given a fixed ordering of the input variables
- Two equivalent functions have the same canonical form
- Maxterm of n variables: A sum of n variables in which every variable appears exactly once.

MINTERM AND MAXTERM

MINTERMS

$f_{1}(a, b, c)=a^{\prime} b c+a b{ }^{\prime} c+a b c^{\prime}+a b c$
$a^{\prime} b c=1$ iff $(a, b, c)=,(0,1,1)$
ab'c $=1$ iff (a,b,c, $)=(1,0,1)$
$\mathrm{abc}^{\prime}=1$ iff $(\mathrm{a}, \mathrm{b}, \mathrm{c})=,(1,1,0)$
$\mathrm{abc}=1$ iff $(\mathrm{a}, \mathrm{b}, \mathrm{c})=,(1,1,1)$
$\mathrm{f}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c})=1 \operatorname{iff}(\mathrm{a}, \mathrm{b}, \mathrm{c})=(0,1,1),(1,0,1),(1,1,0)$, or $(1,1,1)$
Ex: $\quad f_{1}(1,0,1)=1^{\prime} 01+10^{\prime} 1+101^{\prime}+101=1$ $\mathrm{f}_{1}(1,0,0)=1^{\prime} 00+10^{\prime} 0+100^{\prime}+100=0$

MINTERMVS. MAXTERM
$f_{2}(a, b, c)=(a+b+c)\left(a+b+c^{\prime}\right)\left(a+b^{\prime}+c\right)\left(a^{\prime}+b^{\prime}+c\right)$
$\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ iff $(\mathrm{a}, \mathrm{b}, \mathrm{c})=,(0,0,0)$
$a+b+c^{\prime}=0$ iff $(a, b, c)=,(0,0,1)$
$a+b \prime+c=0$ iff $(a, b, c)=,(0,1,0)$
$\mathrm{a}^{\prime}+\mathrm{b}+\mathrm{c}=0$ iff $(\mathrm{a}, \mathrm{b}, \mathrm{c})=,(1,0,0)$
$\mathrm{f}_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c})=0$ iff $(\mathrm{a}, \mathrm{b}, \mathrm{c})=(0,0,0),(0,0,1),(0,1,0),(1,0,0)$

Ex: $\quad \mathrm{f}_{2}(1,0,1)=(1+0+1)\left(1+0+1^{\prime}\right)\left(1+0^{\prime}+1\right)\left(1^{\prime}+0+1\right)=1$ $\mathrm{f}_{2}(0,1,0)=(0+1+0)\left(0+1+0^{\prime}\right)\left(0+1^{\prime}+0\right)\left(0^{\prime}+1+0\right)=0$
$\mathrm{f}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{a}^{\prime} \mathrm{bc}+\mathrm{ab}{ }^{\prime} \mathrm{c}+\mathrm{abc}{ }^{\prime}+\mathrm{abc}$
$\mathrm{f}_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c})=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left(\mathrm{a}^{2}+\mathrm{b}^{\prime}+\mathrm{c}^{\prime}\right)\left(\mathrm{a}+\mathrm{b}^{\prime}+\mathrm{c}\right)\left(\mathrm{a}^{\prime}+\mathrm{b}^{\prime}+\mathrm{c}\right)$
$\mathrm{f}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{m}_{3}+\mathrm{m}_{5}+\mathrm{m}_{6}+\mathrm{m}_{7}=\Sigma \mathrm{m}(3,5,6,7)$
$\mathrm{f}_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{M}_{0} \mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{4}=\Pi \mathrm{M}(0,1,2,4)$
Question: Does $\mathrm{f}_{1}=\mathrm{f}_{2}$?
Yes! Prove using Boolean algebra.

INCOMPLETELY SPECIFIED FUNCTIONS

Don't care set is important because it allows us to minimize the function

Id	a	b	$\mathrm{f}(\mathrm{a}, \mathrm{b})$
0	0	0	1
1	0	1	0
2	1	0	1
3	1	1	-

1) The input does not happen.
2) The input happens, but the output is ignored.

Examples:

- Decimal number $0 \ldots 9$ uses 4 bits. Minterm $(1,1,1,1)$ does not happen.
- Final carry out bit (output is ignored).

MORE TWO-INPUT LOGIC GATES

Function can be represented by sum of minterms: $\mathrm{f}(\mathrm{A}, \mathrm{B})=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{AB}^{\prime}+\mathrm{AB}$
This is not optimal however!
We want to minimize the number of literals and terms.
We factor out common terms -
$\mathrm{A}^{\prime} \mathrm{B}+\mathrm{AB}{ }^{\prime}+\mathrm{AB}=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{AB}^{\prime}+\mathrm{AB}+\mathrm{AB}$
$=\left(A^{\prime}+A\right) B+A\left(B^{\prime}+B\right)=B+A$
$\mathrm{f}(\mathrm{A}, \mathrm{B})=\mathrm{A}+\mathrm{B}$

