

DIGITAL ELECTRONICS SYSTEM DESIGN

FALL 2019

PROFS. IRIS BAHAR

SEPTEMBER 11, 2019

LECTURE 3: KARNAUGH MAPS & LOGIC MINIMIZATION

LECTURE SLIDES

- I will post lecture slides on the course webpage within 2 days of class
- Access the lecture slides from:

www.brown.edu/Departments/Engineering/Courses/En163/home.html

Updated syllabus and other course materials are also available online

LABORATORY ASSIGNMENTS

- Lab kits and lab manuals are now ready for pickup
 - See George Worth in B&H325 for pickup (remember your \$60 --- check or cash)
- Lab manuals can also be found on the course webpage
- TA will start holding lab hours on Thursday
 - Schedule can be found on the course webpage
- We created a Piazza page as a discussion forum for issues/questions on lab assignments.
 - Join by going to: piazza.com/brown/fall2019/engn1630

LAB TUTORIAL

- Andrew Duncombe (one of our TAs) will be holding a tutorial session tomorrow (Thursday, Sept. 12) @ 5pm in the lab to go over the basics of building digital electronics
 - How to use a breadboard
 - How to wire up a breadboard
- How to connect to a power source
- Etc.
- Lab: B&H196

OLEAN AXIOMS	
Axiom Dual Name	
A1 $B = 0$ if $B \neq 1$ A1' $B = 1$ if $B \neq 0$ Binary fie	ld
A2 $\overline{0} = 1$ A2' $\overline{1} = 0$ NOT	
A3 $0 \bullet 0 = 0$ A3' $1 + 1 = 1$ AND/OR	
A4 $1 \bullet 1 = 1$ A4' $0 + 0 = 0$ AND/OR	
A5 $0 \cdot 1 = 1 \cdot 0 = 0$ A5' $1 + 0 = 0 + 1 = 1$ AND/OR	
Theorem Dual Name	
T1 $B \bullet 1 = B$ T1' $B + 0 = B$ Identity	
T2 $B \bullet 0 = 0$ T2' $B + 1 = 1$ Null Element	nt
T3 $B \bullet B = B$ T3' $B + B = B$ Idempotence	y –
T4 $\overline{\overline{B}} = B$ Involution	
T5 $B \bullet \overline{B} = 0$ T5' $B + \overline{B} = 1$ Complement	ts

BOOLEAN THEOREMS OF SEVERAL VARIABLES

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6′	B + C = C + B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + B \bullet D = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
T9	$B \bullet (B + C) = B$	T9′	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet \mathbf{C}) + (B \bullet \overline{\mathbf{C}}) = B$	T10′	$(B + C) \bullet (B + \overline{C}) = B$	Combining
T11	$ \begin{aligned} (B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) \\ = B \bullet C + \overline{B} \bullet D \end{aligned} $	T11′	$ \begin{aligned} (B + C) \bullet (\overline{B} + D) \bullet (C + D) \\ &= (B + C) \bullet (\overline{B} + D) \end{aligned} $	Consensus
T12	$ \begin{array}{c} B_0 \bullet B_1 \bullet B_2 \dots \\ = (B_0 + B_1 + B_2 \dots) \end{array} $	T12′		De Morgan's Theorem

CANONICAL FORM

- Canonical form: a unique representation for a Boolean function
 - Given a fixed ordering of the input variables
 - Two equivalent functions have the same canonical form
 - Examples: truth table, canonical sum, canonical product

DEFINITIONS

- Literals x_i or x_i'
- Product Term x_2x_1'
- Sum Term $x_2 + x_1' + x_0$
- Minterm of *n* variables: A product of *n* variables in which every variable appears exactly once.
- Maxterm of *n* variables: A sum of *n* variables in which every variable appears exactly once.

8

MINIMIZING A FUNCTION

- Note that a canonical representation of a function is not always the most compact way to represent a function
 - To implement a function in hardware we want to minimize the number of literals and number of terms
- We can apply Boolean Theorems to minimize a function, but this can be cumbersome and lacks a visual understanding
- Instead, represent the function using Karnaugh maps...

ANOTHER 3-INPUT EXAMPLE									
	Id	a	b	с	f (a,b,c)				
	0	0	0	0	0	_			
	1	0	0	1	0				
	2	0	1	0	1				
	3	0	1	1	0	_			
	4	1	0	0	1				
	5	1	0	1	1				
	6		1	0	-				
	/		I	1	1				
							22		
							22		

YET ANOTHER EXAMPLE										
-	Id 0 1 2 3 4 5 6 7	a 0 0 0 1 1 1 1 1	b 0 1 1 0 0 1 1 1	c 0 1 0 1 0 1 0 1	f (a,b,c,d)		24			

٦

Г

