DIGITAL ELECTRONICS SYSTEM DESIGN

FALL 2019
PROFS. IRIS BAHAR
SEPTEMBER II, 2019
LECTURE 3: KARNAUGH MAPS \& LOGIC MINIMIZATION

LABORATORY ASSIGNMENTS

- Lab kits and lab manuals are now ready for pickup
- See George Worth in B\&H325 for pickup (remember your $\$ 60$--- check or cash)
- Lab manuals can also be found on the course webpage
- TA will start holding lab hours on Thursday
- Schedule can be found on the course webpage
- We created a Piazza page as a discussion forum for issues/questions on lab assignments.
- Join by going to: piazza.com/brown/fall2019/engnI 630

LECTURE SLIDES

- I will post lecture slides on the course webpage within 2 days of class
- Access the lecture slides from:
www.brown.edu/Departments/Engineering/Courses/En 163/home.html
- Updated syllabus and other course materials are also available online

- Andrew Duncombe (one of our TAs) will be holding a tutorial session tomorrow (Thursday, Sept. I2) @ 5pm in the lab to go over the basics of building digital electronics
- How to use a breadboard
- How to wire up a breadboard
- How to connect to a power source
- Etc.
- Lab: B\&HI96

BOOLEAN THEOREMS OF SEVERAL VARIABLES

	Axiom		Dual	Name
A1	$B=0$ if $B \neq 1$	A1 ${ }^{\prime}$	$B=1$ if $B \neq 0$	Binary field
A2	$\overline{0}=1$	A ${ }^{\prime}{ }^{\prime}$	$\mathrm{T}=0$	NOT
A3	$0 \bullet 0=0$	A3'	$1+1=1$	AND/OR
A4	$1 \cdot 1=1$	A4'	$0+0=0$	AND/OR
A5	$0 \cdot 1=1 \cdot 0=0$	A5 ${ }^{\text {' }}$	$1+0=0+1=1$	AND/OR
	Theorem		Dual	Name
T1	$B \cdot 1=B$	T1'	$B+0=B$	Identity
T2	B • $0=0$	T2'	$B+1=1$	Null Element
T3	$B \bullet B=B$	T3'	$B+B=B$	Idempotency
T4		$\overline{\bar{B}}=B$		Involution
T5	$B \cdot \bar{B}=0$	T5'	$B+B=1$	Complements

	Theorem		Dual	Name
T6	$B \cdot C=C \cdot B$	T6'	$B+C=C+B$	Commutativity
T7	$(B \cdot C) \cdot D=B \cdot(C \cdot D)$	T7 ${ }^{\prime}$	$(B+C)+D=B+(C+D)$	Associativity
T8	$(B \cdot C)+B \cdot D=B \cdot(C+D)$	T8'	$(B+C) \bullet(B+D)=B+(C \cdot D)$	Distributivity
T9	$B \cdot(B+C)=B$	T9'	$B+(B \cdot C)=B$	Covering
T10	$(B \cdot C)+(B \bullet C)=B$	T10'	$(B+C) \cdot(B+C)=B$	Combining
T11	$\begin{aligned} & (B \bullet C)+(B \cdot D)+(C \bullet D) \\ & =B \bullet C+B \cdot D \end{aligned}$	T11'	$\begin{aligned} & (B+C) \cdot(B+D) \cdot(C+D) \\ & =(B+C) \cdot(B+D) \end{aligned}$	Consensus
T12	$\begin{aligned} & B_{0} \bullet B_{1} \bullet B_{2 \ldots} \\ & =\left(B_{0}+B_{1}+B_{2} \ldots\right) \\ & \hline \end{aligned}$	T12'	$\begin{gathered} B_{0}+B_{1}+B_{2} \ldots \\ =\left(\overline{B_{0}} \bullet \bar{B}_{1} \cdot \bullet B_{2}\right) \end{gathered}$	De Morgan's Theorem

CANONICAL FORM

- Canonical form: a unique representation for a Boolean function
- Given a fixed ordering of the input variables
- Two equivalent functions have the same canonical form
- Examples: truth table, canonical sum, canonical product

DEFINITIONS

- Literals $\quad x_{i}$ or x_{i}^{\prime}
- Product Term $\quad x_{2} x_{1}$,
- Sum Term $\quad x_{2}+x_{1}{ }^{\prime}+x_{0}$
- Minterm of n variables: A product of n variables in which every variable appears exactly once.
- Maxterm of n variables: A sum of n variables in which every variable appears exactly once.

MINTERM AND MAXTERM

MINIMIZING A FUNCTION

- Note that a canonical representation of a function is not always the most compact way to represent a function
- To implement a function in hardware we want to minimize the number of literals and number of terms
- We can apply Boolean Theorems to minimize a function, but this can be cumbersome and lacks a visual understanding
- Instead, represent the function using Karnaugh maps...

REPRESENTING FUNCTIONS WITH
 KARNAUGH MAPS

Id	A	B	$\mathrm{f}(\mathrm{A}, \mathrm{B})$
0	0	0	$\mathrm{~m}_{0}$
1	0	1	$\mathrm{~m}_{1}$
2	1	0	$\mathrm{~m}_{2}$
3	1	1	$\mathrm{~m}_{3}$

- How do we represent $f(A, B)=A+B$ on the K-map

On the K-map:

$$
\begin{array}{lllc}
\text { Id } & \text { A B } & \mathrm{B}(\mathrm{~A}, \mathrm{~B}) \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
2 & 1 & 0 & 1
\end{array}
$$

Id	a	b	c	$\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})$
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

- What does the k-map look like?
2 variables means we have 2^{2} entries and thus we have 2 to the 2^{2}, or 2^{4} possible functions for 2 bits, which is 16 .

$\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{c}^{\prime}$
- Boolean expressions can be minimized by combining terms
- Karnaugh maps (K-maps) minimize equations graphically
- $P A+P \bar{A}=P$

MINTERM AND MAXTERM

- Circle 1's in adjacent squares
- In the Boolean expression, include only the literals that are true for each square

$$
\begin{aligned}
& y(A, B)=A^{\prime} B^{\prime}
\end{aligned}
$$

Id	a	b	c	$\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})$
0	0	0	0	0
1	0	0	1	0
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	-
7	1	1	1	1

CORRESPONDING K-MAP

$$
f(a, b, c)=a+b c^{\prime}
$$

$f(a, b, c)=b$,

