FALL 2019
PROF. IRIS BAHAR
SEPTEMBER 16, 2019
LECTURE 4: KARNAUGH MAPS \& LOGIC MINIMIZATION

DIGITAL ELECTRONICS

 SYSTEM DESIGN
LABORATORY ASSIGNMENTS

- Lab kits and lab manuals are now ready for pickup
- See George Worth in B\&H325 for pickup (remember your $\$ 60$--- check or cash)
- If you haven't picked up your kits by the end of the week, I will assume you are not taking this course for credit
- Lab manuals can also be found on the course webpage
- TA lab schedule can be found on the course webpage
- You are free to work on your lab outside of TA lab hours, but you need a TA to check off your lab.
- Join the Piazza discussion forum at piazza.com/brown/fall2019/engnI630

KARNAUGH MAPS (K-MAPS)

- Boolean expressions can be minimized by combining terms
- Karnaugh maps (K-maps) minimize equations graphically
- $P A+P \bar{A}=P$

K-MAPS WITH DON'T CARES
 USING MAXTERMS

- Universal Set:A set of gates such that every Boolean function can be implemented with gates in this set.
- Universal Set of Gates
- Other Types of Gates
- Examples:
- \{AND, OR, NOT\}

2) NAND / NOR

- \{AND, NOT\} OR can be implemented with AND and NOT gates: $a+b=\left(a^{\prime} b^{\prime}\right)^{\prime}$
- \{OR, NOT\} AND can be implemented with OR and NOT gates: $a b=\left(a^{\prime}+b^{\prime}\right)^{\prime}$
- $\{A N D, O R\}$ is not a universal set

SHANNON'S EXPANSION (FOR SWITCHING FUNCTIONS)

\{NAND, NOR\}

How do you make an inverter?

\{NOR \}
How do you make a NAND?

How do you make an inverter?
Formula: $f(x, Y)=x \cdot f(1, Y)+x \cdot f(0, Y)$
Proof by enumeration:
If $x=1, f(x, Y)=f(1, Y): 1 \cdot f(1, Y)+1 \cdot f(0, Y)=f(1, Y)$
If $x=0, f(x, Y)=f(0, Y): 0 \cdot f(1, Y)+0 \cdot \cdot f(0, Y)=f(0, Y)$
Useful for evaluating function and generating canonical form of a function

EVALUATE USING SHANNON'S
 EXPANSION

```
Shannon's Expansion
\(X \oplus X Y^{\prime} \oplus X^{\prime} Y \oplus(X+Y) \oplus X=\) ?
\(\Rightarrow X \oplus\left(X Y^{\prime}\right) \oplus\left(X^{\prime} Y\right) \oplus(X+Y) \oplus X=f(X, Y)\)
If \(X=1, f(1, Y)=1 \oplus Y^{\prime} \oplus 0 \oplus 1 \oplus 1=Y \oplus 1 \oplus 1=Y^{\prime} \oplus 1=Y\)
If \(X=0, f(0, Y)=0 \oplus 0 \oplus Y \oplus Y \oplus 0=0\)
Thus, \(f(X, Y)=X \cdot f(1, Y)+X^{\prime} \cdot f(0, Y)=X Y\)
```


A NOTE ON NAND/NOR

NAND, NOR gates

- NAND, NOR gates are not associative
- Let $\mathrm{a} \mid \mathrm{b}=(\mathrm{ab})^{\prime}$
- (a|b)|c $|=a|(b \mid c)$
- (a|b) $\mid c=\left(a^{\prime}+b^{\prime}\right)^{\prime}+c^{\prime}=a b+c^{\prime}$
- $a \mid(b \mid c)=a^{\prime}+\left(b^{\prime}+c^{\prime}\right)^{\prime}=a^{\prime}+b c$

TRANSLATING SUM OF PRODUCTS TO GATES

Sum of Products (Using only NAND gates)
$=-2$
$-\Leftrightarrow$

\Leftrightarrow

Sum of Products (Using only NOR gates)

TRANSLATING PRODUCT OF SUMS TO GATES

WHY DOWE NEED PULL-UP RESISTORS?

Product of Sums (NOR gates only)

- Consider a generic logic gate with 2 inputs, connected to 2 switches:

- Say the gate implements a NOR function.
- What happens when the input switches are closed?
- What happens when the input switches are open?

WHY DO WE NEED PULL-UP RESISTORS?

- Never leave inputs floating
- Connect them directly or indirectly to $\mathrm{Vcc}(+5 \mathrm{~V})$ or GND
- Direct connection: when inputs only take on one value
- Indirect connection (via a resistor): when inputs conditionally take on a specific value

How large should these resistors be?
Depends on input current $I_{\mid H}$ and tolerable voltage drop

-
 PULL-UPVS. PULL-DOWN

- What about a pull-down resistor?
- When would you need a pull-up/pull-down at the output?

