m [DIGITAL ELECTRONICS
BROWN SYSTEM DESIGN

School of Engineering

FALL 2019

PROF. IRIS BAHAR

SEPTEMBER 18,2019

LECTURE 5: TIMING HAZARDS & COMBINATIONAL BLOCKS

MIDTERM EXAM

= Please mark your calendars:

= The midterm exam will be held on Wednesday, October 30
= |n class, 90 minutes

= |5% of your total grade

REVIEW: PRIME IMPLICANTS

An implicant is a product/sum term obtained by combining adjacent
squares

A prime implicant is a product/sum term obtained by combining
the maximum number of adjacent squares

An essential prime implicant is
= A prime implicant
= ... that must be included in order to cover a “one” in the function
= This works with zeros to make Maxterms too
To find a simplified expression that covers all “I” in the function:
= First find the essential prime implicants

= Then add prime implicants to cover the minterms that are not yet covered

PRIME IMPLICANTS EXAMPLE

'
e ~N is not essential (removing it
[| |] | 0 does not uncover a*“l”)
0 | [| |]
.)
0 | 0 0 is essential
—

9/18/2019

PROCEDURE FOR DESIGNING A

COMBINATIONAL CIRCUIT

. Write the truth table

2. Derive a simplified Boolean expression for each output
variable via
= Karnaugh-maps OR
= Derive a standard SOP/POS and simplify via Boolean algebra
3. Draw the logic diagram

4. Wire gates together OR
implement in Verilog

3 WAYS TO IMPLEMENT F = AB + CD

A
B
F
c
D
(a)
A A
B B
F
e c

(b) ()

IMPLEMENTING F = A(CD + B) + BC’

c
D
B
A
B
c

—1

(a) AND-OR gates

a®>%on

(b) NAND gates

STATICVS.TRANSIENT BEHAVIOR

= So far we have only considered stead-state behavior of the
logic circuits

= Signals at the output of gates do not change instantaneously

delay

= How may this impact our circuit designs?

9/18/2019

STATIC HAZARDS

= Glitch/hazard: A short pulse at the output of a circuit, when
steady-state analysis predicts output does not change.

= Result of differences in propagation delay between paths

= Example: f(a,b,c) = m; + my,+ my + m;
=a’bc +ab’c’ + abc’ + abc

= What does the K-map look like and what is the minimized
Boolean expression for the function?

CORRESPONDING K-MAP

©0 (01 (L) (1,0
c=0 " o " o °(T>
S X
- a=1

fla,b,c) = ac’+ bc

= What does the circuit implementation look like?

TIMING HAZARDS IN CIRCUITS

= Hazard can occur when input change spans prime implicants
that are disconnected groups

a
b

Il
o~ ~

.
o

= Glitch corresponds to the transition abc=111->110

N e

REMOVING GLITCHES

b=1
0,00 (0,1) (1,1) (1,0)
o o [GVTD
aRavik

fla,b,c) =ac’+ bc + ab

= By adding the term ab we cover the transition
abc=111->110 with a single prime implicant

= No glitch!

9/18/2019

PROBLEMS WITH GLITCHES

= Why are glitches bad?

= Depending on how the circuit’s output is used, a system’s operation
may or may not be adversely affected

= May cause accidental update of data in memory units

= Logic switching translates to voltage changes and circuit capacitances
being charged and discharged

-> consequences in wasted energy consumption

= C p=w=cv¥~cp
PV = dt

COMBINATIONAL BUILDING BLOCKS

MULTI-LEVEL LOGIC

= So far we have primarily focused on 2-level representations
for combinational logic (SOP or POS)

= Multilevel logic is typically more compact (i.e., more cost-
efficient) in practice

COMBINATIONAL BUILDING BLOCKS

= More complex functions built from basic gates
= Comparators
= Multiplexors
= Decoders
= Encoders

= Typically tens to hundreds of transistors

= Common building blocks for digital systems

9/18/2019

EQUALITY COMPARATORS WITH XORS

MULTIPLEXOR (“MUX”)

X different
y

= |-bit comparator

different

= 4-bit comparator x2:>

= Connects one of n inputs to the S
output

DO
Y
D1
sources

= “Select” control signals pick | of the n

= |og,n select bits

= Useful when multiple data sources
need to be routed to a single
destination

= Often arises from resource sharing

oo ooln
rroor kool
porororol
R oOoror o<

= Example: select |-of- n data inputs to an
adder

USE OF MULTIPLEXORS/SELECTORS

Multi-point connections

A0 A1 BO B1

\
[mux |—so

' '

Multiple input sources

A B
Sum
=
Multiple output destinations
S0 S1

USE OF MULTIPLEXERS/SELECTORS

|1__ z Z=Aly+AlL
A
[[y——
i IR 4 Z = A'B'ly+ A'BI, + AB'I, + ABI,
13—t

I Z= A'B'C'ly + A'B'Cl, + A'BC'I, + A'BCI; +
| 8:1 AB'C'LI + AB'Cls + ABC'l; + ABCI,
4 =] mux

17— 2n-1

A fB fc In general, Z = Z my I, fora2™: 1 mux
k=0

9/18/2019

CASCADING MULTIPLEXORS

= Large multiplexors can be implemented by cascading smaller
ones

S1 S0 s2
4

17—
16— 41
15— 'mux
M 2
e e e Y
12— 41
H—e| mux) 8:1
10— mux

LOGIC FUNCTIONS USING MUXES

= Any function of n variables can be implemented with a 21
multiplexor

= Input variables connected to select inputs

= Data inputs tied to 0 or | according to truth table

A B Cin|S Cout

00 0|0 .

00 1|1 /0 o

01 010 13

01 1101 ?_i; 8:1 MUX Cout
10 010 1—s

10 1/01!1 "1's2 s1 s0

11 00 \1 !

11 1|1 "

LOGIC FUNCTIONS USING MUXES

= Any function of n variables can be implemented with a 2|
multiplexor

= How do we implement Cout with a single 4:1 MUX?

A B Cin|S Cout

00 00

00 1(1/0 o—lo

01 0117]0 * Co—1 4l Coue
01 1]0(1 C, 2MUX [
10 01l 0 A 3

10 1|01

11 0|0 \1 ‘ ‘

1.1 111 A B

DECODER: DEFINITION

* Ninputs, 2V outputs
* One-hot outputs: only one output HIGH at once

2:4
Decoder

11—,

Ay — 10 |— Y,

Ay — 01,

00— Y,
A1 Ao | Y3 yz Y1 Yo
0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

9/18/2019

9/18/2019

ALTERNATIVE IMPLEMENTATIONS

:D_ S :D_ Output0
Select ;| —-l>o— 1 .
: D Outputt _{>D__D- Outputt

1:2 Decoder, Active High Enable 1:2 Decoder, Active Low Enable
; G
G I D_ Outputo ... Output0
T) oumn Outputt
. N , . — D Output2 Output2
A B <D Output3 A OO O Output3
;lelecio ;[elecﬁ jelecto jelecﬂ
2:4 Decoder, Active High Enable 2:4 Decoder, Active Low Enable

