
9/18/2019

1

DIGITAL ELECTRONICS
SYSTEM DESIGN

FALL 2019

PROF. IRIS BAHAR

SEPTEMBER 18, 2019

LECTURE 5: TIMING HAZARDS & COMBINATIONAL BLOCKS

MIDTERM EXAM

 Please mark your calendars:

 The midterm exam will be held on Wednesday, October 30
 In class, 90 minutes

 15% of your total grade

REVIEW: PRIME IMPLICANTS
 An implicant is a product/sum term obtained by combining adjacent

squares
 A prime implicant is a product/sum term obtained by combining

the maximum number of adjacent squares
 An essential prime implicant is

 A prime implicant

 … that must be included in order to cover a “one” in the function
 This works with zeros to make Maxterms too

 To find a simplified expression that covers all “1” in the function:
 First find the essential prime implicants

 Then add prime implicants to cover the minterms that are not yet covered
4

PRIME IMPLICANTS EXAMPLE

1 0 0 0

1 1 1 0

0 1 1 1

0 1 0 0

is not essential (removing it
does not uncover a “1”)

is essential

9/18/2019

2

PROCEDURE FOR DESIGNING A
COMBINATIONAL CIRCUIT

1. Write the truth table

2. Derive a simplified Boolean expression for each output
variable via
 Karnaugh-maps OR

 Derive a standard SOP/POS and simplify via Boolean algebra

3. Draw the logic diagram

4. Wire gates together OR
implement in Verilog

6

3 WAYS TO IMPLEMENT F = AB + CD

7

IMPLEMENTING F = A(CD + B) + BC’

8

STATIC VS. TRANSIENT BEHAVIOR

 So far we have only considered stead-state behavior of the
logic circuits

 Signals at the output of gates do not change instantaneously

 How may this impact our circuit designs?

x y

delay

x
y

9/18/2019

3

STATIC HAZARDS

 Glitch/hazard: A short pulse at the output of a circuit, when
steady-state analysis predicts output does not change.
 Result of differences in propagation delay between paths

 Example: f(a,b,c) = m3 + m4 + m6 + m7
= a’bc + ab’c’ + abc’ + abc

 What does the K-map look like and what is the minimized
Boolean expression for the function?

CORRESPONDING K-MAP

 What does the circuit implementation look like?

0 2 6 4

1 3 7 5

b = 1

c = 1

a = 1

0 0 1 1

0 1 1 0

(0,0) (0,1) (1,1) (1,0)

c = 0

f(a,b,c) = ac’ + bc

TIMING HAZARDS IN CIRCUITS

 Hazard can occur when input change spans prime implicants
that are disconnected groups

 Glitch corresponds to the transition abc=111110

a
c

b

f
c

x
x y

z y
z
f

a=1
b=1

REMOVING GLITCHES

 By adding the term ab we cover the transition
abc=111110 with a single prime implicant
 No glitch!

0 2 6 4

1 3 7 5

b = 1

c = 1

a = 1

0 0 1 1

0 1 1 0

(0,0) (0,1) (1,1) (1,0)

c = 0

f(a,b,c) = ac’ + bc + ab

9/18/2019

4

PROBLEMS WITH GLITCHES

 Why are glitches bad?
 Depending on how the circuit’s output is used, a system’s operation

may or may not be adversely affected

 May cause accidental update of data in memory units

 Logic switching translates to voltage changes and circuit capacitances
being charged and discharged

 consequences in wasted energy consumption

𝑖 ൌ 𝐶
𝑑𝑉
𝑑𝑡

𝑃 ൌ 𝑖𝑉 ൌ 𝐶𝑉
𝑑𝑉
𝑑𝑡 ൎ 𝐶𝑉ଶ

COMBINATIONAL BUILDING BLOCKS

MULTI-LEVEL LOGIC

 So far we have primarily focused on 2-level representations
for combinational logic (SOP or POS)

 Multilevel logic is typically more compact (i.e., more cost-
efficient) in practice

COMBINATIONAL BUILDING BLOCKS

 More complex functions built from basic gates
 Comparators

 Multiplexors

 Decoders

 Encoders

 Typically tens to hundreds of transistors

 Common building blocks for digital systems

9/18/2019

5

EQUALITY COMPARATORS WITH XORS

 1-bit comparator

 4-bit comparator

x

y
different

x0
y0

different
x1
y1
x2
y2

x3
y3

MULTIPLEXOR (“MUX”)

 Connects one of n inputs to the
output
 “Select” control signals pick 1 of the n

sources

 log2n select bits

 Useful when multiple data sources
need to be routed to a single
destination
 Often arises from resource sharing

 Example: select 1-of- n data inputs to an
adder

Y
0 0
0 1
1 0
1 1

0
1
0
1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
1
1

0

1

S

D0
Y

D1

D1 D0S Y
0
1 D1

D0

S

USE OF MULTIPLEXORS/SELECTORS

Multi-point connections

MUX MUX

DEMUX

A B

Sum

A0 A1 B0 B1

Sa Sb

Ss

S0 S1

Multiple input sources

Multiple output destinations

USE OF MULTIPLEXERS/SELECTORS

2:1
mux

I 0
I 1

A

Z

I 0

A

I 1
I 2
I 3

B

Z 4:1
mux

I 0

A

I 1
I 2 I 3

B

Z 8:1
mux

C

I 4
I 5
I 6
I 7

In general, 𝑍 ൌ ෍ 𝑚௞𝐼௞ for a 2௡: 1 mux
ଶ೙ିଵ

௞ୀ଴

𝑍 ൌ 𝐴ᇱ𝐼଴ ൅ 𝐴𝐼ଵ

𝑍 ൌ 𝐴ᇱ𝐵′𝐼଴ ൅ 𝐴′𝐵𝐼ଵ ൅ 𝐴𝐵ᇱ𝐼ଶ ൅ 𝐴𝐵𝐼ଷ

Zൌ 𝐴ᇱ𝐵ᇱ𝐶′𝐼଴ ൅ 𝐴′𝐵ᇱ𝐶𝐼ଵ ൅ 𝐴ᇱ𝐵𝐶′𝐼ଶ ൅ 𝐴′𝐵𝐶𝐼ଷ ൅
 𝐴𝐵ᇱ𝐶′𝐼ସ𝐼 ൅ 𝐴𝐵ᇱ𝐶𝐼ହ ൅ 𝐴𝐵𝐶′𝐼଺ ൅ 𝐴𝐵𝐶𝐼଻

9/18/2019

6

CASCADING MULTIPLEXORS

 Large multiplexors can be implemented by cascading smaller
ones

LOGIC FUNCTIONS USING MUXES

 Any function of n variables can be implemented with a 2n:1
multiplexor
 Input variables connected to select inputs

 Data inputs tied to 0 or 1 according to truth table

LOGIC FUNCTIONS USING MUXES

 Any function of n variables can be implemented with a 2n:1
multiplexor
 How do we implement Cout with a single 4:1 MUX?

4:1
MUX

0
1
2
3

0
Cin
Cin

1

Cout

A B

• N inputs, 2N outputs
• One-hot outputs: only one output HIGH at once

DECODER: DEFINITION

2:4
Decoder

A 1
A 0

Y 3
Y 2
Y 1
Y 000

01
10
11

0 0
0 1
1 0
1 1

0
0
0
1

Y 3 Y 2 Y 1 Y 0A 0A 1
0
0
1
0

0
1
0
0

1
0
0
0

9/18/2019

7

ALTERNATIVE IMPLEMENTATIONS

1:2 Decoder, Active High Enable 1:2 Decoder, Active Low Enable

2:4 Decoder, Active High Enable 2:4 Decoder, Active Low Enable

Output0G
Select

Output1

Output0/G
Select

Output1

Select0 Select1

Output2

Output3

Output0
G

Output1

Select0 Select1

Output2

Output3

Output0
/G

Output1

