

DIGITAL ELECTRONICS SYSTEM DESIGN

FALL 2019

PROF. IRIS BAHAR

SEPTEMBER 18, 2019

LECTURE 5: TIMING HAZARDS & COMBINATIONAL BLOCKS

MIDTERM EXAM

- Please mark your calendars:
- The midterm exam will be held on Wednesday, October 30
 - In class, 90 minutes
 - 15% of your total grade

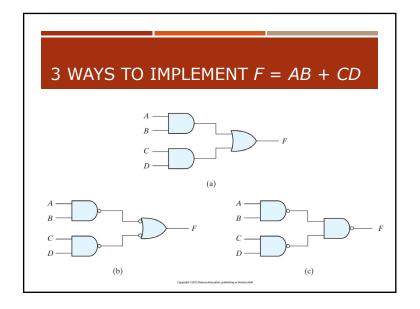
REVIEW: PRIME IMPLICANTS

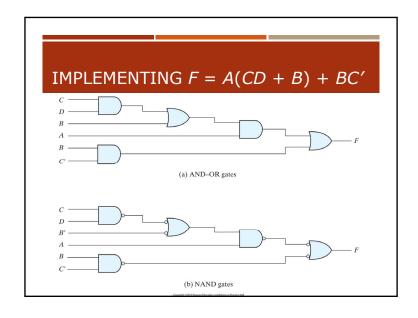
- An implicant is a product/sum term obtained by combining adjacent squares
- A prime implicant is a product/sum term obtained by combining the <u>maximum</u> number of adjacent squares
- An essential prime implicant is
 - A prime implicant
 - ... that must be included in order to cover a "one" in the function
 - This works with zeros to make Maxterms too
- To find a simplified expression that covers all "I" in the function:
 - First find the essential prime implicants
 - Then add prime implicants to cover the minterms that are not yet covered

PRIME IMPLICANTS EXAMPLE 1 0 0 0 is not essential (removing it does not uncover a "I") 0 1 1 1 is essential

PROCEDURE FOR DESIGNING A COMBINATIONAL CIRCUIT

- I. Write the truth table
- Derive a simplified Boolean expression for each output variable via
 - Karnaugh-maps OR
 - Derive a standard SOP/POS and simplify via Boolean algebra
- 3. Draw the logic diagram
- 4. Wire gates together OR implement in Verilog



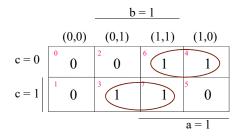


So far we have only considered stead-state behavior of the logic circuits Signals at the output of gates do not change instantaneously How may this impact our circuit designs?

STATIC HAZARDS

- Glitch/hazard: A short pulse at the output of a circuit, when steady-state analysis predicts output does not change.
 - Result of differences in propagation delay between paths
- Example: $f(a,b,c) = m_3 + m_4 + m_6 + m_7$ = a'bc + ab'c' + abc' + abc
- What does the K-map look like and what is the minimized Boolean expression for the function?

CORRESPONDING K-MAP

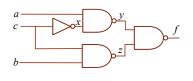


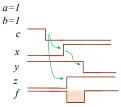
$$f(a,b,c) = ac' + bc$$

■ What does the circuit implementation look like?

TIMING HAZARDS IN CIRCUITS

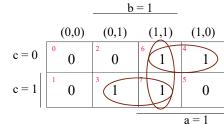
 Hazard can occur when input change spans prime implicants that are disconnected groups





■ Glitch corresponds to the transition abc=111→110

REMOVING GLITCHES



$$f(a,b,c) = ac' + bc + ab$$

- By adding the term ab we cover the transition $abc=111 \rightarrow 110$ with a single prime implicant
 - No glitch!

PROBLEMS WITH GLITCHES

- Why are glitches bad?
 - Depending on how the circuit's output is used, a system's operation may or may not be adversely affected
 - May cause accidental update of data in memory units
 - Logic switching translates to voltage changes and circuit capacitances being charged and discharged
 - → consequences in wasted energy consumption

$$i = C \frac{dV}{dt}$$

$$i = C \frac{dV}{dt}$$
 $P = iV = CV \frac{dV}{dt} \approx CV^2$

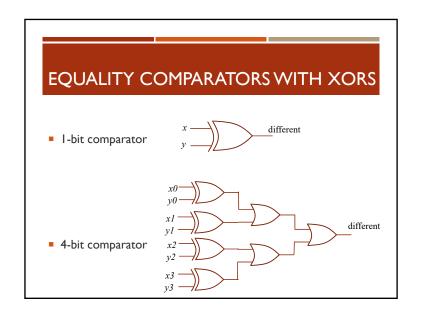
MULTI-LEVEL LOGIC

- So far we have primarily focused on 2-level representations for combinational logic (SOP or POS)
- Multilevel logic is typically more compact (i.e., more costefficient) in practice

COMBINATIONAL BUILDING BLOCKS

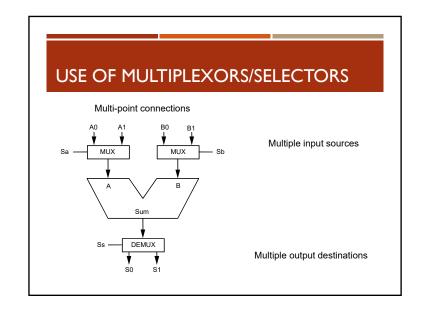
COMBINATIONAL BUILDING BLOCKS

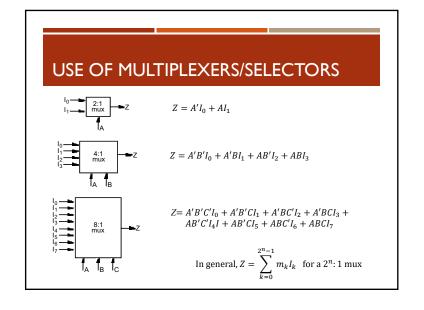
- More complex functions built from basic gates
 - Comparators
 - Multiplexors
 - Decoders
- Encoders
- Typically tens to hundreds of transistors
- Common building blocks for digital systems



- Connects one of n inputs to the output
 - "Select" control signals pick 1 of the n sources
- log₂n select bits
- Useful when multiple data sources need to be routed to a single destination
 - Often arises from resource sharing
 - Example: select 1-of- n data inputs to an adder

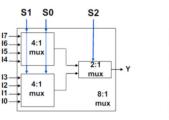
s	D_1	D_0	Y	S	Υ
0	0	0	0	0	D_0
0	0	1	1	1	D_1
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	0		
1	1	0	1		
1	1	1	1		





CASCADING MULTIPLEXORS

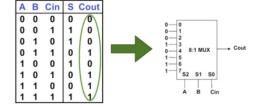
Large multiplexors can be implemented by cascading smaller ones





LOGIC FUNCTIONS USING MUXES

- Any function of n variables can be implemented with a 2ⁿ:1 multiplexor
 - Input variables connected to select inputs
 - Data inputs tied to 0 or 1 according to truth table



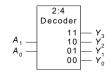
LOGIC FUNCTIONS USING MUXES

- Any function of *n* variables can be implemented with a 2ⁿ:1 multiplexor
 - How do we implement Cout with a single 4:1 MUX?

Α	В	Cin	S	Cout	
0	0	0	0	/ 0\	
0	0	1	1	/ o \	00
0	1	0	1	0	C _{in} I 4:I C _{out}
0	1	1	0	1 1	C 2 MUX
1	0	0	1	0	I 3
1	0	1	0	1 1 /	· 🖳
1	1	0	0	\ 1 /	ļ <u>l</u>
1	1	1	1	1/	A B

DECODER: DEFINITION

- N inputs, 2^N outputs
- One-hot outputs: only one output HIGH at once



A 1	A_0	Y ₃	Y_2	Y ₁	Y ₀
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

