

DECODER: DEFINITION

- *N* inputs, 2^N outputs
- One-hot outputs: only one output HIGH at once

LOGIC FUNCTIONS USING DECODERS • F1 = A'B'C'D' + AB'CD' + ABC'D'• F2 = A'B'C' + A'B'CD• F3 = A+B+C+D4:16 15 → ABCD Decoder 14 → ABCD' 13 +ABC'D 12 ABC'D' 11 AB'CD 10 +AB'CD' +AB'C'D -11 C-+AB'C'D' →A'BCD *A'BCD' *A'BC'D *A'BC'D' A'B'CD *A'B'C'D ->- F3 A'B'C'D'

1

FEATURE SIZE (A VS.ABSOLUTE DIMENSIONS)

- Feature size: minimum distance between source and drain of transistor
 - If λ =45nm and L = 2 λ , feature size 90nm
- Absolute dimensions:
 - e.g, 45nm library
 - Min. feature size = 50nm
 - L_{effective} ≈ 45nm
- λ rules can be more convenient than absolute dimensions since we don't need to update sizes for new technologies

 I_{10_2} Gate Oxide I insulator, $\varepsilon_{ox} = 3.9\varepsilon_0$

FIG 2.6 Transistor dime

