DIGITAL ELECTRONICS SYSTEM DESIGN

DECODER: DEFINITION

- N inputs, 2^{N} outputs
- One-hot outputs: only one output HIGH at once

LOGIC FUNCTIONS USING DECODERS

- $\mathrm{F} 1=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{AB}^{\prime} \mathrm{CD}^{\prime}+\mathrm{ABC}^{\prime} \mathrm{D}^{\prime}$
- $\mathrm{F} 2=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{CD}$
- $\mathrm{F} 3=\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$

$Y_{3}=A_{1} \cdot A_{0} \cdot E$
$Y_{3}=A_{1} \cdot A_{0} \cdot E$
$Y_{2}=A_{1} \cdot A_{0} \cdot E$
$Y_{2}=A_{1} \cdot A_{0} \cdot E$
$Y_{1}=A_{1} \cdot A_{0} \cdot E$
$Y_{1}=A_{1} \cdot A_{0} \cdot E$
$Y_{0}=A_{1} \cdot A_{0} \cdot E$
$\mathrm{Y}_{0}=\mathrm{A}_{1}{ }^{\prime} \cdot \mathrm{A}_{0}{ }^{\prime} \cdot E$

- $\left(\mathrm{y}_{\mathrm{n}-1}, \ldots, \mathrm{y}_{0}\right)=1$ (according to the encoding for i)
if $\mathrm{I}_{\mathrm{i}}=1 \& E n=1$
- $\left(\mathrm{y}_{\mathrm{n}-1}, \ldots, \mathrm{y}_{0}\right)=0$ otherwise What happens if more
- $A=1$ if $E n=1$ \& one 1 s.t. $I_{i}=1$ than one input $\mathrm{I}_{\mathrm{i}}=1$?
- $A=0$ otherwise

EXAMPLE: MICROPROCESOR INTERRUPTS

- In order for devices to get service, they interrupt the microprocessor
- Most important requests are given priority

- Check your kits for chips that implement these combinational blocks
- Decoder/demultiplexer
- Multiplexor
- Shift register
- Comparator
- Use to your advantage

TRANSISTORS AND BUILDING LOGIC GATES WITH CMOS TRANSISTORS

FEATURE SIZE
 (Λ VS.ABSOLUTE DIMENSIONS)

- Feature size: minimum distance between source and drain of transistor
- λ rules:
- If $\lambda=45 \mathrm{~nm}$ and $L=2 \lambda$, feature size 90 nm
- Absolute dimensions:
- e.g, 45nm library
- Min. feature size $=50 \mathrm{~nm}$
- $\mathrm{L}_{\text {effective }} \approx 45 \mathrm{~nm}$

- λ rules can be more convenient than absolute dimensions since we don't need to update sizes for new technologies

THE INSIDE OF AN INTEGRATED CIRCUIT

NMOS TRANSISTOR

- $g=0$: gate is at low voltage $\left(V_{g s}<V_{t n}\right)$
- p-type body is at low voltage

- source and drain junction diodes are OFF
- transistor is OFF (no current flows)
- $\mathrm{g}=\mathrm{I}$: gate is at a high voltage $\left(\mathrm{V}_{\mathrm{gs}} \geq \mathrm{V}_{\mathrm{tn}}\right)$ Source Gate Drain
- negative charge attracted to body
- inverts a channel under gate to n-type
- transistor is ON (current flows)
- transistor acts as resistor

\qquad

\square
 PMOS TRANSISTOR

- $g=0$: gate is at low voltage $\left(\left|\mathrm{V}_{\mathrm{gs}}\right|>\left|\mathrm{V}_{\mathrm{tp}}\right|\right)$
- positive charge attracted to body
- inverts channel under gate to p-type $\stackrel{g}{\stackrel{d}{\leftrightharpoons} d}$
- transistor is ON (current flows)

$$
\mathrm{g}=1
$$

$$
s_{-\infty} \pi_{0}-d
$$

- $g=1$: gate is at a high voltage $\left(\left|V_{g s}\right| \leq\left|V_{t p}\right|\right)$
- n-type body is at high voltage
- Source and drain junctions are OFF
- transistor is OFF (no current flows)

THRESHOLDVOLTAGE CONCEPT

substrate and gate form plates of capacitor

- Depletion region: area devoid of mobile carriers (holes)
- Inversion layer: n-channel region under oxide
- The value of $V_{G S}$ where strong inversion occurs is called the threshold voltage, V_{T}

- Channel forms
- Current flows from d to s
- e^{-}from s to d
- $I_{d s}$ increases with $\mathrm{V}_{\mathrm{ds}}, \mathrm{V}_{\mathrm{gs}}$
- Similar to linear resistor

