FALL 2019
PROF. IRIS BAHAR
SEPTEMBER 30, 2019
LECTURE 8: CMOS GATES \& INTRODUCTION TOVERILOG

IBM STUDENT DESIGN WORKSHOP

WHEN: October 12, 2019

TIME: 9:00am-5:00pm

- Open to all students, but geared mostly toward engineering students in their junior year.
- IBM facilitators will guide students through design for tackling a current pressing problem (e.g., within the or for a course)
- Advanced registration is required. Please reserve your spot by Thursday, Oct. 3 at https://forms.gle/ynUg4rixsJbTy8Qj6
- Email Elizabeth Austin or Jennifer Casasanto for additional questions.

CLARIFICATION ABOUT DEADLINES

- Labs are due in groups:
- Group I: labs 0-3 due by Sunday, Oct. 6 (lab I \& 2 both required)
- Group 2: labs 4-9 due by Sunday, Nov. 17 (lab 9, and either 7 or 8 required)
- Group 3: labs A and B due by Friday, Dec. 6
- Group 4: labs C and D due by Thursday, Dec. 13 (one of lab B, C, D required)
- The last week before the final exam can be used as a grace period:
- Up to one additional lab from group 1-3 can be checked off between Dec. 7-13
- Labs may be checked off earlier, but if completed after the group deadline, they will count as being checked off during exam week
- Only one lab a day credited in exam week
- Plan ahead! Don't wait until exam week to finish all your labs!

- Shockley $\left.\right|^{\text {st }}$ order transistor models

$$
I_{d s}=\left\{\begin{array}{cc}
0 & V_{g s}<V_{t h} \quad \text { cutoff } \\
\beta\left(V_{g s}-V_{t h}-V_{d s} / 2\right) & V_{d s} V_{d s}<V_{d s a t} \\
\frac{\beta}{2}\left(V_{g s}-V_{t h}\right)^{2} & V_{d s}>V_{d s a t}
\end{array}\right. \text { saturation }
$$

CMOS INVERTER: STEADY STATE RESPONSE

CMOS PROPERTIES

CMOS INVERTER:
SWITCH MODEL OF DYNAMIC BEHAVIOR

- Full rail-to-rail swing \rightarrow high noise margins
- Logic levels independent of device sizes \rightarrow ratioless
- Always a path to V_{dd} or GND in steady state \rightarrow less sensitive to noise
- nearly zero steady-state input current
- No direct path steady-state between power and ground
- no static power dissipation
- Propagation delay is a function of load capacitance and resistance of transistors

- Gate response time is determined by the time to charge C_{L} through R_{p} (discharge C_{L} through R_{n})

CMOS INVERTER: DYNAMIC
 BEHAVIOR

STATIC COMPLEMENTARY CMOS

- Pull-up network (PUM) and pull-down network (PDN)

DUAL PUN AND PDN

- PUN and PDN are dual networks
- DeMorgan's theorems

$$
\begin{aligned}
& =\overline{A+B}=\bar{A} \cdot \bar{B} \quad[!(A+B)=!A \cdot!B \text { or }!(A \mid B)=!A \&!B] \\
& =\overline{A \cdot B}=\bar{A}+\bar{B} \quad[!(A \cdot B)=!A+!B \text { or }!(A \& B)=!A \mid!B]
\end{aligned}
$$

- a parallel connection of transistors in the PUN corresponds to a series connection of the PDN
- Complementary gate is naturally inverting (NAND, NOR,AOI, OAI)
- Number of transistors for an N -input logic gate is 2 N

PULL UP RESISTORS AND TRISTATE
DRIVERS

- Lab 2 discusses use of pull-up resistors and tristate drivers

INTRODUCTIONTOTHEVERILOG HARDWARE DESCRIPTION LANGUAGE

- Why use them?

2:4 DECODER: STRUCTURAL

// Gate-level (structural) description of 2-to-4 decoder
module decoder_2x4_gates (D, A, B, enable_);
output
input
wire A_not, B_not, enable_not; multi-bit output
not G1 (A_not, A) ;
not $\mathrm{G} 2(\mathrm{~B}$ not, B$)$;
not G3 (enable_not, enable_);
nand G4 (D[0], A_not, B_not, enable_not)
nand G5 (D[1], A_not, B, enable_not);
nand G6(D[2], A, B_not, enable_not);
nand G7(D[3], A, B, enable_not);
endmodule

2:4 DECODER: BEHAVIORAL (DATAFLOW)

// Behavioral (dataflow) description of 2-to-4 decoder module decoder_2x4_df(D, A, B, enable_);
output
[3:0] D;
A, B, enable_;
assign $\mathrm{D}[0]=\sim\left((\sim \mathrm{A}) \&(\sim \mathrm{~B}) \&\left(\sim e n a b l e _\right)\right) ;$
assign $D[1]=\sim\left((\sim A) \& B \&\left(\sim e n a b l e _\right)\right)$;
assign $D[2]=\sim\left(A \&(\sim B) \&\left(\sim e n a b l e _\right)\right) ;$
assign $D[3]=\sim\left(A \& B \&\left(\sim e n a b l e _\right)\right) ;$
endmodule
left hand side must be a wire (or output)

2:4 DECODER: BEHAVIORAL 2 (DATAFLOW)

// Behavioral description of 2 -to-4 decoder
// inputs A and B replaced with I[1:0]
module decoder_2x4_beh2 (D, I, enable_);
output $[3: 0] \mathrm{D}$;
input [1:0] $I_{\text {; }}$
input enable_;
$\begin{array}{ll}\text { wire }[3: 0] \mathrm{Di} ; & \begin{array}{l}\text { conditional continuous } \\ \text { assignment statement }\end{array} \\ \text { assign } \mathrm{Di}=\left(\mathrm{I}==2^{\prime} \mathrm{b} 11\right) \text { ? 4'b0111: } & \end{array}$
($I==2^{\prime} b 10$) ? 4'b1011:
($\mathrm{I}=$ 2'b01) ? 4'b1101: 4'b1110; $^{\prime}$
assign $D=\left(e n a b l e _==1 ' b 0\right)$? Di : 4'b1111;
endmodule

