DIGITAL ELECTRONICS SYSTEM DESIGN

MORETUTORIALS FOR VERILOG

FALL 2019

- On the course website you can find some useful links to additional Verilog examples
PROF. IRIS BAHAR
- Example of a 3 bit counter
- Blocking vs. non-blocking assignments within always blocks

LECTURE 9: MOREVERILOG \& CMOS TRANSIENT BEHAVIOR

- State machine design for a Coke dispenser

DATASHEETS FOR PARTS


```
\
2:4 DECODER: STRUCTURAL
```

// Gate-level (structural) description of 2-to-4 decoder module decoder_2x4_gates (D, A, B, enable_);
output
input
[3:0] D;
A, B, enable_;
wire A_not, B_not, enable_not; multi-bit output
not G1 (A_not, A)
not G2 (B not, B)
not G3 (enable_not, enable_);
nand G4 (D[0], A_not, B_not, enable_not);
nand G5(D[1], A_not, B, enable_not);
nand G6(D[2], A, B_not, enable_not);
nand G7(D[3], A, B, enable_not);
endmodule

2:4 DECODER: BEHAVIORAL (DATAFLOW)

// Behavioral (dataflow) description of 2-to-4 decoder module decoder_2x4_df(D, A, B, enable_);
output
input
[3:0] D;
A, B, enable_;
assign $D[0]=\sim((\sim A) \&(\sim B) \&(\sim e n a b l e)) ;$
assign $D[1]=\sim\left((\sim A) \& B \&\left(\sim e n a b l e _\right)\right)$
assign $D[2]=\sim(A \&(\sim B) \&(\sim$ enable $))$
assign $D[3]=\sim(A \& B \&(\sim$ enable_) $) ;$
endmodule
left hand side must be a wire (or output)
utput)

2:4 DECODER: BEHAVIORAL 2 (DATAFLOW)

VERILOG: CONTINUOUS ASSIGNMENTS

// Behavioral description of 2-to-4 decoder
// inputs A and B replaced with I[1:0]
module decoder_2x4_beh2 (D, I, enable_);

output	$[3: 0] \mathrm{D} ;$
input	$[1: 0] \mathrm{I} ;$
input	enable_;

wire	[3:0] Di;	conditional continuous assignment statement
assign $\mathrm{Di}=\left(\mathrm{I}==2^{\prime} \mathrm{b11}\right)$? 4'b011		
$\begin{aligned} & \left(I==2^{\prime} b 10\right) \text { ? 4'b1011: } \\ & \left(I==2^{\prime} b 01\right) \text { ? 4'b1101: 4'b1110; } \end{aligned}$		
assign $D=\left(e n a b l e _==1 ' b 0\right) ~ ? ~ D i ~: ~ 4 ' b l 111 ; ~$		

endmodule

- Drive values onto a net
- Left hand side must be a wire, (or output)
- Continuous assignments are always active
- The assignment expression is evaluated as soon as one of the right-hand side operands changes
- Operands on the right-hand side can be registers or wires

VERILOG: PROCEDURAL ASSIGNMENTS

- Updates values of reg variables
- Value placed on a variable remains unchanged until another procedural assignment
- Not to be confused with continuous assignment (!) where the left-hand side is continuously driven

module stimulus // testbench
reg a, b, m;
initial
$\mathrm{m}=1$ 'b0; // single statement; does not need begin/end
initial
begin
\#5 a $=1$ b1;
\#25 b = 1'b0;
end
initial
\#50 \$finish;
endmodule

VERILOG: INITIAL BLOCKS

- An initial block:
- starts at time 0
- executes exactly once during a simulation
- executes independently of other blocks
- initial is not synthesizable so should not be used except for testbenches or algorithm development
- Everything within the block concurrently active
- When all processes are done, the block expires
- An always block:
- starts at time 0
- executes statements continuously in a looping fashion, sequentially
- executes independently of other blocks
- Keyword always @(sensitivity list)
- Sensitivity list includes variables on right side of assignment statements inside block

module clock_gen // testbench
reg clock;
initial
clock $=1$ 'bo; // initialize clock at time zero
// Toggle clock every half-cycle (time period $=20$)
always
\#10 clock $=$ ~clock;
initial
\#1000 \$finish;
endmodule

VERILOG: ALWAYS

module pass_input(clock, in, out);
input clock, in;
output reg out;
// Toggle clock every half-cycle
always @(clock)
begin
out $=$ in;
end
endmodule

BLOCKING AND NON-BLOCKING ASSIGNMENTS

- Blocking assignments ($\mathrm{X}=\mathrm{A}$)
- executed in the order they appear in a procedural block
- completes the assignment before continuing on to next statement
- Non-blocking assignments ($\mathrm{X}<=\mathrm{A}$)
- allow simultaneous scheduling
- completes in zero time and doesn't change the value of the target until "end" is reached

BLOCKING AND NON-BLOCKING ASSIGNMENTS

- Example: swap
always @(posedge CLK)
begin

B = A;
 $A=$ temp;

end
always @(posedge CLK)
begin
$\mathrm{A}<=\mathrm{B} ;$
$B<=A ;$
end

2:4 DECODER: TESTBENCH

module decoder_2x4_beh3 (D, I, enable_);
output [3:0] D;
input [1:0] I;
input enable_
assigned in a procedural block
always @(I) \longleftarrow sensitivity list
begin
case (I) procedural block
2'b11: Di<=4'b0111;
2'b10: Di<=4'b1011;
2'b01: Di<=4'b1101;
\longleftarrow non-blocking assignments
default: Di<=4'b1110;
endcase
assign D = (enable_ == 1'b0) ? Di : 4'b1111; endmodule

- Shockley $\|^{\text {st }}$ order transistor models

$$
\begin{gathered}
I_{d s}=\left\{\begin{array}{cc}
0 & V_{g s}<V_{t h} \quad \text { cutoff } \\
\beta\left(V_{g s}-V_{t h}-V_{d s} / 2\right) & V_{d s} \quad V_{g s}<V_{d s a t} \text { linear } \\
\frac{\beta}{2}\left(V_{g s}-V_{t h}\right)^{2} & V_{d s}>V_{d s a t} \text { saturation }
\end{array}\right. \\
\beta=\mu C_{o x} \frac{W}{L} \quad \text { where } C_{o x} \text { is the capacitance per unit area of } \mathrm{SiO}_{2}
\end{gathered}
$$

timescale $1 \mathrm{~ns} / 100 \mathrm{ps}$
module decoder_ 2×4 _testbench;
wire [3:0] D; // for instance outputs
reg enable_, [1:0] I; // for instance inputs
decoder_2x4_beh3 M1 (D, I, enable_); // instance to be tested initial
begin
enable $=1{ }^{\prime}$ b1; $\quad / /$ initialize inputs
$I=2, \overline{b 0}$;
\#4 enable_= 1'bo; // end simulation
\#10 \$finish;
end
always
$\underset{\# 1}{\text { begin }} \mathrm{I}=\mathrm{I}+$ 1'b1; $^{\prime}$;
end
endmodule

 LONG CHANNEL I-V PLOT (NMOS)

NMOS transistor:
0.25um technology,
$\mathrm{L}_{\mathrm{d}}=10 \mathrm{um}$,
$\mathrm{L}_{\mathrm{d}}=10 \mathrm{um}$,
$\mathrm{W} / \mathrm{L}=1.5$,
$V_{D D}=2.5 \mathrm{~V}$,
$V_{T}=0.4 \mathrm{~V}$

- What happens when input voltage is not "at rail"
- Vin < Vdd, or Vin > Gnd?
- If the transistor is ON , then voltage at output will change, but will not go to rail.

TRANSFORMING PMOS I-V LINES

- Want common coordinate set $\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$, and I_{Dn}

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{DSP}}=-\mathrm{I}_{\mathrm{DSn}} \\
& \mathrm{~V}_{G S_{n}}=\mathrm{V}_{\text {in }} ; \mathrm{V}_{G S_{\mathrm{p}}}=\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{DD}} \\
& \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\text {out }} ; \mathrm{V}_{\mathrm{DSp}}=\mathrm{V}_{\text {out }}-\mathrm{V}_{\mathrm{DD}}
\end{aligned}
$$

$$
V_{\text {out }}=V_{D D}+V_{D S_{p}}
$$

CMOS INVERTER:

SWITCH MODEL OF DYNAMIC BEHAVIOR

$V_{\text {in }}=0$

- Gate response time is determined by the time to charge C_{L} through R_{p} (discharge C_{L} through R_{n})

- When designing static CMOS circuits, balance the driving strengths of the transistors by making the PMOS section wider than the NMOS section to
- maximize the noise margins and
- obtain symmetrical characteristics

SWITCHING THRESHOLD

- Define V_{M} to be the point where $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {out }}$ (both PMOS and NMOS in saturation since $V_{D S}=V_{G S}$)
- If $\mathrm{V}_{\mathrm{M}}=\mathrm{V}_{\mathrm{DD}} / 2$, then this implies symmetric rise/fall behavior for the CMOS gate
- Recall at saturation, $\mathrm{I}_{\mathrm{D}}=\left(\mathrm{k}^{\prime} / 2\right)(\mathrm{W} / \mathrm{L})\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\text {th }}\right)^{2}$,
- where $\mathrm{k}_{\mathrm{n}}=\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=\mu_{n} \varepsilon_{0 x} / \mathrm{t}_{\text {ox }}$
- Setting $I_{D P}=-I_{D n}$

$$
\frac{k_{n}^{\prime}}{2} \frac{W_{n}}{L_{n}}\left(V_{M}-V_{T_{n}}\right)^{2}=\frac{k_{p}^{\prime}}{2} \frac{W_{p}}{L_{p}}\left(-V_{M}-V_{T_{p}}\right)^{2}
$$

- Assuming $\mathrm{V}_{\mathrm{thN}}=-\mathrm{V}_{\mathrm{thP}} \quad \frac{W_{p} / L_{p}}{W_{n} / L_{n}}=\frac{k_{n}^{\prime}}{k_{p}^{\prime}}=\frac{\mu_{n}}{\mu_{p}}$

IMPACT OF UNMATCHED DRIVE STRENGTHS

-Skewing the β ratio will shift the switching threshold

