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DIGITAL ELECTRONICS  
SYSTEM DESIGN

FALL 2019

PROF. IRIS BAHAR

OCTOBER 7, 2019

LECTURE 10:  CMOS TRANSIENT BEHAVIOR

SCHEDULE THIS WEEK

 Jiwon Choe will be covering my lecture this Wednesday
 Introduction to sequential logic

 McKenna Cisler will be holding a Verilog tutorial this 
THURSDAY from 5-7pm in the fishbowl
 He will be swapping his usual Wednesday hours with Andrew

NMOS I-V SUMMARY

 Shockley 1st order transistor models
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where Cox is the capacitance per unit area of SiO2
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Taking those intersection 
points from the load curves, 
we obtain the voltage-
transfer characteristic
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SWITCHING THRESHOLD
 Define VM to be the point where Vin = Vout (both PMOS and 

NMOS in saturation since VDS = VGS)

 If VM = VDD/2, then this implies symmetric rise/fall behavior for the 
CMOS gate

 Recall at saturation, ID=(k’/2)(W/L) (VGS-Vth)2, 
 where k’n= nCox= nox/tox

 Setting IDp= -IDn

 Assuming Vthn=-Vthp
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 The simplest model assumes the transistor is a switch with an 
infinite “off” resistance and a finite “on” resistance Ron

 However Ron is nonlinear, time-varying, and dependent on the 
operation point of the transistor

 How can we determine an equivalent (constant and linear) resistance 
to use instead?

MOS STRUCTURE RESISTANCE
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MOS STRUCTURE RESISTANCE

 Approximate Ron as the resistance 
found during linear operation
 Simple to calculate but limited accuracy 

 Instead use the average value of the 
resistances, Req, at the end-points of 
the transition (i.e., VDD and VDD/2)

ID

VDS

VGS = VDD

VDD/2 VDD

R0

Rmid

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5

EQUIVALENT MOS STRUCTURE 
RESISTANCE

Req is essentially independent of VDD as long as VDD >> VT+VDSAT/2 
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 Transient, or dynamic, 
response determines the 
maximum speed at which a 
device can be operated.

CMOS INVERTER: DYNAMIC 
BEHAVIOR
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CL

tpHL = f(Rn, CL)

Rp

 intrinsic MOS transistor capacitances

 extrinsic MOS transistor (fanout) capacitances

 wiring (interconnect) capacitance
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 CL ≈ CDB2+CDB1+CG4+CG3
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DELAY DEFINITIONS
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 Propagation delay proportional to time-constant of network 
formed by ON resistor and the load capacitance.

INVERTER PROPAGATION DELAY

tpHL = f(Rn , CL)
VDD
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Vin = V DD
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Want to have equal rise/fall delays
make Rn=Rp
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 Model circuit as first-order RC network

MODELING PROPAGATION DELAY

R

C

vin
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vout (t)  =  (1 – e–t/)Vin

where  = RC

Time to reach 50% point is
t = ln(2)  = 0.69 

Time to reach 90% point is
t = ln(9)  = 2.2 
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SWITCH DELAY MODEL
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INPUT PATTERN EFFECTS ON DELAY

 Delay is dependent on the pattern of 
inputs

 1st order approximation of delay:

tp ≈ 0.69 Reff CL

 Reff depends on the input pattern
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INPUT PATTERN EFFECTS ON DELAY
 01 transition on output:  2 possibilities

 one input goes low:  what is Reff ?

 delay is 0.69 Rp CL

 both inputs go low:  what is Reff ? 

 delay is 0.69 Rp/2 CL since 2 p-resistors on in parallel

 10 transition on output:  1 possibility
 both inputs go high

 delay is 0.69 2Rn CL

 Adding transistors in series (without sizing) 
slows down the circuit
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tp ≈ 0.69 Reff CL

 How should NMOS and PMOS devices be sized relative to an 
inverter with equal rise/fall times?

TRANSISTOR SIZING
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TRANSISTOR SIZING A COMPLEX GATE

OUT = !(D + A • (B + C))
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• Size the shortest 
path first

• Numbers in black
are relative to an 
inverter

• Numbers in green
are relative to a 
minimum width 
device

TRANSISTOR SIZING A COMPLEX GATE
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• Alternate sizing:  
size the longest 
path first


