School of Engineering

DIGITAL ELECTRONICS

 SYSTEM DESIGN
SCHEDULE THIS WEEK

- Jiwon Choe will be covering my lecture this Wednesday
- Introduction to sequential logic
- McKenna Cisler will be holding a Verilog tutorial this THURSDAY from 5-7pm in the fishbowl
- He will be swapping his usual Wednesday hours with Andrew

SWITCHING THRESHOLD

- Define V_{M} to be the point where $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {out }}$ (both PMOS and NMOS in saturation since $V_{D S}=V_{G S}$)
- If $\mathrm{V}_{\mathrm{M}}=\mathrm{V}_{\mathrm{DD}} / 2$, then this implies symmetric rise/fall behavior for the CMOS gate
- Recall at saturation, $I_{D}=\left(k^{\prime} / 2\right)(W / L)\left(V_{G S^{-}} V_{t h}\right)^{2}$,
- where $k_{n}^{\prime}=\mu_{n} C_{o x}=\mu_{n} \varepsilon_{o x} / t_{o x}$
- Setting $I_{D p}=-I_{D n} \quad \frac{k_{n}^{\prime}}{2} \frac{W_{n}}{L_{n}}\left(V_{M}-V_{t h n}\right)^{2}=\frac{k_{p}^{\prime}}{2} \frac{W_{p}}{L_{p}}\left(V_{M}-V_{t h p}\right)^{2}$

Assuming $V_{t h n}=-V_{t h p} \quad \frac{W_{p} / L_{p}}{W_{n} / L_{n}}=\frac{k_{n}^{\prime}}{k_{p}^{\prime}}=\frac{\mu_{n}}{\mu_{p}}, \quad$ if $L_{p}=L_{n}, \quad W_{p}=W_{n} \cdot \frac{\mu_{n}}{\mu_{p}}$

MOS STRUCTURE RESISTANCE

- The simplest model assumes the transistor is a switch with an infinite "off" resistance and a finite "on" resistance $\mathrm{R}_{\text {on }}$

- However $R_{\text {on }}$ is nonlinear, time-varying, and dependent on the operation point of the transistor
- How can we determine an equivalent (constant and linear) resistance to use instead?

MOS STRUCTURE RESISTANCE

- Approximate $\mathrm{R}_{\text {on }}$ as the resistance found during linear operation
- Simple to calculate but limited accuracy
- Instead use the average value of the resistances, $R_{\text {eq }}$, at the end-points of the transition (i.e., V_{DD} and $\mathrm{V}_{\mathrm{DD}} / 2$)

$$
\begin{aligned}
R_{e q} & \approx \frac{1}{2}\left(R_{o n}\left(t_{1}\right)+R_{o n}\left(t_{2}\right)\right) \\
& \approx \frac{1}{2}\left(\frac{V_{D D}}{I_{D S A T}}+\frac{V_{D D} / 2}{I_{D S A T}}\right) \\
& \approx \frac{3}{4} \frac{V_{D D}}{I_{D S A T}}
\end{aligned}
$$

EQUIVALENT MOS STRUCTURE RESISTANCE

$$
R_{e q}=\frac{3}{4} \frac{V_{D D}}{I_{D S S T}}
$$

where
$I_{D S A T}=\frac{\mu C_{O x}}{2} \frac{W}{L}\left(\left(V_{D D}-V_{T}\right) V_{D S A T}-\frac{V_{D S A T}^{2}}{2}\right)$
so,
$R_{e q}=\frac{3}{2 \mu C_{o x}} \frac{L}{W} \frac{V_{D D}}{\left(V_{D D}-V_{T}\right) V_{D S A T}-\frac{V_{D S A T}^{2}}{2}}$

$R_{\text {eq мMOS }} \propto \frac{L}{\mu_{n} W}, \quad \quad R_{\text {eqp, }}, \quad \propto \frac{L}{\mu_{p} W}$
$R_{\text {eq }}$ is essentially independent of $V_{D D}$ as long as $V_{D D} \gg V_{T}+V_{D S A T} / 2$

CMOS INVERTER: DYNAMIC
 BEHAVIOR

SOURCES OF CAPACITANCE

- intrinsic MOS transistor capacitances
- extrinsic MOS transistor (fanout) capacitances
- wiring (interconnect) capacitance

- Propagation delay proportional to time-constant of network formed by ON resistor and the load capacitance.

$$
\begin{aligned}
& \frac{V_{D D}}{} \quad t_{P H L}=f\left(R_{n}, C_{L}\right) \\
& \text { (} \\
& \mathrm{R}_{\mathrm{n}}< \\
& \simeq C_{L} \\
& \text { Want to have equal rise/fall delays } \\
& V_{\text {in }}=V_{D D} \\
& R_{n}=R_{e q}=\frac{3}{4} \frac{V_{D D}}{I_{D S A T}} \\
& C_{L}=C_{i n t}+C_{\text {ext }} \\
& \Rightarrow \text { make } R_{n}=R_{p}
\end{aligned}
$$

MODELING PROPAGATION DELAY

- Model circuit as first-order RC network

$$
\mathrm{V}_{\text {out }}(\mathrm{t})=\left(\mathrm{I}-\mathrm{e}^{-\mathrm{t} \tau}\right) \mathrm{V}_{\text {in }}
$$

where $\tau=\mathrm{RC}$
Time to reach 50% point is
$\mathrm{t}=\ln (2) \tau=0.69 \tau$

Time to reach 90% point is $\mathrm{t}=\ln (9) \tau=2.2 \tau$

$$
t_{p}=\left(t_{p H L}+t_{p L H}\right) / 2=0.69 C_{L}\left(R_{n}+R_{p}\right) / 2
$$

INPUT PATTERN EFFECTS ON DELAY

- Delay is dependent on the pattern of inputs
- $\left.\right|^{\text {st }}$ order approximation of delay: $\mathrm{t}_{\mathrm{p}} \approx 0.69 \mathrm{R}_{\text {eff }} \mathrm{C}_{\mathrm{L}}$
- $R_{\text {eff }}$ depends on the input pattern

INPUT PATTERN EFFECTS ON DELAY

- $0 \rightarrow$ I transition on output: 2 possibilities
- one input goes low: what is $R_{\text {eff }}$?
- delay is $0.69 R_{p} C_{L}$
- both inputs go low: what is $R_{\text {eff }}$?
- delay is $0.69 R_{P} / 2 C_{L}$ since 2 p-resistors on in parallel
- I $\rightarrow 0$ transition on output: I possibility
- both inputs go high
- delay is $0.692 R_{n} C_{L}$
$\mathrm{t}_{\mathrm{p}} \approx 0.69 \mathrm{R}_{\text {eff }} \mathrm{C}_{\mathrm{L}} \quad-$ Adding transistors in series (without sizing) slows down the circuit

TRANSISTOR SIZING

- How should NMOS and PMOS devices be sized relative to an inverter with equal rise/fall times?

- Size the shortest path first
- Numbers in black are relative to an inverter
- Numbers in green are relative to a minimum width device

OUT $=!(D+A \cdot(B+C))$
\square
TRANSISTOR SIZING A COMPLEX GATE
 size the longest path first
OUT = !(D + A•(B + C))

