

COMBINATIONALVS. SEQUENTIAL LOGIC

Combinational Circuit

Sequential Circuit
inputs

- Combinational:
- Output depends only on current inputs
- Sequential:
- Output depend on current inputs plus past history
- Includes memory elements

SEQUENTIAL CIRCUITS

BISTABLE MEMORY STORAGE ELEMENT

- Fundamental building block of other state elements
- Two outputs, Q, $\overline{\mathrm{Q}}$
- No inputs

- What does the circuit do?

BISTABLE MEMORY ELEMENT

- Consider the two possible cases:
- $Q=0$: then $Q^{\prime}=1$ and $Q=0$ (consistent)

- $Q=1$: then $Q^{\prime}=0$ and $Q=1$ (consistent)

- Bistable circuit stores 1 bit of state in the state variable, Q (or Q')
- But there are no inputs to control the state

- Consider the four possible cases:
- $S=1, R=0$
- $S=0, R=1$
- $S=0, R=0$
- $S=1, R=1$

REVISIT NOR \& NAND GATES

- Controlling inputs for NAND and NOR gates

- Implementing NOT with NAND/NOR using non-controlling inputs

S-R LATCH ANALYSIS

$$
-S=1, R=0 \text { : then } Q=1 \text { and } \bar{Q}=0
$$

$$
R \xrightarrow{0} \mathrm{~N} 1 \mathrm{O}
$$

$$
s \xlongequal{1}-\bar{Q}
$$

$$
-S=0, R=1: \text { then } Q=0 \text { and } \bar{Q}=1
$$

S-R LATCH ANALYSIS

$-S=1, R=0$: then $Q=1$ and $\bar{Q}=0$
$R \xrightarrow{0} \mathrm{~N} 1-1$
$s \xrightarrow{1} 0-\bar{Q}$
$-S=0, R=1$: then $Q=0$ and $\bar{Q}=1$

$-S=0, R=0$: then $Q=Q_{\text {prev }}$

$$
\begin{array}{cc}
Q_{\text {prev }}=0 & Q_{\text {prev }}=1 \\
R \xrightarrow{0} \mathrm{~N} 1 \mathrm{O} Q & R \xrightarrow{0} \mathrm{~N} 1 \mathrm{Q} Q \\
S \xrightarrow{0} \mathrm{~N} 2 & S \xrightarrow{0} \mathrm{~N} 2 \mathrm{Q}
\end{array}
$$

$-S=1, R=1$: then $Q=0$ and $\bar{Q}=0$

S-R LATCH OPERATION

\mathbf{S}	\mathbf{R}	$\mathbf{R}^{\prime} \cdot \mathbf{S}$	$\mathbf{R}^{\prime} \cdot \mathbf{Q}$	$\mathbf{Q}_{\text {next }}$
0	0	0	\mathbf{Q}	\mathbf{Q}
0	\mathbf{I}	0	0	0
\mathbf{I}	0	\mathbf{I}	\mathbf{Q}	$\mathbf{1}$
\mathbf{I}	\mathbf{I}	0	0	0

- When $S=0, R=0$, latch holds its previous state
- When $S=I, R=I$, latch may become unstable
- What happens on a II $\rightarrow 00$ transition?

S-R LATCH SYMBOL

- SR stands for Set/Reset Latch
- Stores one bit of state (Q)
- Control what value is being stored with S, R inputs
- Set: Make the output I $(S=I, R=0, Q=I)$
- Reset: Make the output $0(S=0, R=I, Q=0)$

SR Latch Symbol $\begin{array}{ll}R & Q- \\ S & \bar{Q}-\end{array}$

- Must do something to avoid invalid state (when $S=R=1$)

THE D LATCH

- D latch: builds on the S-R latch, where S and R cannot be both I
- Output "follows" input
- D latch captures input data (what to set) when certain condition holds (when to set)
- Operates in 2 modes:
I. Open (transparent): input flows through to output

2. Closed (opaque): output does not change

- Circuit guarantees $R=S=I$ will never occur

MULTI-BIT LATCH

- Simultaneously latch multiple bits
- A Latch may refer to a I-bit latch or multi-bit latch

- Clock: An input to a sequential circuit that changes output and state value at a predetermined rate

- Triggering edge: Transition of the clock ($L \rightarrow H$ or $H \rightarrow L$) that captures input data
- positive-edge or negative-edge
- Clock period (cycle time): time between successive transitions in the same direction ($\mathrm{L} \rightarrow \mathrm{H}$ or $\mathrm{H} \rightarrow \mathrm{L}$)
- Clock frequency = 1/clock period

FLIP-FLOP

- Flip-flop: Samples input on triggering edge of clock
- Rising edge \rightarrow positive edge-triggered flip-flop
- Falling edge \rightarrow negative edge-triggered flip-flop
- D flip-flop: Two D latches back-to-back

- Copies D to Q on the rising edge of the clock

REGISTER

- Register: a collection of FFs operating off a common clock
- A single D flip-flop is a I-bit register

D FLIP-FLOP TIMING

FLIP-FLOPSVS. LATCHES

- Why use a flip flop when it just takes twice as much logic?
- When would you want to use a flip-flop instead of a latch?

