FALL 2019
PROF. IRIS BAHAR
OCTOBER 16, 2019
LECTURE I2: CMOSTRANSIENT BEHAVIOR (CONTINUED)

ENGINEERING DESIGNTHINKING SPEAKER YVONNE LIN

- Yvonne Lin (AB ENGN '00)
- Founder, 4B Collective and the Femme Den
- Thursday, Oct. 17, 12-Ipm
- B\&H 190
- Title: Design Engineering: Making Actual Stuff. Taking a product idea from inception to fruition
- Yvonne will speak about her path from Brown to the design world and what it took to get there
- How design works: from idea to real life
- What is design engineering? How is it different from traditional engineering
- Putting together a design portfolio (to land a great job)

HOMEWORK PROBLEMS

CMOS INVERTER: DYNAMIC BEHAVIOR

- To give you practice on some of the concepts covered in class (and the labs), Jiwon has prepared a practice homework set
- You can find it on the course webpage
- Look under Handouts and "Exam related materials from 2019"
- I am also including homework sets from past years prepared by Prof. Patterson.

INPUT PATTERN EFFECTS ON DELAY

- Delay is dependent on the pattern of inputs
- $I^{\text {st }}$ order approximation of delay: $\mathrm{t}_{\mathrm{p}} \approx 0.69 \mathrm{R}_{\mathrm{eff}} \mathrm{C}_{\mathrm{L}}$
- $R_{\text {eff }}$ depends on the input pattern
\Rightarrow To get (more equal) rise/fall delays, we need to size transistors not just to compensate for differences in mobility, but also for differences in the topology.

- How should NMOS and PMOS devices be sized relative to an inverter with equal rise/fall times?
- Size for the worst case series path
$1=2 W \quad \zeta_{R} \quad \zeta_{R} \quad \xi_{R}=2 W$

WIRE DELAY MODELS, CON'T

- Lumped RC model
- total resistance and capacitance are lumped into a single R, C respectively
- good for short wires; pessimistic and inaccurate for long wires
- Distributed RC model
- circuit parasitics are distributed along the length, L, of the wire
- c and r are the capacitance and resistance per unit length

- Delay is determined using the Elmore delay equation:

$$
\tau_{D i}=\sum_{k=1}^{N} c_{k} r_{i k}
$$

CHAIN NETWORK ELMORE DELAY

CHAIN NETWORK ELMORE DELAY

Elmore delay equation $\quad \tau_{D N}=\sum c_{i} r_{i i}=\sum \stackrel{N}{c_{i}} \sum \mathrm{r}_{\mathrm{i}}$
If all resistors are equal size,

$$
\tau_{\mathrm{Di}}=\mathrm{c}_{1} r_{\mathrm{eq}}+2 \mathrm{c}_{2} \mathrm{r}_{\mathrm{eq}}+3 \mathrm{c}_{3} r_{\mathrm{eq}}+\ldots+\mathrm{c}_{\mathrm{i}} \mathrm{r}_{\mathrm{eq}}
$$

- Gates with a fan-in greater than 4 should be avoided.

SEQUENTIAL LOGIC

Two-sided clock constraint

$$
\begin{aligned}
& \mathrm{T} \geq \mathrm{t}_{\mathrm{c}-\mathrm{q}}+\mathrm{t}_{\text {plogic }}+\mathrm{t}_{\mathrm{su}} \\
& \mathrm{~T}_{\text {high }}<\mathrm{t}_{\mathrm{c}-\mathrm{q}}+\mathrm{t}_{\mathrm{cdlogic}}
\end{aligned}
$$

NMOS TRANSISTORS IN SERIES/PARALLEL

- So far we have assumed that primary inputs are only allowed to drive gate terminals of MOS transistors.
- Now assume primary inputs can drive both gate and source/drain terminals
- NMOS switch closes when the gate input is high

- Remember - NMOS transistors pass a strong 0 but a weak

- Gate is static - a low-impedance path exists to both supply rails under all circumstances
- N transistors instead of 2 N
- No static power consumption
- Bidirectional (versus non-directional)

- Pure PT logic is not regenerative: signal gradually degrades after passing through a number of PTs
\square fix with static CMOS inverter insertion

NMOS ONLY PT DRIVING AN INVERTER

- V_{x} does not pull up to V_{DD}, but $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{Tn}}$
- Threshold voltage drop causes static power dissipation (M_{2} may be weakly conducting forming a path from V_{DD} to GND)

