10/21/2019

BROWN SYSTEM DESIGN

School of Engineering

FALL 2019

PROF. IRIS BAHAR

OCTOBER 21,2019

LECTURE 13: TRANSMISSION GATES FOR LATCH/FF DESIGN

2 DIGITAL ELECTRONICS

ADJUSTED TA AND OFFICE HOURS

= McKenna will be out of town this Friday
= No morning lab hours this Friday

= Extra lunchtime hours Tues., and Thurs. this week

= | will have office hours today after class, but may have to
leave a bit early

= No office hours this Tuesday, Oct. 22 (I will be out of town)

= |f you would like to meet with me this week, please send me
an email to schedule a separate time

D LATCH

R S Q Q
| | 0
| 0 | 0
0 X 0 0
D
QP Clk |
Clk

= Circuit guarantees R=S=1 will never occur

= But now a single latch takes 22 transistors!

LATCH RACE PROBLEM

Combinational

Logic

State
Regi

clk

o
=

Which value of B is stored?
Two-sided clock constraint

T2 t-'c-q + tplogic + t"su

Thigh < tc-q + tcdlogic

10/21/2019

FLIP-FLOP MADE FROM D-LATCHES TIMING METRICS

In—D Q}—Out

Clk ° Clk ° clock)
clock t,, = setup time for
data before
Clk L~ l
L t,, to time clock edge
Clk . . =4
= Copies D to Q on the rising = thoq = time data
0 f 0 edge of the clock In a must remain
g / stable valid after
| | ¢ time clock edge
c-q
= Fixes race problem but now
X 0 teg= FF del
Qprer it take 44 transistors to Out output W < output - frr::riuxclocke i
| Qe make a single FF! stable stable

edge to output Q

time

NMOS TRANSISTORS IN

SYSTEMTIMING CONSTRAINTS SERIES/PARALLEL

= So far we have assumed that primary inputs are only allowed to

Sequential Circuit Eologic = Worst case delay drive gate terminals of MOS transistors.
9 through combinational
logic = Now assume primary inputs can drive both gate and source/drain
inputs Combinational ™ Klel1= €.logic = Min. delay through terminals
Logic combinational logic = NMOS switch closes when the gate input is high
tedreg = Min. delay through A B
egister logic
register o8t _,J——_,J——_ X =Yif Aand B
X Y
T (clock period) JA_

S R O X=YifAorB
X Y
T>t +t, .+t tedreg T 1

>t
. d dlogic = “hold :
c-q plogic su cdreg cclogic © = Remember - NMOS transistors pass a strong 0 but a weak |

VTC OF PASS TRANSISTOR AND GATE

F=AeB

0 -

0 2

1
Vv,V
= Pure PT logic is not regenerative: signal gradually

degrades after passing through a number of PTs

‘ﬁx with static CMOS inverter insertion

10/21/2019

NMOS ONLY PT DRIVING AN

INVERTER

In=Vpp
Vv, = 27 =1.8V
VGS X Ml X l.
A=Vop [11 VooV ﬁg
e e
M

B;i‘

Voltage,V

o

0.5 1 15

Time, ns

)

= V, does not pull up toVpp, butVpy =V,

= Threshold voltage drop causes static power dissipation (M,

may be weakly conducting forming a path fromVpy to GND)

C c
A S

A 4[[}]* B L

C=GND e oD
-4 +

A=Vop B A=GND B

= T

C_VDD C=VDD N

= Most widely used solution

= Full swing bidirectional switch controlled by gate signal C: A=BifC =1

MUX BASED LATCHES

= Change the stored value by cutting the feedback loop

feedback feedback
D D
clk clk
Negative Latch Positive Latch
Q=ck&Q | Ik &D Q=lk&Q | ck&D

transparent when the

transparent when the
clock is low

clock is high

10/21/2019

TG MUX BASED LATCH

input sampled

_T_k
!clk—j[(transparint mode)
—cl;k clk /—\
lelk
o VLY

QP— feedback
Clk (hold mode)

MASTER SLAVE EDGE-
TRIGGERED FLIP-FLOP

—b o—
Q' p—
D Q qu
clk
D
D
Slave
Master »
Qu A
clk =0 transparent hold . N
clk=0->1 hold transparent Q

MASTER SLAVE EDGE-
TRIGGERED DESIGN

[%]
S
<
o

o)

_:la:ter
L|><> LDO

T Qu
Y

p—{>o{T
cIkT|>O T

master transparentm master hold
slave hold 0 slave transparent

Sl I I I

#M#M

MASTER SLAVE TIMING PROPERTIES

= Assume propagation delays are t,4 ;,, and t4 ,, that the
contamination delay is 0, and that the inverter delay to
derive !clk is 0

= Set-up time - time before rising edge of clk that D must be
valid
3% tpd_inv + tpd_tx
= Propagation delay - time for Qy to reach Q

tpdiinv + tdex

= Hold time - time D must be stable after rising edge of clk

zero

10/21/2019

SEGREGATING BLOCKING AND NON-

BLOCKING ASSIGNMENTS

* Why segregate blocking and non-blocking assignments to
separate always blocks?

always blocks start when triggered and scan their statements
sequentially

Blocking assignment: = (completes assignment before next statement
executes)

Non-blocking: <= (all such statements complete at once at end of the
always block)

MIXED ALWAYS BLOCK FOR A FUNNY
SHIFTER

module funnyshifter (input data, clk, output reg [3:0] yout);
reg [3:0] asig;

initial asig = 4'b0000;

always @ (posedge clk) begin
asig[1] = asig[0];
asig[2] = asig[1];
asig[3] = asig[2];
asig[0] = data;
yout[3:1] <= asig[3:1];
yout[0] <= data;

end

endmodule

WHAT YOU ACTUALLY GET

yout[3]
D Q
—
b a yout[2]
>
asig[1] b a yout[1]

p aq H
f> S
data o o |rout(o]

clk

DESIGNER’S PROBABLE INTENTION —

BLOCK DIAGRAM

yout[3]
S P -) N P
4 —
I Pa— asig[2] T q yout[2]
o >
b a asig[1] 0 o yout[1]
1N >
dlakla b o yout[0]
£ b

DIFFERENT STATEMENT ORDER -
DESIGNER’S PROBABLE INTENTION

module funnyshifter (input data, clk, output reg [3:0] yout);

reg [3:0] asig;
initial asig = 4'b0000;

always @ (posedge clk) begin
asig[3] = asig[2];
asig[2] = asig[];
asig[1] = asig[0];
asig[0] = data;
yout[3:1] <= asig[3:1];
yout[0] <= data;

end

endmodule

10/21/2019

THE RIGHT WAY TO DO IT:

module funnyshifter (input data, clk, output reg [3:0] yout);
reg [3:0] asig;

initial asig = 4'b0000; // Note: this line initializes only the simulator

always @ (posedge clk) begin
asig <= {asig[2:0], data}; // non-blocking unambiguous D-ff's
yout[3:1] <= asig[3:1];
yout[0] <= data;

end

endmodule

SUGGESTED RULES AND STYLES

= “Avoid writing modules that... mix the creation of state... in an always @ posedge
block with the definition of the next-state function. .. (This) sidesteps a tremendous
amount of confusion and frustration that result from incorrect use of blocking =
versus non-blocking <= assignment.”

Dally and Harting, Digital Design a Systems Approach, pp. 593-594

= “Two rules are so important this is the only place that you'll find bold font in this
book.

Always use blocking assignments (=) in always blocks i ded to create c | logic.

Always use non-blocking assignments (<=) in always blocks intended to create registers.
Do not mix blocking and non-blocking logic in the same always block.”

John FE-Wakerly, Digital Design Principles and Practices, pg. 316.

A STRONG STYLE PREFERENCE:

= Rule:in any always block, you must not leave ambiguity
= all possible input conditions should have fully specified output conditions

= Common logic expression formats include:

Option 1: always @ (*) begin
if (adv = 1'b1) next = 0;// will get latch or permanent 0;
end

Option 2: always @ (*) begin // PREFERRED STYLE

case(adv) // USE case() for multiple choices
I'bl:next = 0;
I'b0:next = I; // Preferable to include all cases
default:next = I; // ALWAYS supply a default.
endcase

Option 3: assign next = adv 2 0 : I; // Satisfactory for single bit usage inside or outside always block

