
10/21/2019

1

DIGITAL ELECTRONICS
SYSTEM DESIGN

FALL 2019

PROF. IRIS BAHAR

OCTOBER 21, 2019

LECTURE 13: TRANSMISSION GATES FOR LATCH/FF DESIGN

ADJUSTED TA AND OFFICE HOURS

 McKenna will be out of town this Friday
 No morning lab hours this Friday

 Extra lunchtime hours Tues., and Thurs. this week

 I will have office hours today after class, but may have to
leave a bit early

 No office hours this Tuesday, Oct. 22 (I will be out of town)

 If you would like to meet with me this week, please send me
an email to schedule a separate time

D LATCH

R (reset)

S (set)

Q

Q’Clk

D

D Q

Q’
Clk

Clk D R S Q Q’

1 1

1 0

0 1 1 0

1 0 0 1
0 X 0 0 Qprev Q’prev

 Circuit guarantees R=S=1 will never occur

 But now a single latch takes 22 transistors!

LATCH RACE PROBLEM

clk

clk

B B’

Two-sided clock constraint
T tc-q + tplogic + tsu

Thigh tc-q + tcdlogic

B

Which value of B is stored?

10/21/2019

2

FLIP-FLOP MADE FROM D-LATCHES

 Copies D to Q on the rising
edge of the clock

 Fixes race problem but now
it take 44 transistors to
make a single FF!

D Q

Q’
Clk

D Q

Q’
Clk

Clk

D Q

D Clk Q

0 0

1 1

X 0 Qprev

X 1 Qprev

TIMING METRICS

clock
clock

In

Out

data
stable

output
stable

output
stable

time

time

time

tsu thold

tc-q

tsu = setup time for
data before
clock edge

thold = time data
must remain
valid after
clock edge

tc-q = max FF delay
from clock
edge to output Q

SYSTEM TIMING CONSTRAINTS

T tc-q + tplogic + tsu tcdreg + tcdlogic thold

T (clock period)

tplogic = worst case delay
through combinational
logic

tcdlogic = min. delay through
combinational logic

tcdreg = min. delay through
register logic

Combinational
Logic

outputsinputs

State

Sequential Circuit

Next
State

Prev.
State

clk

 So far we have assumed that primary inputs are only allowed to
drive gate terminals of MOS transistors.

 Now assume primary inputs can drive both gate and source/drain
terminals

 NMOS switch closes when the gate input is high

 Remember - NMOS transistors pass a strong 0 but a weak 1

NMOS TRANSISTORS IN
SERIES/PARALLEL

A B

X Y
X = Y if A and B

X Y

A

B X = Y if A or B

10/21/2019

3

 Pure PT logic is not regenerative: signal gradually
degrades after passing through a number of PTs

 fix with static CMOS inverter insertion

VTC OF PASS TRANSISTOR AND GATE

A

0

B

B F= AB

B=VDD, A=0VDD

A=VDD, B=0VDD
A=B=0VDD

V o
ut

, V
0

1

2

0 1 2

 Vx does not pull up to VDD , but VDD –VTn

 Threshold voltage drop causes static power dissipation (M2
may be weakly conducting forming a path from VDD to GND)

NMOS ONLY PT DRIVING AN
INVERTER

In = VDD

A = VDD

Vx =
VDD-VTn

M1

M2

B
SD

VGS

Time, ns

Vo
lta

ge
, V

In

Out

x = 1.8V

0

1

2

3

0 0.5 1 1.5 2

TRANSMISSION GATES (TGS)

 Most widely used solution

 Full swing bidirectional switch controlled by gate signal C: A = B if C = 1

A B

C

C

A B

C

C

B

C = VDD

C = GND

A = VDD B

C = VDD

C = GND

A = GND

 Change the stored value by cutting the feedback loop

MUX BASED LATCHES

Q
D

clk

0

1

Positive Latch

Q
D

clk

1

0

Negative Latch

Q = !clk & Q | clk & DQ = clk & Q | !clk & D

feedback

transparent when the
clock is low

transparent when the
clock is high

feedback

10/21/2019

4

TG MUX BASED LATCH

Q

D

clk

clk

!clk

!clk

clk

input sampled
(transparent mode)

feedback
(hold mode)

D Q

Q’
Clk

MASTER SLAVE EDGE-
TRIGGERED FLIP-FLOP

QMD 0

1 Q
1

0

Slave
Master

QMD

clk

0

1 Q

clk

1

0

Slave
Master

clk

QM

Q

D

clk = 0 transparent hold

clk = 01 hold transparent

D Q

Q’

Clk

MASTER SLAVE EDGE-
TRIGGERED DESIGN

Q

D

clk

QM

I1

I2 I3

I4

I5 I6T2

T1
T3

T4

Master Slave

!clk

clk

master transparent
slave hold

master hold
slave transparent

MASTER SLAVE TIMING PROPERTIES

 Assume propagation delays are tpd_inv and tpd_tx, that the
contamination delay is 0, and that the inverter delay to
derive !clk is 0

 Set-up time - time before rising edge of clk that D must be
valid

 Propagation delay - time for QM to reach Q

 Hold time - time D must be stable after rising edge of clk

3 * tpd_inv + tpd_tx

tpd_inv + tpd_tx

zero

10/21/2019

5

SEGREGATING BLOCKING AND NON-
BLOCKING ASSIGNMENTS

• Why segregate blocking and non-blocking assignments to
separate always blocks?
• always blocks start when triggered and scan their statements

sequentially

• Blocking assignment: = (completes assignment before next statement
executes)

• Non-blocking: <= (all such statements complete at once at end of the
always block)

MIXED ALWAYS BLOCK FOR A FUNNY
SHIFTER

module funnyshifter (input data, clk, output reg [3:0] yout);
reg [3:0] asig;

initial asig = 4'b0000;

always @ (posedge clk) begin
asig[1] = asig[0];
asig[2] = asig[1];
asig[3] = asig[2];
asig[0] = data;
yout[3:1] <= asig[3:1];
yout[0] <= data;

end

endmodule

WHAT YOU ACTUALLY GET
DESIGNER’S PROBABLE INTENTION –
BLOCK DIAGRAM

10/21/2019

6

DIFFERENT STATEMENT ORDER -
DESIGNER’S PROBABLE INTENTION

module funnyshifter (input data, clk, output reg [3:0] yout);

reg [3:0] asig;
initial asig = 4'b0000;

always @ (posedge clk) begin
asig[3] = asig[2];
asig[2] = asig[1];
asig[1] = asig[0];
asig[0] = data;
yout[3:1] <= asig[3:1];
yout[0] <= data;

end

endmodule

THE RIGHT WAY TO DO IT:

module funnyshifter (input data, clk, output reg [3:0] yout);

reg [3:0] asig;

initial asig = 4'b0000; // Note: this line initializes only the simulator

always @ (posedge clk) begin

asig <= {asig[2:0], data}; // non-blocking unambiguous D-ff's

yout[3:1] <= asig[3:1];

yout[0] <= data;

end

endmodule

SUGGESTED RULES AND STYLES

 “Avoid writing modules that… mix the creation of state… in an always @ posedge
block with the definition of the next-state function. .. (This) sidesteps a tremendous
amount of confusion and frustration that result from incorrect use of blocking =
versus non-blocking <= assignment.”

Dally and Harting, Digital Design a Systems Approach, pp. 593-594

 “Two rules are so important this is the only place that you’ll find bold font in this
book.

Always use blocking assignments (=) in always blocks intended to create combinational logic.

Always use non-blocking assignments (<=) in always blocks intended to create registers.

Do not mix blocking and non-blocking logic in the same always block.”

John F. Wakerly, Digital Design Principles and Practices, pg. 316.

A STRONG STYLE PREFERENCE:
 Rule: in any always block, you must not leave ambiguity

 all possible input conditions should have fully specified output conditions

 Common logic expression formats include:

Option 1: always @ (*) begin
if (adv = 1’b1) next = 0; // will get latch or permanent 0;

end

Option 2: always @ (*) begin // PREFERRED STYLE
case(adv) // USE case() for multiple choices

1’b1: next = 0;
1’b0: next = 1; // Preferable to include all cases
default: next = 1; // ALWAYS supply a default.

endcase

Option 3: assign next = adv ? 0 : 1; // Satisfactory for single bit usage inside or outside always block

