
10/21/2019

1

DIGITAL ELECTRONICS
SYSTEM DESIGN

FALL 2019

PROF. IRIS BAHAR

OCTOBER 21, 2019

LECTURE 13: TRANSMISSION GATES FOR LATCH/FF DESIGN

ADJUSTED TA AND OFFICE HOURS

 McKenna will be out of town this Friday
 No morning lab hours this Friday

 Extra lunchtime hours Tues., and Thurs. this week

 I will have office hours today after class, but may have to
leave a bit early

 No office hours this Tuesday, Oct. 22 (I will be out of town)

 If you would like to meet with me this week, please send me
an email to schedule a separate time

D LATCH

R (reset)

S (set)

Q

Q’Clk

D

D Q

Q’
Clk

Clk D R S Q Q’

1 1

1 0

0 1 1 0

1 0 0 1
0 X 0 0 Qprev Q’prev

 Circuit guarantees R=S=1 will never occur

 But now a single latch takes 22 transistors!

LATCH RACE PROBLEM

clk

clk

B B’

Two-sided clock constraint
T  tc-q + tplogic + tsu

Thigh  tc-q + tcdlogic

B

Which value of B is stored?

10/21/2019

2

FLIP-FLOP MADE FROM D-LATCHES

 Copies D to Q on the rising
edge of the clock

 Fixes race problem but now
it take 44 transistors to
make a single FF!

D Q

Q’
Clk

D Q

Q’
Clk

Clk

D Q

D Clk Q

0 0

1 1

X 0 Qprev

X 1 Qprev

TIMING METRICS

clock
clock

In

Out

data
stable

output
stable

output
stable

time

time

time

tsu thold

tc-q

tsu = setup time for
data before
clock edge

thold = time data
must remain
valid after
clock edge

tc-q = max FF delay
from clock
edge to output Q

SYSTEM TIMING CONSTRAINTS

T  tc-q + tplogic + tsu tcdreg + tcdlogic  thold

T (clock period)

tplogic = worst case delay
through combinational
logic

tcdlogic = min. delay through
combinational logic

tcdreg = min. delay through
register logic

Combinational
Logic

outputsinputs

State

Sequential Circuit

Next
State

Prev.
State

clk

 So far we have assumed that primary inputs are only allowed to
drive gate terminals of MOS transistors.

 Now assume primary inputs can drive both gate and source/drain
terminals

 NMOS switch closes when the gate input is high

 Remember - NMOS transistors pass a strong 0 but a weak 1

NMOS TRANSISTORS IN
SERIES/PARALLEL

A B

X Y
X = Y if A and B

X Y

A

B X = Y if A or B

10/21/2019

3

 Pure PT logic is not regenerative: signal gradually
degrades after passing through a number of PTs

 fix with static CMOS inverter insertion

VTC OF PASS TRANSISTOR AND GATE

A

0

B

B F= AB

B=VDD, A=0VDD

A=VDD, B=0VDD
A=B=0VDD

V o
ut

, V
0

1

2

0 1 2

 Vx does not pull up to VDD , but VDD –VTn

 Threshold voltage drop causes static power dissipation (M2
may be weakly conducting forming a path from VDD to GND)

NMOS ONLY PT DRIVING AN
INVERTER

In = VDD

A = VDD

Vx =
VDD-VTn

M1

M2

B
SD

VGS

Time, ns

Vo
lta

ge
, V

In

Out

x = 1.8V

0

1

2

3

0 0.5 1 1.5 2

TRANSMISSION GATES (TGS)

 Most widely used solution

 Full swing bidirectional switch controlled by gate signal C: A = B if C = 1

A B

C

C

A B

C

C

B

C = VDD

C = GND

A = VDD B

C = VDD

C = GND

A = GND

 Change the stored value by cutting the feedback loop

MUX BASED LATCHES

Q
D

clk

0

1

Positive Latch

Q
D

clk

1

0

Negative Latch

Q = !clk & Q | clk & DQ = clk & Q | !clk & D

feedback

transparent when the
clock is low

transparent when the
clock is high

feedback

10/21/2019

4

TG MUX BASED LATCH

Q

D

clk

clk

!clk

!clk

clk

input sampled
(transparent mode)

feedback
(hold mode)

D Q

Q’
Clk

MASTER SLAVE EDGE-
TRIGGERED FLIP-FLOP

QMD 0

1 Q
1

0

Slave
Master

QMD

clk

0

1 Q

clk

1

0

Slave
Master

clk

QM

Q

D

clk = 0 transparent hold

clk = 01 hold transparent

D Q

Q’

Clk

MASTER SLAVE EDGE-
TRIGGERED DESIGN

Q

D

clk

QM

I1

I2 I3

I4

I5 I6T2

T1
T3

T4

Master Slave

!clk

clk

master transparent
slave hold

master hold
slave transparent

MASTER SLAVE TIMING PROPERTIES

 Assume propagation delays are tpd_inv and tpd_tx, that the
contamination delay is 0, and that the inverter delay to
derive !clk is 0

 Set-up time - time before rising edge of clk that D must be
valid

 Propagation delay - time for QM to reach Q

 Hold time - time D must be stable after rising edge of clk

3 * tpd_inv + tpd_tx

tpd_inv + tpd_tx

zero

10/21/2019

5

SEGREGATING BLOCKING AND NON-
BLOCKING ASSIGNMENTS

• Why segregate blocking and non-blocking assignments to
separate always blocks?
• always blocks start when triggered and scan their statements

sequentially

• Blocking assignment: = (completes assignment before next statement
executes)

• Non-blocking: <= (all such statements complete at once at end of the
always block)

MIXED ALWAYS BLOCK FOR A FUNNY
SHIFTER

module funnyshifter (input data, clk, output reg [3:0] yout);
reg [3:0] asig;

initial asig = 4'b0000;

always @ (posedge clk) begin
asig[1] = asig[0];
asig[2] = asig[1];
asig[3] = asig[2];
asig[0] = data;
yout[3:1] <= asig[3:1];
yout[0] <= data;

end

endmodule

WHAT YOU ACTUALLY GET
DESIGNER’S PROBABLE INTENTION –
BLOCK DIAGRAM

10/21/2019

6

DIFFERENT STATEMENT ORDER -
DESIGNER’S PROBABLE INTENTION

module funnyshifter (input data, clk, output reg [3:0] yout);

reg [3:0] asig;
initial asig = 4'b0000;

always @ (posedge clk) begin
asig[3] = asig[2];
asig[2] = asig[1];
asig[1] = asig[0];
asig[0] = data;
yout[3:1] <= asig[3:1];
yout[0] <= data;

end

endmodule

THE RIGHT WAY TO DO IT:

module funnyshifter (input data, clk, output reg [3:0] yout);

reg [3:0] asig;

initial asig = 4'b0000; // Note: this line initializes only the simulator

always @ (posedge clk) begin

asig <= {asig[2:0], data}; // non-blocking unambiguous D-ff's

yout[3:1] <= asig[3:1];

yout[0] <= data;

end

endmodule

SUGGESTED RULES AND STYLES

 “Avoid writing modules that… mix the creation of state… in an always @ posedge
block with the definition of the next-state function. .. (This) sidesteps a tremendous
amount of confusion and frustration that result from incorrect use of blocking =
versus non-blocking <= assignment.”

Dally and Harting, Digital Design a Systems Approach, pp. 593-594

 “Two rules are so important this is the only place that you’ll find bold font in this
book.

Always use blocking assignments (=) in always blocks intended to create combinational logic.

Always use non-blocking assignments (<=) in always blocks intended to create registers.

Do not mix blocking and non-blocking logic in the same always block.”

John F. Wakerly, Digital Design Principles and Practices, pg. 316.

A STRONG STYLE PREFERENCE:
 Rule: in any always block, you must not leave ambiguity

 all possible input conditions should have fully specified output conditions

 Common logic expression formats include:

Option 1: always @ (*) begin
if (adv = 1’b1) next = 0; // will get latch or permanent 0;

end

Option 2: always @ (*) begin // PREFERRED STYLE
case(adv) // USE case() for multiple choices

1’b1: next = 0;
1’b0: next = 1; // Preferable to include all cases
default: next = 1; // ALWAYS supply a default.

endcase

Option 3: assign next = adv ? 0 : 1; // Satisfactory for single bit usage inside or outside always block

