VERILOG TUTORIAL (PART 2)

- McKenna will again give a Verilog tutorial during his lab hours this Wednesday from 4:30-6:30
- He will go over state machine design with Verilog as well as procedures to set up a simulation with Verilog

- A Finite State Machine (FSM) is an abstract representation of a sequential circuit
- The state embodies the condition of the system at this particular time
- The combinational logic determines the output and next state values
- The output values may depend only on the current state value, or on the current state and input values

ELEMENTS OF AN FSM

- 4 properties of an FSM
I. A finite number of inputs

2. A finite number of outputs
3. A finite number of states
4. A specification of all state transitions

- Can be described by a state diagram

BLOCK DIAGRAMS OF MEALY AND MOORE STATE MACHINES

STATE MACHINE ANALYSIS PROCEDURE

I. Given a circuit diagram for a sequential circuit
2. Derive expressions for FF inputs (or state equations for each FF)
3. Derive an equation for each output as a function of the present state (and the inputs - Mealy only)
4. Set up a state table

- Present state, inputs, next state, output
- Optional intermediate columns for FF inputs

5. Draw the state diagram

EXAMPLE OF SEQUENTIAL CIRCUIT

Is this a Moore or Mealy machine?

FF input equations? Output equation?

ALTERNATIVE FORM FOR THE STATE TABLE

State diagram?

Present State		Next State				Output	
		$x=0$		$x=1$		$x=0$	$x=1$
A	B	A	B	A	B	\boldsymbol{r}	\boldsymbol{r}
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
${ }^{10} 1$	1	0	0	1	0	1	0

- A, B are encoded into 4 states

[^0]
EXAMPLE OF SEQUENTIAL CIRCUIT

Is this a Moore or Mealy machine?

FF input equations? Output equation?

STATE TABLE FOR SEQUENCE DETECTOR: MOORE MACHINE

STATE MACHINE DESIGN PROCEDURE

I. Define the task in words (Mealy or Moore?)
2. Draw a state diagram
3. Assign state values to the states (number the states)
4. Minimize the number of states in the state table/diagram
5. Set up a state table
6. Select a flip-flop type and set up an excitation table
7. Use the excitation table to generate columns in the state table for the FF inputs
8. Design the combinational circuits
9. Draw the logic diagram and build the circuit

K-MAPS FOR SEQUENCE
 DETECTOR USING D-FFS

LOGIC DIAGRAM OF A MOORETYPE SEQUENCE DETECTOR

$D_{A}=A x+B x$

$D_{B}=A x+B^{\prime} x$

- Each output is represented with a separate Karnaugh map

STATE ASSIGNMENT

- How many states do I need?
- How many bits do I need to represent each state?

STATE REDUCTION

- Two states are the same if:
I. They produce the same outputs for the same inputs

2. They go to the same (or equivalent) next states for all inputs

EXAMPLE 3: STATE DIAGRAM

So now, d and f go to the same place and have the same outputs

STATE TABLE DERIVED FROM DIAGRAM

Now, you're stuck. It still takes 3 bits in binary to get beyond four states

REDUCED STATE TABLE WITH BINARY ASSIGNMENT 1

REDUCED STATE TABLE BINARY ASSIGNMENT 1				
Present State	Next State		Output	
	$\boldsymbol{x}=0$	$x=1$	$x=0$	$x=1$
000	000	001	0	0
001	010	011	0	0
010	000	011	0	0
011	100	011	0	1
100	000	011	0	1

THREE POSSIBLE BINARY STATE ASSIGNMENTS

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot
a	000	000	00001
b	001	001	00010
c	010	011	00100
d	011	010	01000
e	100	110	10000
	3 bits	3 bits	5 bits

$\mathrm{S}_{1} \quad \mathrm{~S}_{2}$

$S_{1-\text { NEXT }}=S_{1} x+S_{0} x+S_{2} S_{1}{ }^{\prime} x+S_{1} S_{0}$

MEALY STATE MACHINE EXAMPLE

State machine outputs I for one clock cycle when three consecutive 0s are received as input with no overlap between sequences

VERILOG PROCEDURAL BLOCKS REVIEW

```
always @(A or B or C)
begin
    Q = D; // Q must be of type reg
end
```

always @(posedge clock or negedge reset)
always @(posedge clock, negedge reset)

```
MEALY STATE MACHINE EXAMPLE
module example_state_machine(clock, reset, in, out);
    output out;
    input clock, reset, in;
    reg [1:0] Scurr, Snext;
    always @(in, reset, Scurr)
    begin
        if (reset == 1) Snext = So
        else
            case (Scurr)
            So: if (in == 1) Snext = So; else S1;
            S1: if (in == 1) Snext = So; else S2;
            default: Snext = SO
        endcase
    end
    always @(in, Scurr)
    if ((Scurr == S2) && (in == 0)) out = 1; else out = 0;
    always @(posedge clock)
    Scurr <= Snext;
endmodule
```


FSM INVERILOG

- Suggested coding style for FSMs
<module statement>
<input and output declarations>
<reg declarations>
<parameter and typedef statement>
<always block for next state>
<always block for output>
<always block for state FFs>
endmodule

MEALY STATE MACHINE EXAMPLE VERSION 2

module example_state_machine (clock, reset, in, out)
output out;
input clock, reset, in;
reg $1: 0]$ Scurr, Snext;
parameter $S 0=2^{\prime} \mathrm{boo}, \mathrm{S}=2^{\prime} \mathrm{bo1} \mathrm{~S} 2=,2^{\prime} \mathrm{b} 10$;
always @(in, Scurr)
begin
case (Scurr)
So: if (in == 1) Snext = So; else S1; S1: if (in == 1) Snext = S0; else S2 endcase
end
end
always @(in, Scurr)
if $(($ Scurr $==$ S2 $) \& \&($ in $==0))$ out $=1$; else out $=0$;
always @(posedge clock)
if (reset $==1$) Scurr $<=$ SO; \longleftarrow assumes FF has reset input else Scurr $<=$ Snext endmodule

MEALY STATE MACHINE EXAMPLE TESTBECH

module example_state_machine_testbench;
wire out;
reg clock, reset, in;
example state machine MO (clock, reset, in, out)
initial
$\underset{\text { reset }}{\boldsymbol{b} \text { begin }} \mathbf{= 1} \mathrm{bo} ; \quad$ // initialize inputs
clock $=1$ 'bo;
in = 1
\#4 reset $=1$ 1'b1;
\#6 reset $=1$ 'bo
\#19 in = 1'b1;
\#100 \$finish; // end simulation
alway
begin
\#10 clock $=\sim$ clock
end
endmodule

[^0]: - Express outputs from truth table

