m [DIGITAL ELECTRONICS
BROWN SYSTEM DESIGN

School of Engineering

FALL 2019

PROF. IRIS BAHAR

OCTOBER 28,2019

LECTURE 15: MORE STATE MACHINE DESIGN

UPDATED LAB TA HOURS

= Pratishtha will be away attending a conference this week
= She is canceling her Tuesday hours from 10am-noon

= She will hold normal hours on Friday from [-4pm

MIDTERM STUDY SESSION

Jiwon will give a help session on Monday, Oct. 28 from
7-9pm in B&H 190 to prepare for the midterm exam
next week.

= Come with questions. She will also solve some
problems (from the problem sets) on the board.

= She will hold office hours in B&H 196 this Tuesday,
Oct. 29 from 7-9pm

= Practice Problem Set #2 has been posted (as well as
solutions)

BLOCK DIAGRAMS OF MEALY AND
MOORE STATE MACHINES

Mealy Machine
o Outputs

Register (Mealy-type)

Logic

(2)

Inputs e—a—> Next State
Combinational
— Logic

State

Moore Machine

Inputs e—— Colrfgitnsl;l[lll'::nal o - Ouitput Outputs
P M -1y)
Tooe Register e (Moore-type)
. T

(b)

10/28/2019

STATE MACHINE DESIGN PROCEDURE

Define the task in words (Mealy or Moore?)

Draw a state diagram

Assign state values to the states (number the states)
Minimize the number of states in the state table/diagram
Set up a state table

Select a flip-flop type and set up an excitation table

N o Uk w N -

Use the excitation table to generate columns in the state table
for the FF inputs

Design the combinational circuits

© ©

Draw the logic diagram and build the circuit

EXAMPLE 2: STATE DIAGRAM FOR

SEQUENCE DETECTOR

= Make a machine that sets an
output signal to | when the
input signal is | for 3 or more
times in a row

= State diagram to detect 3
ones in a row

= |s this a Mealy or Moore
@ 1 @ machine?

STATE TABLE FOR SEQUENCE
DETECTOR: MOORE MACHINE

Present Next
State Input State Output

A B X A B

0 0 0 0 0 0
0 0 1 0 il 0
0 il 0 0 0 0
0 1 1 1 0 0
i 0 0 0 0 0
1 0 1 1 1 0
il 1 0 0 0 1
1 1 1 1 il 1

K-MAPS FOR SEQUENCE
DETECTOR USING D-FFS

Bx B Bx B Bx B
A 0 o1 11 10 A 00 o1 11 10 A 00 o1 11 10
T o m] m
0 1 0 1 0
Ad1 il 1 Aq1 1 1 Ad1 1 it
— —— —
X X x
Dy =Ax+ Bx Dp=Ax+ B'x y=AB

Copioht 0201 eson Ekaton, pbling s e Hll

= Each output is represented with a separate Karnaugh map

10/28/2019

LOGIC DIAGRAM OF A MOORE-
TYPE SEQUENCE DETECTOR

STATE REDUCTION

= Two states are the same if:
I. They produce the same outputs for the same inputs

2. They go to the same (or equivalent) next states for all inputs

Is this a Mealy or Moore
machine?

STATE TABLE DERIVED FROM
DIAGRAM

Next State Output
Present State x=0 x=1 x=0 x=1

a a b 0 0
b ¢ d 0 0
e a d 0 0
a e f__________()___ 1

= o a f Q __________ =
£ §]j _________ 0 1

g7 a if (U

10/28/2019

REDUCED STATE DIAGRAM

0/0

Now, you're stuck. It still

0/0 0/0 takes 3 bits in binary to
1/0 get beyond four states
0/0
1/0
0/0 1/1 /
1/0

11

REDUCED STATE TABLE

Next State Output

Present State x=0 x=1 x=0 x=1
000 000 001 0 0
001 010 011 0 0
010 000 011 0 0
011 100 011 0 1
100 000 011 0 1

Copyright 92012 Pesson Edcaton, pbishing s revice ol

K-MAP FOR OUTPUTS (5,,5,,S,Y)

3 state encodings
(101,110, I'11) are
not specified so we
can set their next
state values to don’t
care

(we can never get to
these states)

=1

SI-NEXT

K-MAP FOR OUTPUTS (5,,5,, S,,Y)

3 state encodings
(101,110, 1'11) are
not specified so we
can set their next
state values to don’t
care

(we can never get to
these states)

Synext = $iSeX’

10/28/2019

K-MAP FOR OUTPUTS (S,,S,,S,Y)

S, S
sI-NE)(T
00 | 0
00 0 0 = 0
X
| | - -
S 0 | 0 \

SiNexT = X+ Spx + 5,8 'x + §,'S,

K-MAP FOR OUTPUTS (S,,5,, S,,Y)

K-MAP FOR OUTPUTS (5,,5,,S,Y)

Y = S;x + §,5px

FSM INVERILOG

= Suggested coding style for FSMs

<module statement>

<input and output declarations>
<reg declarations>

<parameter and typedef statement>
<always block for next state>
<always block for output>

<always block for state FFs>
endmodule

10/28/2019

MEALY STATE MACHINE EXAMPLE

MEALY STATE MACHINE EXAMPLE

State machine outputs | for one clock cycle when three consecutive Os
are received as input with no overlap between sequences

module example_state_machine (clock, reset, in, out);
output out;
input clock, reset, in;
reg [1:0] Scurr, Snext;
parameter S0=2'b00, S1=2'b01, S2=2'b1l0;

always @(in, reset, Scurr)

begin
if (reset == 1) Snext = S0;
else
case (Scurr)
S0: if (in == 1) Snext = S0; else S1;
S1: if (in == 1) Snext = S0; else S2;
default: Snext = SO0;
endcase
end
always @(in, Scurr)
if ((Scurr == S2) && (in == 0)) out = 1; else out = 0;

always @(posedge clock)
Scurr <= Snext;
endmodule

MEALY STATE MACHINE EXAMPLE —
VERSION 2

module example state_machine(clock, reset, in, out);
output out;
input clock, reset, in;
reg [1:0] Scurr, Snext;
parameter S0=2'b00, S1=2'b01, S2=2'Dbl0;

always @(in, Scurr)

begin
case (Scurr)
S0: if (in == 1) Snext = S0; else S1;
Sl: if (in == 1) Snext = S0; else S2;
default: Snext = SO;
endcase
end
always @(in, Scurr)
if ((Scurr == S2) && (in == 0)) out = 1; else out = 0;

always @(posedge clock)
if (reset == 1) Scurr <= S0;
else Scurr <= Snext;
endmodule

assumes FF has reset input

MEALY STATE MACHINE EXAMPLE —

TESTBECH

module example state _machine_ testbench;
wire out;
reg clock, reset, in;
example_state_machine MO (clock, reset, in, out)

initial

begin
reset = 1'b0; // initialize inputs
clock = 1'b0;
in = 1'b0;

#4 reset = 1'bl;
#12 reset = 1'b0;
#19 in = 1'bl;
#65 in = 1'b0;
#141 in = 1'bl;
#200 $finish; // end simulation
end
always
begin
#10 clock = ~clock;
end
endmodule

10/28/2019

10/28/2019

SIMULATION OUTPUT

THE DIABOLICAL COKE MACHINE

DESIGN FROM PROF. BILL PATTERSON
(FOUND ON HANDOUT PAGE ON COURSE WEBSITE)

STATE DIAGRAM

DIABOLICAL COKE MACHINE

ull Cup. FULL } Next State Logic —‘J
Switch H : cup

.
XX = COIN, INH

INH &

(Combinational)

XC/INH | SODA_V
.
el i
VDD elect i ! iNH_Y
) p R q COIN (REQ) § L EXCV
Coin drop H
- > H
Signal -

CLK (Very slow clock — two cycles fills a cup)

State Register
A\

.......................

= Machine dispenses cup when coin is inserted and fills cup with soda.

= Shut off soda stream when FULL or after 2 clock cycles.

= Counting is handled through INH signal (but still counts 2 cycles
regardless of value of INH)

= Next state only determined by current state, coin drop, and
INH signal

= Qutputs (INH_V, EXC_V, CUP, SODA) determined by
current state and FULL

STATE TABLE

Style 3
State Style 1 Style2 | (one-

State | Name Function (Binary) | (ad hoc) | hot)

A waiting Wait for money 000 0000 000000
B release Drop a cup 001 1000 000011
C soda_inhl | Dispense soda with inh 1 cycle 010 0001 000101
D soda_inh2 | Dispense soda with inh 2 cycle 011 0011 001001
E soda_excl | Dispense soda with exc 1 cycle 100 0101 010001
F soda_exc2 | Dispense soda with exc 2 cycle 101 0111 100001

= Six state can be encoded in different ways

STATETRANSITION TABLE

Pres. Next Pres. Next
COIN | INH | State | Q[2:0] State | D[2:0] COIN | INH | State | Q[3:0] State | D[3:0]
0 X A 000 A 000 0 X A 0000 A 0000
1 X A 000 B 001 1 X A 0000 B 1000
X 0 B 001 E 100 X 0 B 1000 E 0101
X 1 B 001 C 010 X 1 B 1000 C 0001
X 0 c 010 F 101 X 0 C 0001 F 0111
X 1 C 010 D 011 X 1 C 0001 D 0011
X 0 E 100 F 101 X 0 E 0101 F 0111
X 1 E 100 D 011 X 1 E 0101) 0011
X X D 011 A 000 X X D 0011 A 0000
X X F 101 A 000 X X F 0111 A 0000

= State transitions are the same, just different encodings

= What about the output signals (CUP, INH_V, EXC_V, SODA)?

OUTPUT TABLE

0 0

X B | 0
0 [[0

CcD 0 0 0 0

0 | 0 |

EF 0 0 0 0

= 2 different ways to count

= Logic for these outputs will be different depending on state encoding

VERILOG

module coke_stylel (input full ,inh ,coin ,clk , output reg cup ,inh_v ,exc_v ,soda_v);
reg [2:0] pres_state, next_state; // State variables

// State bit assignments
parameter [2:0] waiting = 3'b000, cup_drop = 3'b001, dispense_il = 3'b010,
dispense_i2 = 3'b011, dispense_el = 3'b100, dispense_e2 = 3'b101;
// Next state logic
always @ (pres_state, coin, inh) begin
case (pres_state)
waiting: if (coin == 1'b1) next_state = cup_drop; else next_state = waiting;
cup_drop: if (inh == 1) next_state = dispense_i1; else next_state = dispense_e1l;
dispense_il: if (inh == 1) next_state = dispense_i2; else next_state = dispense_e2;
dispense_el: if (inh == 1) next_state = dispense_i2; else next_state = dispense_e2;
dispense_i2: next_state = waiting;
dispense_e2: next_state = waiting;
default next_state = waiting;
endcase
end

10/28/2019

10/28/2019

VERILOG (CONT) TIMING SIMULATION

// Output logic - note that outputs are reg type even though not ff outputs Nome B oy D R o T, 5 SR, L g L O
always @ (pres_state, full) begin ™ S | 1 1 ji |
if (pres_state == cup_drop) cup = 1; else cup =0; on |
if (pres_state == dispense_il) | (pres_state == dispense_i2) m 1
begin o]
inh_v = ~full; -t —_—
soda_v = ~full; s L
end 2 L
if (pr.es_state == dispense_el | (pres_state == dispense_e2) J;M o G)IF l“—
begin il s G e o YT
exc_v = ~full;
soda_v = ~full;

= Notice the Coke machine starts filling the cup with soda with

Z"d inh=1, then switches counting with inh_v to exc_v when inh=0.

en

// State register = The full input signal goes high once soda has been dispensed for 2
always @ (posedge clk) pres_state <= next_state; full cycles.

endmodule

