
10/28/2019

1

DIGITAL ELECTRONICS
SYSTEM DESIGN

FALL 2019

PROF. IRIS BAHAR

OCTOBER 28, 2019

LECTURE 15: MORE STATE MACHINE DESIGN

UPDATED LAB TA HOURS

 Pratishtha will be away attending a conference this week
 She is canceling her Tuesday hours from 10am-noon

 She will hold normal hours on Friday from 1-4pm

MIDTERM STUDY SESSION

 Jiwon will give a help session on Monday, Oct. 28 from
7-9pm in B&H190 to prepare for the midterm exam
next week.

 Come with questions. She will also solve some
problems (from the problem sets) on the board.

 She will hold office hours in B&H 196 this Tuesday,
Oct. 29 from 7-9pm

 Practice Problem Set #2 has been posted (as well as
solutions)

BLOCK DIAGRAMS OF MEALY AND
MOORE STATE MACHINES

4

10/28/2019

2

1. Define the task in words (Mealy or Moore?)

2. Draw a state diagram

3. Assign state values to the states (number the states)

4. Minimize the number of states in the state table/diagram

5. Set up a state table

6. Select a flip-flop type and set up an excitation table

7. Use the excitation table to generate columns in the state table
for the FF inputs

8. Design the combinational circuits

9. Draw the logic diagram and build the circuit

STATE MACHINE DESIGN PROCEDURE
EXAMPLE 2: STATE DIAGRAM FOR
SEQUENCE DETECTOR

 Make a machine that sets an
output signal to 1 when the
input signal is 1 for 3 or more
times in a row

 State diagram to detect 3
ones in a row

 Is this a Mealy or Moore
machine?

STATE TABLE FOR SEQUENCE
DETECTOR: MOORE MACHINE

7

K-MAPS FOR SEQUENCE
DETECTOR USING D-FFS

 Each output is represented with a separate Karnaugh map

10/28/2019

3

LOGIC DIAGRAM OF A MOORE-
TYPE SEQUENCE DETECTOR

9

 Two states are the same if:
1. They produce the same outputs for the same inputs

2. They go to the same (or equivalent) next states for all inputs

STATE REDUCTION

10

EXAMPLE 3: STATE DIAGRAM

11

Is this a Mealy or Moore
machine?

STATE TABLE DERIVED FROM
DIAGRAM

10/28/2019

4

REDUCED STATE DIAGRAM

15

Now, you’re stuck. It still
takes 3 bits in binary to
get beyond four states

REDUCED STATE TABLE

K-MAP FOR OUTPUTS (S2, S1, S0,Y)

00 01 11 10

00 --

01 --

11 -- --

10 -- --

x

S0

S1
S2

S1-NEXT = ?

3 state encodings
(101, 110, 111) are
not specified so we
can set their next
state values to don’t
care
(we can never get to
these states)

K-MAP FOR OUTPUTS (S2, S1, S0,Y)

00 01 11 10

00 0 0 - 0

01 0 0 - 0

11 0 0 - -

10 0 1 - -

x

S0

S1
S2

S2-NEXT = S1S0x’

3 state encodings
(101, 110, 111) are
not specified so we
can set their next
state values to don’t
care
(we can never get to
these states)

10/28/2019

5

K-MAP FOR OUTPUTS (S2, S1, S0,Y)

00 01 11 10

00 0 0 - 0

01 0 1 - 1

11 1 1 - -

10 1 0 - -

x

S0

S1
S2

S1-NEXT = S1x + S0x + S2S1’x + S1’S0

S1-NEXT

K-MAP FOR OUTPUTS (S2, S1, S0,Y)

00 01 11 10

00 0 0 - 0

01 1 1 - 1

11 1 1 - -

10 0 0 - -

x

S0

S1
S2

S0-NEXT = x

K-MAP FOR OUTPUTS (S2, S1, S0,Y)

00 01 11 10

00 0 0 - 0

01 0 0 - 1

11 0 1 - -

10 0 0 - -

x

S0

S1
S2

Y = S2x + S1S0x

FSM IN VERILOG

 Suggested coding style for FSMs

<module statement>
<input and output declarations>
<reg declarations>
<parameter and typedef statement>
<always block for next state>
<always block for output>
<always block for state FFs>
endmodule

10/28/2019

6

MEALY STATE MACHINE EXAMPLE

State machine outputs 1 for one clock cycle when three consecutive 0s
are received as input with no overlap between sequences

00 01 10

1/0

0/0

1/0

0/0

1/0
0/1

MEALY STATE MACHINE EXAMPLE

00 01 10

1/0

0/0

1/0

0/0

1/0

0/1

module example_state_machine(clock, reset, in, out);
output out;
input clock, reset, in;
reg [1:0] Scurr, Snext;
parameter S0=2’b00, S1=2’b01, S2=2’b10;

always @(in, reset, Scurr)
begin

if (reset == 1) Snext = S0;
else
case (Scurr)

S0: if (in == 1) Snext = S0; else S1;
S1: if (in == 1) Snext = S0; else S2;
default: Snext = S0;

endcase
end
always @(in, Scurr)

if ((Scurr == S2) && (in == 0)) out = 1; else out = 0;
always @(posedge clock)

Scurr <= Snext;
endmodule

MEALY STATE MACHINE EXAMPLE –
VERSION 2

00 01 10

1/0

0/0

1/0

0/0

1/0

0/1

module example_state_machine(clock, reset, in, out);
output out;
input clock, reset, in;
reg [1:0] Scurr, Snext;
parameter S0=2’b00, S1=2’b01, S2=2’b10;

always @(in, Scurr)
begin

case (Scurr)
S0: if (in == 1) Snext = S0; else S1;
S1: if (in == 1) Snext = S0; else S2;
default: Snext = S0;

endcase
end

always @(in, Scurr)
if ((Scurr == S2) && (in == 0)) out = 1; else out = 0;

always @(posedge clock)
if (reset == 1) Scurr <= S0;
else Scurr <= Snext;

endmodule

assumes FF has reset input

MEALY STATE MACHINE EXAMPLE –
TESTBECH

module example_state_machine_testbench;
wire out;
reg clock, reset, in;
example_state_machine M0(clock, reset, in, out)
initial
begin

reset = 1’b0; // initialize inputs
clock = 1’b0;
in = 1’b0;
#4 reset = 1’b1;
#12 reset = 1’b0;
#19 in = 1’b1;
#65 in = 1’b0;
#141 in = 1’b1;
#200 $finish; // end simulation

end
always
begin

#10 clock = ~clock;
end

endmodule

10/28/2019

7

SIMULATION OUTPUT

clk

in

reset

S0 S1 S2 S0 S1 S0Scurr

out

S0 S1 S2 S0 S1 S2Snext S0

THE DIABOLICAL COKE MACHINE
DESIGN FROM PROF. BILL PATTERSON

(FOUND ON HANDOUT PAGE ON COURSE WEBSITE)

DIABOLICAL COKE MACHINE

 Machine dispenses cup when coin is inserted and fills cup with soda.
 Shut off soda stream when FULL or after 2 clock cycles.
 Counting is handled through INH signal (but still counts 2 cycles

regardless of value of INH)

STATE DIAGRAM

 Next state only determined by current state, coin drop, and
INH signal

 Outputs (INH_V, EXC_V, CUP, SODA) determined by
current state and FULL

10/28/2019

8

STATE TABLE

 Six state can be encoded in different ways

STATE TRANSITION TABLE

 State transitions are the same, just different encodings

 What about the output signals (CUP, INH_V, EXC_V, SODA)?

OUTPUT TABLE

Full Pres. State Cup Soda INH_V EXC_V

X A 0 0 0 0

X B 1 0 0 0

0 C,D 0 1 1 0

1 C,D 0 0 0 0

0 E,F 0 1 0 1

1 E,F 0 0 0 0

 2 different ways to count

 Logic for these outputs will be different depending on state encoding

VERILOG
module coke_style1 (input full ,inh ,coin ,clk , output reg cup ,inh_v ,exc_v ,soda_v);
reg [2:0] pres_state, next_state; // State variables

// State bit assignments
parameter [2:0] waiting = 3'b000, cup_drop = 3'b001, dispense_i1 = 3'b010,
dispense_i2 = 3'b011, dispense_e1 = 3'b100, dispense_e2 = 3'b101;
// Next state logic
always@ (pres_state, coin, inh) begin
case (pres_state)
waiting: if (coin == 1'b1) next_state = cup_drop; else next_state = waiting;
cup_drop: if (inh == 1) next_state = dispense_i1; else next_state = dispense_e1;
dispense_i1: if (inh == 1) next_state = dispense_i2; else next_state = dispense_e2;
dispense_e1: if (inh == 1) next_state = dispense_i2; else next_state = dispense_e2;
dispense_i2: next_state = waiting;
dispense_e2: next_state = waiting;
default next_state = waiting;
endcase
end

10/28/2019

9

VERILOG (CONT.)

// Output logic ‐ note that outputs are reg type even though not ff outputs
always@ (pres_state, full) begin
if (pres_state == cup_drop) cup = 1; else cup = 0;
if (pres_state == dispense_i1) | (pres_state == dispense_i2)
begin
inh_v = ~full;
soda_v = ~full;
end
if (pres_state == dispense_e1 | (pres_state == dispense_e2)
begin
exc_v = ~full;
soda_v = ~full;
end

end
// State register
always@ (posedge clk) pres_state <= next_state;
endmodule

TIMING SIMULATION

 Notice the Coke machine starts filling the cup with soda with
inh=1, then switches counting with inh_v to exc_v when inh=0.

 The full input signal goes high once soda has been dispensed for 2
full cycles.

A

A B

B

C

C

D F

F

A

A

