

1

ENGN 1630 LABS 7, $8:$

ANALOG TO DIGITAL CONVERTERS

- Interface to the "real" world involves analog signals,
- Inputs derived from sensors (temperature, flow, position, velocity, acceleration, magnetic field,....)
- Outputs generated to control devices (motors, engines, valves, heaters, lights,.....)
- Wide range of voltage and current values and their variations in time \rightarrow specialized analog circuit techniques (not the domain of this course!)
- A / D and D/A conversion: Translate between a limited voltage range contained within the $\left[0, \mathrm{~V}_{\mathrm{DD}}\right]$ range of the digital circuit, and the set of all $2^{n} n$-bit binary numbers (for some value of n)

3

- McKenna is changing his Friday lab hours to I lam-Ipm

2

4

9

11

- Output voltage follows the sum of two input voltages, one taken with the opposite sign

$V_{(-)} \cong V_{(+)}=\frac{R_{F}}{R_{I}+R_{F}} V_{I+}$
$\frac{V_{I-}-V_{(-)}}{R_{I}}=\frac{V_{(-)}-V_{o}}{R_{F}}$
$V_{o}=?$

10

COMPARATOR

- Fundamental interface between the analog and digital domains
- Component with analog inputs (arbitrary voltages) and a digital output (two defined levels, "low" and "high").
- In your kits, LM 31I
- Basically a high-gain amplifier intended to be used in saturation (its output driven all the way to the V_{H} or V_{L} levels)

12

COMPARATOR: I-BIT A/D CONVERTER

FLASH CONVERTER TRADE-OFFS

- Large number of comparators plus adder network or other logic stages (chip area increasing with 2^{N})
- Comparator offset voltage must be less than $1 / 2$ the LSB interval, which becomes challenging for 1 mV level and less
- Comparator offset matching
- Resolution up to 10 bits
- Highest speed (one clock cycle)

14

Voltage or current signals, which are continuous functions of time, have to be sampled in order to be represented digitally.
Sampling introduces ambiguity: what happens in between sample points?
If the maximum frequency present in the signal is f, the sample rate F_{s} must be greater than $2 f$.

All frequencies greater than $F_{s} / 2$ appear aliased in the interval $\left[0, F_{s} / 2\right]$. To get rid of
the confusion, signals must be band-limited (by low-pass filtering) to less than $F_{s} / 2$ before the sampling operation.

\qquad $\xrightarrow{\text { analog }}$

16

17

19

18

20

