
11/6/2019

1

DIGITAL ELECTRONICS
SYSTEM DESIGN

FALL 2019

PROF. IRIS BAHAR (GIVEN BY JIWON CHOE)

NOVEMBER 6, 2019

LECTURE 17: BINARY ADDITION

2

SUMMING AMPLIFIER

 Output voltage follows the sum of two input voltages, one taken with the
opposite sign

–

+

VI-
VO

RF

RI

𝑉ି ≅ 𝑉ା ൌ
𝑅ி

𝑅ூ ൅ 𝑅ி
𝑉ூା

𝑉ூି െ 𝑉ି

𝑅ூ
ൌ
𝑉ି െ 𝑉௢

𝑅ி

𝑉௢ ൌ ?RI

RF

VI+

V(-)

V(+)

3

INTEGRATOR

 Output voltage is the time integral of the input voltage, with the opposite sign,
and with a scale factor

–

+

VI
VO

CF

RI

𝑉ି ≅ 𝑉ା ൌ 0

𝑉ூ
𝑅ூ

ൌ 𝐶ி
𝑑
𝑑𝑡 0 െ 𝑉௢

𝑉௢ ൌ െ
1

𝑅ூ𝐶ி
න𝑉ூ𝑑𝑡

DUAL-SLOPE A/D CONVERTER

+

–

integrator

VIN

-VREF

counter

latch

Vintegrator

t

GTZ

GTZ

control

11/6/2019

2

R-2R LADDER D/A CONVERTER

R R R

2R 2R 2R 2R

2R 2R

Q1Q0 Q2 Q3

𝑉஽஺஼

R-2R LADDER D/A CONVERTER

R R R

2R 2R 2R 2R

2R 2R

Q10 Q2 Q3

𝑉஽஺஼

R-2R LADDER ANALYSIS BY SUPERPOSITION AND
SERIES PARALLEL REDUCTION

R R R

2R 2R 2R

R 2R

0 0 VQ

𝑉஽஺஼ R R

2R 2R 2R

2R 2R

0 0 VQ

𝑉஽஺஼

R R

2R 2R

R 2R

0 VQ

𝑉஽஺஼ R

2R 2R

2R 2R

0 VQ

𝑉஽஺஼

2R
R

VQ

𝑉஽஺஼ ൌ
𝑅

𝑅 ൅ 2𝑅 𝑉ொ

R-2R LADDER ANALYSIS BY SUPERPOSITION AND
SERIES PARALLEL REDUCTION

R R R

2R 2R 2R

2R 2R

0

V2

𝑉஽஺஼ ൌ ?

2R

0 0

? ?

? ? ?

VQ

V1

V0

11/6/2019

3

BINARY ADDITION

UNSIGNED BINARY NUMBERS

 For the binary number bn-1bn-2…b1b0. b-1b-2…b-m the decimal
number is:

 Example:

101.0012 = ?

5 + 2-3 = 5.125

𝐷 ൌ ෍ 𝑏௜2௜
௡ିଵ

௜ୀି௠

BINARY ADDITION

 Addition is an essential
operation for all kinds of
computing

 We need to understand how
to do this for binary numbers

 We need to understand how
to do this for positive and
negative numbers

 We need to understand how
to implement this efficiently
in hardware

5
+ 7
1 2

Carry Sum

1 1 1
1 0 1

+ 1 1 1
1 1 0 0

Carryout Sums

Carry bits
5
7
12

HALF ADDER

a b carry sum

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Truth Table
a

b

Sum

Carry

11/6/2019

4

FULL ADDER

Id a b cin carry sum

0 0 0 0 0 0
1 0 0 1 0 1
2 0 1 0 0 1
3 0 1 1 1 0
4 1 0 0 0 1
5 1 0 1 1 0
6 1 1 0 1 0
7 1 1 1 1 1

Truth Table

a

b

Sum

Carry

Cin

 How do you express sum and carry as Boolean functions?

THE FULL ADDER

A

Cin

B
S

Cout

1-bit Full
Adder
(FA)

A

B
S

Cin

Cout

BUILDING A BINARY ADDER

 Inputs & outputs for the ith bit position

 Inputs: Ai, Bi, and Ci (carry-in)

 Outputs: Si (sum) and Ci+1 (carry out)

 Carry out of a bit position is the carry in for the next bit position

1 1 1
1 0 1

+ 1 1 1
1 1 0 0

Carryout Sums

Carry bits
5 (A)
7 (B)

12 (S)

THE RIPPLE CARRY ADDER

 The carry out of one stage ripples to the carry in of the
next

A0 B0

S0

C0=CinFA

A1 B1

S1

FA

A2 B2

S2

FA

A3 B3

S3

FACout=C4

11/6/2019

5

WHAT ABOUT NEGATIVE NUMBERS?

 So far we have just considered unsigned numbers when
converting from base 10 to binary.

 What about negative numbers and how do we add two
signed numbers in binary?

 3 ways of representing signed numbers:
 Signed magnitude

 1’s complement

 2’s complement

SIGNED MAGNITUDE

 The Most Significant Bit (MSB) is the sign bit: 0  positive, 1 
negative

 The rest of the bits define the magnitude

 Need to know how many bits are available to represent a
number!

 Example: (2)10 = (0010)2 = (0 010)S&M
(-2)10 = (1 010)S&M

 Makes adding and subtracting a pain
 Can’t just add them regularly

 Also, two representations for zero (+0 and -0)

SIGNED MAGNITUDE ADDITION

(1) 10  0001
+ (5) 10  + 0101
---------- ---------

(6) 10 0110 (both positive, so a positive result)

(-2) 10  1010
+ (-4) 10  + 1100
---------- ---------

(-6) 10 1110 (both negative, so keep the negative sign)

(4) 10  0100 (larger number – smaller number)
+ (-3) 10  + 1011 (keep the sign of the larger number)
---------- ---------

(1) 10 0001 (signs are different  subtract smaller from
larger number, keep sign of larger number)

 Need a comparator to supplement adder/subtractor

1’S COMPLEMENT

 To negate a number, complement (invert, flip) each bit

 Example: (4)10 = (0100)2 = (0100)1’s comp
(-4)10 = (1011)1’s comp

 Like sign and magnitude, the high bit indicates the sign of the
number

 What about adding and subtracting?

11/6/2019

6

1’S COMPLEMENT ADD/SUBTRACT

(-2) 10  1101
+ (-4) 10  + 1011
---------- ---------

(-6) 10 11000 -- not right, (-6)10 = (1001)1’s comp
+ 1  add Cout back to LSB

1001 -- now it works

(4) 10  0100
+ (-3) 10  + 1100

---------- ---------
(1) 10 10000 -- not right, add Cout back to LSB

+ 1

0001 -- now it works

 Better than sign and magnitude (can subtract by adding the negative)

 But requires 2 addition operations (need to conditionally add Cout)

