@S DIGITAL ELECTRONICS
el SYSTEM DESIGN

School of Engineering

FALL 2019

PROF. IRIS BAHAR (GIVEN BY JIWON CHOE)
NOVEMBER 6, 2019

LECTURE 17: BINARY ADDITION

SUMMING AMPLIFIER

= Output voltage follows the sum of two input voltages, one taken with the
opposite sign
Vi 2V = v,
© =V =g 3R,

Vi- Vo Vo~ %
Ry Rp

S
]
N

INTEGRATOR

DUAL-SLOPE A/D CONVERTER

= Output voltage is the time integral of the input voltage, with the opposite sign,
and with a scale factor

Viy 2V =0

v d
R Crgp 0=V

-VREF °

/— integrator

GTZ

VIN

Vin(egra(or

counter

latch

11/6/2019

R-2R LADDER D/A CONVERTER

R-2R LADDER D/A CONVERTER

R-2R LADDER ANALYSIS BY SUPERPOSITION AND
SERIES PARALLEL REDUCTION

=)
=]

Voac =g 2R

R-2R LADDER ANALYSIS BY SUPERPOSITION AND
SERIES PARALLEL REDUCTION

Voa =7 b ? - !

l
|

11/6/2019

BINARY ADDITION

UNSIGNED BINARY NUMBERS

= For the binary number b,_b, ,...b,by.b_ b, b_, the decimal
number is:

n-1

= 2

= Example: b Z biz
=—m

101.001, =2

5+23=525

BINARY ADDITION

= Addition is an essential
operation for all kinds of
computing

= We need to understand how
to do this for binary numbers

= We need to understand how
to do this for positive and
negative numbers

= We need to understand how
to implement this efficiently
in hardware

HALF ADDER
Truth Table
a
a b carry sum
Sum 00 0 0
01 0 1
b 10 0 1
Carry 11 1 0

11/6/2019

FULL ADDER

Truth Table
Cin Id| a b c, carry sum
0/00 0 0 0
a 1100 1 0 1
2101 0 0 1
Sum 3001 1 10
41100 0 1
b 50101 1 0
Carry 6|11 0 1 0
7111 1 1 1

= How do you express sum and carry as Boolean functions?

THE FULL ADDER

Cli"
A _
) S A [1-bit Full
B v Adder - S
B | FA
c, (l)
C

BUILDING A BINARY ADDER

1 «<— Carry bits
0 1 5 (A)
1 1 7 (B)
00 12.(S)
Carryout Sums

= Inputs & outputs for the i bit position
= Inputs: A, B, and C, (carry-in)
= Outputs:S; (sum) and C,,, (carry out)

= Carry out of a bit position is the carry in for the next bit position

THE RIPPLE CARRY ADDER

Co=C,~—| FA |— FA | FA [FA [—C,=C

! ! ! !

S S S So

in

= The carry out of one stage ripples to the carry in of the
next

11/6/2019

WHAT ABOUT NEGATIVE NUMBERS?

= So far we have just considered unsigned numbers when
converting from base |0 to binary.

= What about negative numbers and how do we add two
signed numbers in binary?

= 3 ways of representing signed numbers:
= Signed magnitude
= |’s complement

= 2’s complement

SIGNED MAGNITUDE

The Most Significant Bit (MSB) is the sign bit: 0 = positive, | 2>
negative

The rest of the bits define the magnitude

Need to know how many bits are available to represent a
number!

Example: (2),, = (0010), = (0 010)cgy,

)io (1 010)sgp
Makes adding and subtracting a pain
= Can’t just add them regularly

Also, two representations for zero (+0 and -0)

SIGNED MAGNITUDE ADDITION

1)e > 000l
+ (5, ~> +o0l0l
6) 10 0110 (both positive, so a positive result)

2, > 1010
+ (4, > +1100

(-6) 10 1110 (both negative, so keep the negative sign)

(4, > 0100 (larger number — smaller number)
+ (-3),, > +10Il (keep the sign of the larger number)

(Do 0001 (signs are different = subtract smaller from
larger number, keep sign of larger number)

= Need a comparator to supplement adder/subtractor

I’'S COMPLEMENT

To negate a number, complement (invert, flip) each bit
Example: (4),o= (0100), = (0100), comp
('4)|0 = (IOII)I'scomp

Like sign and magnitude, the high bit indicates the sign of the
number

What about adding and subtracting?

11/6/2019

I’'S COMPLEMENT ADD/SUBTRACT

(-2) > 1101
+ (4, > + 0l
(-6) 1o 11000 -- not right, (-6),5 = (1001),; comp
+ | = add C,, back to LSB
__I_(_)-OT- -- now it works
4, > 0I00
+(-3), > +1100
(O 10000 -- not right, add Cout back to LSB
+ |
(:’IE)_(_)_I““—— now it works

= Better than sign and magnitude (can subtract by adding the negative)

= But requires 2 addition operations (need to conditionally add C_)

11/6/2019

