DIGITAL ELECTRONICS SYSTEM DESIGN

SUMMING AMPLIFIER

- Output voltage follows the sum of two input voltages, one taken with the opposite sign
FALL 2019
$V_{(-)} \cong V_{(+)}=\frac{R_{F}}{R_{I}+R_{F}} V_{I+}$

$\frac{V_{I-}-V_{(-)}}{R_{I}}=\frac{V_{(-)}-V_{o}}{R_{F}}$
NOVEMBER 6, 2019
LECTURE I7: BINARY ADDITION

$V_{o}=$?

- Output voltage is the time integral of the input voltage, with the opposite sign and with a scale factor

$$
\begin{aligned}
& V_{(-)} \cong V_{(+)}=0 \\
& \frac{V_{I}}{R_{I}}=C_{F} \frac{d}{d t}\left(0-V_{o}\right) \\
& V_{o}=-\left(\frac{1}{R_{I} C_{F}}\right) \int V_{I} d t
\end{aligned}
$$

R-2R LADDER ANALYSIS BY SUPERPOSITION AND SERIES PARALLEL REDUCTION

R-2R LADDER ANALYSIS BY SUPERPOSITION AND SERIES PARALLEL REDUCTION

BINARY ADDITION

UNSIGNED BINARY NUMBERS

- For the binary number $b_{n-1} b_{n-2} \ldots b_{\mid} b_{0} \cdot b_{-1} b_{-2 \ldots} b_{-m}$ the decimal number is:
- Example: $\quad D=\sum_{i=-m}^{n-1} b_{i} 2^{i}$
$101.00 I_{2}=$?

$$
5+2^{-3}=5.125
$$

- Addition is an essential operation for all kinds of computing
- We need to understand how to do this for binary numbers
- We need to understand how to do this for positive and negative numbers
- We need to understand how to implement this efficiently in hardware

1	1	1	\longleftarrow	Carry bits
	1	0	1	5
+	1	1	1	7
1	1	0	0	12
Carryout	Sums			

Truth Table

$$
\begin{array}{cc|cc}
\mathrm{a} & \mathrm{~b} & \text { carry } & \text { sum } \\
\hline 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}
$$

Truth Table

Id	a	b	$\mathrm{c}_{\text {in }}$	carry	sum
0	0	0	0	0	0
1	0	0	1	0	1
2	0	1	0	0	1
3	0	1	1	1	0
4	1	0	0	0	1
5	1	0	1	1	0
6	1	1	0	1	0
7	1	1	1	1	1

- How do you express sum and carry as Boolean functions?

- Inputs: A_{i}, B_{i}, and C_{i} (carry-in)
- Outputs: S_{i} (sum) and $\mathrm{C}_{\mathrm{i}+1}$ (carry out)
- Carry out of a bit position is the carry in for the next bit position

- The carry out of one stage ripples to the carry in of the next

WHAT ABOUT NEGATIVE NUMBERS?

- So far we have just considered unsigned numbers when converting from base 10 to binary.
- What about negative numbers and how do we add two signed numbers in binary?
- 3 ways of representing signed numbers:
- Signed magnitude
- I's complement
- 2's complement

$\begin{array}{r} (1) 10 \\ +\quad(5)_{10} \end{array}$	$\xrightarrow{\rightarrow}$	$\begin{array}{r} 0001 \\ +0101 \end{array}$	
${ }^{(6)}{ }_{10}$		0110	(both positive, so a positive result)
$\begin{array}{r} (-2)_{10} \\ +\quad(-4)_{10} \end{array}$	$\xrightarrow{\rightarrow}$	$\begin{array}{r} 1010 \\ +1100 \end{array}$	
$(-6)_{10}$		1110	(both negative, so keep the negative sign)
$\begin{array}{r} (4)_{10} \\ +\quad(-3)_{10} \end{array}$	$\xrightarrow{\rightarrow}$	$\begin{array}{r} 0100 \\ +1011 \end{array}$	(larger number - smaller number) (keep the sign of the larger number)
$(1) 10$		0001	(signs are different \rightarrow subtract smaller from larger number, keep sign of larger number

- Need a comparator to supplement adder/subtractor

I'S COMPLEMENT

SIGNED MAGNITUDE

- The Most Significant Bit (MSB) is the sign bit: $0 \rightarrow$ positive, I \rightarrow negative
- The rest of the bits define the magnitude
- Need to know how many bits are available to represent a number!
- Example: $(2)_{10}=(0010)_{2}=\left(\begin{array}{lll}0 & 010\end{array}\right)_{\text {SQM }}$

$$
(-2)_{10}=
$$

(1010$)_{\text {s8M }}$

- Makes adding and subtracting a pain
- Can't just add them regularly
- Also, two representations for zero (+0 and -0)
- To negate a number, complement (invert, flip) each bit
- Example: $(4)_{10}=(0100)_{2}=(0100)_{\text {I's comp }}$

$$
(-4)_{10} \quad=(10 \mid 1)_{1 \text { 's comp }}
$$

- Like sign and magnitude, the high bit indicates the sign of the number
- What about adding and subtracting?

I'S COMPLEMENT ADD/SUBTRACT
- Better than sign and magnitude (can subtract by adding the negative) - But requires 2 addition operations (need to conditionally add $\mathrm{C}_{\text {out }}$)

