
11/6/2019

1

DIGITAL ELECTRONICS  
SYSTEM DESIGN

FALL 2019

PROF. IRIS BAHAR (GIVEN BY JIWON CHOE)

NOVEMBER 6, 2019

LECTURE 17:  BINARY ADDITION

2

SUMMING AMPLIFIER

 Output voltage follows the sum of two input voltages, one taken with the 
opposite sign

–

+

VI-
VO

RF

RI

𝑉 ≅ 𝑉
𝑅

𝑅 𝑅 𝑉

𝑉 𝑉
𝑅

𝑉 𝑉
𝑅

𝑉  ?RI

RF

VI+

V(-)

V(+)

3

INTEGRATOR

 Output voltage is the time integral of the input voltage, with the opposite sign, 
and with a scale factor

–

+

VI
VO

CF

RI

𝑉 ≅ 𝑉 0

𝑉
𝑅 𝐶

𝑑
𝑑𝑡 0 𝑉

𝑉
1

𝑅 𝐶 𝑉 𝑑𝑡

DUAL-SLOPE A/D CONVERTER

+

–

integrator

VIN

-VREF

counter

latch

Vintegrator

t

GTZ

GTZ

control



11/6/2019

2

R-2R LADDER D/A CONVERTER

R R R

2R 2R 2R 2R

2R 2R

Q1Q0 Q2 Q3

𝑉

R-2R LADDER D/A CONVERTER

R R R

2R 2R 2R 2R

2R 2R

Q10 Q2 Q3

𝑉

R-2R LADDER ANALYSIS BY SUPERPOSITION AND 
SERIES PARALLEL REDUCTION

R R R

2R 2R 2R

R 2R

0 0 VQ

𝑉 R R

2R 2R 2R

2R 2R

0 0 VQ

𝑉

R R

2R 2R

R 2R

0 VQ

𝑉 R

2R 2R

2R 2R

0 VQ

𝑉

2R
R

VQ

𝑉
𝑅

𝑅 2𝑅 𝑉

R-2R LADDER ANALYSIS BY SUPERPOSITION AND 
SERIES PARALLEL REDUCTION

R R R

2R 2R 2R

2R 2R

0

V2

𝑉  ?

2R

0 0

? ?

? ? ?

VQ

V1

V0



11/6/2019

3

BINARY ADDITION

UNSIGNED BINARY NUMBERS

 For the binary number bn-1bn-2…b1b0. b-1b-2…b-m the decimal 
number is:

 Example:

101.0012 = ?

5 + 2-3 = 5.125

𝐷 𝑏 2

BINARY ADDITION

 Addition is an essential 
operation for all kinds of 
computing

 We need to understand how 
to do this for binary numbers

 We need to understand how 
to do this for positive and 
negative numbers

 We need to understand how 
to implement this efficiently 
in hardware

5
+   7
1 2

Carry         Sum

1    1     1
1    0    1

+      1    1    1
1    1    0   0

Carryout         Sums

Carry bits
5
7
12

HALF ADDER

a    b         carry    sum

0   0            0          0
0   1            0          1
1   0            0          1
1   1            1          0

Truth Table
a

b

Sum

Carry



11/6/2019

4

FULL ADDER

Id      a    b   cin carry    sum

0      0   0    0             0          0
1      0   0    1             0          1
2      0   1    0             0          1
3      0   1    1             1          0
4      1   0    0             0          1
5      1   0    1             1          0
6      1   1    0             1          0
7      1   1    1             1          1

Truth Table

a

b

Sum

Carry

Cin

 How do you express sum and carry as Boolean functions?

THE FULL ADDER

A

Cin

B
S

Cout

1-bit Full 
Adder
(FA)

A

B
S

Cin

Cout

BUILDING A BINARY ADDER

 Inputs & outputs for the ith bit position

 Inputs:  Ai, Bi, and Ci (carry-in)

 Outputs: Si (sum) and  Ci+1 (carry out)

 Carry out of a bit position is the carry in for the next bit position

1    1     1
1    0    1

+      1    1    1
1    1    0   0

Carryout         Sums

Carry bits
5    (A)
7    (B)

12    (S)

THE RIPPLE CARRY ADDER

 The carry out of one stage ripples to the carry in of the 
next

A0 B0

S0

C0=CinFA

A1 B1

S1

FA

A2 B2

S2

FA

A3 B3

S3

FACout=C4



11/6/2019

5

WHAT ABOUT NEGATIVE NUMBERS?

 So far we have just considered unsigned numbers when 
converting from base 10 to binary.

 What about negative numbers and how do we add two 
signed numbers in binary?

 3 ways of representing signed numbers:
 Signed magnitude

 1’s complement

 2’s complement

SIGNED MAGNITUDE

 The Most Significant Bit (MSB) is the sign bit: 0  positive, 1 
negative

 The rest of the bits define the magnitude

 Need to know how many bits are available to represent a 
number!

 Example: (2)10 = (0010)2 = (0 010)S&M
(-2)10 =  (1 010)S&M

 Makes adding and subtracting a pain 
 Can’t just add them regularly

 Also, two representations for zero (+0 and -0)

SIGNED MAGNITUDE ADDITION

(1) 10          0001
+  (5) 10          + 0101
---------- ---------

(6) 10                       0110   (both positive, so a positive result)

(-2) 10          1010
+  (-4) 10          + 1100
---------- ---------

(-6) 10                       1110  (both negative, so keep the negative sign)

( 4) 10          0100   (larger number – smaller number)
+  (-3) 10          + 1011   (keep the sign of the larger number)
---------- ---------

( 1) 10                     0001  (signs are different  subtract smaller from
larger number, keep sign of larger number) 

 Need a comparator to supplement adder/subtractor

1’S COMPLEMENT

 To negate a number, complement (invert, flip) each bit

 Example:  ( 4)10 = (0100)2 = (0100)1’s comp
(-4)10 = (1011)1’s comp

 Like sign and magnitude, the high bit indicates the sign of the 
number

 What about adding and subtracting?



11/6/2019

6

1’S COMPLEMENT ADD/SUBTRACT

(-2) 10          1101
+  (-4) 10          + 1011
---------- ---------

(-6) 10                     11000  -- not right, (-6)10 = (1001)1’s comp
+      1    add Cout back to LSB
---------
1001   -- now it works

(4) 10          0100
+  (-3) 10          + 1100 

---------- ---------
(1) 10 10000  -- not right, add Cout back to LSB

+       1
---------
0001   -- now it works

 Better than sign and magnitude (can subtract by adding the negative)

 But requires 2 addition operations (need to conditionally add Cout)


