

UNSIGNED BINARY NUMBERS

For the binary number b_{n-1}b_{n-2}...b₁b₀. b₋₁b₋₂...b_{-m} the decimal number is:

• Example:
$$D = \sum_{i=-m}^{n-1} b_i 2^i$$

|0|.00|₂ = ?

$$5 + 2^{-3} = 5.125$$

WHAT ABOUT NEGATIVE NUMBERS?

- So far we have just considered unsigned numbers when converting from base 10 to binary.
- What about negative numbers and how do we add two signed numbers in binary?
- 3 ways of representing signed numbers:
 - Signed magnitude
 - I's complement
 - 2's complement

SIGNED MAGNITUDE

- The Most Significant Bit (MSB) is the sign bit: 0 \rightarrow positive, 1 \rightarrow negative
- The rest of the bits define the magnitude
- Need to know how many bits are available to represent a number!
- Example: $(2)_{10} = (0010)_2 = (0010)_{S\&M}$ $(-2)_{10} = (1010)_{S\&M}$
- Makes adding and subtracting a pain
 - Can't just add them regularly
- Also, two representations for zero (+0 and -0)

