

SEMINAR SPEAKER THIS TUESDAY

Hannah Chung
Co-founder \& Head of Design of Sproutel
Tuesday, November 12
B\&H 190, 12 -Ipm

From Mechanical Engineering to Designer --The Sproutel Story

Hannah will share her story of finding her voice as a designer and engineer as she pursues her passion for designing for good in healthcare

UPDATES TO LAB HOURS THIS WEEK

- Monica has to cancel her lab hours Tuesday I-4pm. She will schedule makeup hours later this week. Stay tuned.

Truth Table

$$
\begin{array}{cc|cc}
\mathrm{a} & \mathrm{~b} & \text { carry } & \text { sum } \\
\hline 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}
$$

Truth Table

Id	a	b	$\mathrm{c}_{\text {in }}$	carry	sum
0	0	0	0	0	0
1	0	0	1	0	1
2	0	1	0	0	1
3	0	1	1	1	0
4	1	0	0	0	1
5	1	0	1	1	0
6	1	1	0	1	0
7	1	1	1	1	1
carry as Boolean functions?					

- How do you express sum and carry as Boolean functions?

WHAT ABOUT NEGATIVE NUMBERS?

- So far we have just considered unsigned numbers when converting from base 10 to binary.
- What about negative numbers and how do we add two signed numbers in binary?
- 3 ways of representing signed numbers:
- Signed magnitude
- I's complement
- The carry out of one stage ripples to the carry in of the
- 2's complement

SIGNED MAGNITUDE

- The Most Significant Bit (MSB) is the sign bit: $0 \rightarrow$ positive, I \rightarrow negative
- The rest of the bits define the magnitude
- Need to know how many bits are available to represent a number!
- Example: $(2)_{10}=(0010)_{2}=(0010)_{S \& M}$
$(-2)_{10}=\quad(1010)_{\text {seM }}$
- Makes adding and subtracting a pain
- Can't just add them regularly
- Also, two representations for zero (+0 and -0)

To negate a number, complement (invert, flip) each bit

- Example: $(4)_{10}=(0 \mid 00)_{2}=(0100)_{1 \text { 's comp }}$

$$
(-4)_{10} \quad=(10 \mid I)_{I \text { 's comp }}
$$

- Like sign and magnitude, the high bit indicates the sign of the number
- What about adding and subtracting?

I'S COMPLEMENT ADD/SUBTRACT

SIGNED MAGNITUDE ADDITION

```
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{array}{r}
(1) 10 \\
+\quad(5)_{10}
\end{array}
\] & \[
\xrightarrow{\rightarrow}
\] & \[
\begin{array}{r}
0001 \\
+0101
\end{array}
\] & \\
\hline (6) 10 & & 0110 & (both positive, so a positive result) \\
\hline \((-2) 10\)
\(+\quad(-4) 10\) & \(\xrightarrow{\rightarrow}\) & \[
\begin{array}{r}
1010 \\
+1100
\end{array}
\] & \\
\hline (-6) 10 & & 1110 & (both negative, so keep the negative sign) \\
\hline \[
\begin{array}{r}
(4) 10 \\
+\quad(-3)_{10}
\end{array}
\] & \(\xrightarrow{\rightarrow}\) & \[
\begin{array}{r}
0100 \\
+1011
\end{array}
\] & (larger number - smaller number) (keep the sign of the larger number) \\
\hline ( 1\()_{10}\) & & 0001 & (signs are different \(\rightarrow\) subtract smaller from larger number, keep sign of larger number) \\
\hline
\end{tabular}
- Need a comparator to supplement adder/subtractor
SIGNED MAGNITUDE ADDITION
    [\begin{array}{llr}{(1)}&{10}&{->}\end{array}\begin{array}{l}{0001}\\{+(5)10}\end{array})
    -> +}101
        +1100
    -> 0100 (larger number - smaller number)
    +101 (keep the sign of the larger number)
                                    (signs are different }->\mathrm{ subtract smaller from
Need a comparator to supplement adder/subtractor
```

```
#}\begin{array}{l}{(-2)}\\{\hline}
```

\#}\begin{array}{l}{(-2)}
{\hline}
(-6) 10 +-l1000 -- not right, (-6) (10 = (IOOI) I's comp
(-6) 10 +-l1000 -- not right, (-6) (10 = (IOOI) I's comp
100। -- now it works
100। -- now it works
(4)10}\mp@code{>
--------------- -- not right, add Cout back to LSB
0001 -- now it works

```
- Better than sign and magnitude (can subtract by adding the negative)
- But requires 2 addition operations (need to conditionally add \(\mathrm{C}_{\text {out }}\) )


\section*{2'S COMPLEMENT REPRESENTATION}
- MSB has weight \(-2^{n-1}\)
- Range of an \(n\)-bit number is \(-2^{n-1}\) through \(2^{n-1}-1\)
- Smallest negative number ( \(\left(2^{n-1}\right)\) has no positive counterpart
\begin{tabular}{c|c|c|c}
\hline\(-2^{2}\) & \(-2^{1}\) & \(-2^{0}\) & \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 2 \\
0 & 1 & 1 & 3 \\
1 & 0 & 0 & -4 \\
1 & 0 & 1 & -3 \\
1 & 1 & 0 & -2 \\
1 & 1 & 1 & -1 \\
\hline
\end{tabular}
- To negate in 2's complement, complement (flip) each bit and then add I
- Example: Represent ( -5\()_{10}\) in 2 's complement using 4 bits
\((5)_{10}=(0101)_{2^{\prime} \text { s comp }} 1010\)
-------
\[
1011 \rightarrow(-5)_{10}=(101 \mathrm{I})_{2 \text { ss comp }}
\]
- Like sign and magnitude, the MSB indicates the sign of the number
- Sign extension: Pad the high bits with the value of the MSB Example: \((-6)_{10}=(1010)_{2}=(111010)_{2}\)
- Range: for \(n\) bits: \(\left[-2^{-1},\left(2^{n-1}-1\right)\right] \rightarrow\) I more neg. than pos. number
- 2's complement has one representation for 0 and arithmetic is easier
- It's the most commonly used negative number representation

\section*{SIGNED BINARY NUMBERS}

Table 1.3
Signed Bin
\begin{tabular}{cccc}
\hline Decimal & \begin{tabular}{c} 
Signed-2's \\
complement
\end{tabular} & \begin{tabular}{c} 
Signed.-1's \\
Complement
\end{tabular} & \begin{tabular}{c} 
Signed \\
Magnitude
\end{tabular} \\
\hline+7 & 0111 & 0111 & 0111 \\
+6 & 0110 & 0110 & 0110 \\
+5 & 0101 & 0101 & 0101 \\
+4 & 0100 & 0100 & 0100 \\
+3 & 0011 & 0011 & 0011 \\
+2 & 0010 & 0010 & 0010 \\
+1 & 0001 & 0001 & 0001 \\
+0 & 0000 & 0000 & 0000 \\
-0 & - & 1111 & 1000 \\
-1 & 1111 & 1110 & 1001 \\
-2 & 1110 & 1101 & 1010 \\
-3 & 1101 & 100 & 1011 \\
-4 & 1100 & 1011 & 1100 \\
-5 & 1011 & 1010 & 1101 \\
-6 & 1010 & 1001 & 1110 \\
-7 & 1001 & 1000 & 1111 \\
-8 & 1000 & - & - \\
\hline
\end{tabular}

\section*{2'S COMPLEMENT SUBTRACTION}
- Negate second operand and add:

01101000
-0001000I (17)

01101000
- I1101111 (-17)

01010111 (87)

- Represent decimal numbers 0-8 in binary such that only bit changes value as you count up/down
- Why would such an encoding be advantageous?
\begin{tabular}{|c|c|}
\hline Decimal & Gray code \\
\hline 0 & 0000 \\
\hline 1 & 0001 \\
\hline 2 & 0011 \\
\hline 3 & 0010 \\
\hline 4 & 0110 \\
\hline 5 & 0111 \\
\hline 6 & 0101 \\
\hline 7 & 0100 \\
\hline 8 & 1100 \\
\hline 9 & 1101 \\
\hline
\end{tabular}
- Ripple Carry Adder (RCA) built out of 64 Full Adders
- Subtraction - complement all subtrahend bits (xor gates) and set low order carry-in
- RCA
- Simple logic, so low (area) cost
- Slow: \((O(N)\) for N bits) and lots of glitching


\section*{INVERTER PROPAGATION DELAY}
- Propagation delay is proportional to the time-constant of the network formed by the pull-down resistor and the load capacitance.


MODELING PROPAGATION DELAY
- Model circuit as first-order RC network

\[
\begin{gathered}
\mathrm{V}_{\text {out }}(\mathrm{t})=\left(1-\mathrm{e}^{-t \tau}\right) \mathrm{V}_{\text {in }} \\
\text { where } \tau=\mathrm{RC}
\end{gathered}
\]

Time to reach \(50 \%\) point is \(\mathrm{t}=\ln (2) \tau=0.69 \tau\)

Time to reach \(90 \%\) point is \(\mathrm{t}=\ln (9) \tau=2.2 \tau\)
\[
t_{p}=\left(t_{p H L}+t_{p L H}\right) / 2=0.69 C_{L}\left(R_{n}+R_{p}\right) / 2
\]

- So far we have sized the PMOS and NMOS so that the \(R_{\text {eq }}\) values match (i.e., \(\beta=\left(W / L_{p}\right) /\left(W / L_{n}\right)=W_{p} / W_{n}=2\) to 2.8)
- Symmetric VTC
- Equal high-to-low and low-to-high propagation delays
- If speed is the only concern, reduce the width of the PMOS device!
- Widening the PMOS degrades the \(\mathrm{t}_{\mathrm{PHL}}\) due to larger intrinsic capacitance
- What does this imply if we want to minimize delay for an inverter?
- Limit interconnect capacitance
- Limit fanout

- Trade off energy for performance
- Increase \(V_{D D}\) above a certain level yields minimal improvements
- Reliability concerns enforce an upper bound on \(V_{D D}\)

\section*{NMOS/PMOS RATIO}
- We define propagation delay as:
\(t_{p}=\frac{t_{p H L}+t_{p L H}}{2}=0.69 C_{L}\left(\frac{R_{e q n}+R_{\text {eqp }} / \beta}{2}\right)\)
- And define
\(C_{L}=\left(C_{d p 1}+C_{d n 1}\right)+\left(C_{g p 2}+C_{g n 2}\right)+C_{W}\) \(C_{L} \approx(1+\beta)\left(C_{d n 1}+C_{g n 2}\right)+C_{W}\)
- So we have
\(t_{p}=0.345\left((1+\beta)\left(C_{d n 1}+C_{g n 2}\right)+C_{w}\right)\left(R_{\text {eqn }}+R_{\text {eqp }} / \beta\right)\)
\(t_{p}=0.345\left((1+\beta)\left(C_{d n 1}+C_{g n 2}\right)+C_{w}\right) R_{\text {eqn }}\left(1+\frac{r}{\beta}\right), \quad\) where \(r=\frac{R_{\text {eqp }}}{R_{\text {eqn }}}\)
- Now, optimize \(t_{p}\) with respect to \(\beta \ldots\)

\section*{PMOS/NMOS RATIO EFFECTS}
\(\beta=\left(W / L_{\mathrm{p}}\right) /\left(\mathrm{W} / \mathrm{L}_{\mathrm{n}}\right)\)

\(\beta=\left(W / L_{p}\right) /\left(W / L_{n}\right)\)

\section*{NMOS/PMOS RATIO}
- Given the equation for \(t_{p}\) :
\[
t_{p}=0.345\left((1+\beta)\left(C_{d n 1}+C_{g n 2}\right)+C_{w}\right) R_{e q n}\left(1+\frac{r}{\beta}\right)
\]
- Minimize \(t_{p}\) as a function of \(\beta \ldots\)
- Compute the optimal value of \(\beta\) by setting \(\partial t_{p} / \partial \beta=0\)
\[
\beta_{o p t}=\sqrt{r\left(1+\frac{C_{W}}{C_{d n 1}+C_{g n 2}}\right)}
\]

Where \(r=R_{\text {eqp }} / \mathbb{R}_{\text {eqn }}=\) resistance ratio for identically sized PMOS, NMOS
\[
\beta_{o p t}=\sqrt{r} \text { when } C_{W} \text { is negligible }
\]

\section*{DEVICE SIZING FOR PERFORMANCE}
- Divide capacitive load, \(\mathrm{C}_{\mathrm{L}}\), into
- \(\mathrm{C}_{\text {int }}\) : intrinsic \(\rightarrow\) diffusion
- \(C_{\text {ext }}\) : extrinsic \(\rightarrow\) fanout (gate-channel cap and wiring)
\[
t_{p}=0.69 R_{e q} C_{i n t}\left(1+C_{e x t} / C_{i n t}\right)=t_{p 0}\left(1+C_{e x t} / C_{i n t}\right)
\]
- \(t_{p 0}=0.69 R_{\text {eq }} C_{\text {int }}\) is the intrinsic (unloaded) delay of the gate
- Widening both PMOS and NMOS by a factor \(S\) reduces \(R_{\text {eq }}\) by an identical factor \(\left(R_{\text {eq }}=R_{\text {ref }} / S\right)\), but raises the intrinsic capacitance by the same factor ( \(\mathrm{C}_{\text {int }}=\mathrm{SC}_{\text {iref }}\) )
\(t_{p}=0.69 R_{\text {ref }} C_{\text {iref }}\left(I+C_{\text {ext }} /\left(S C_{\text {iref }}\right)\right)=t_{p 0}\left(I+C_{\text {ext }} /\left(S C_{\text {iref }}\right)\right)\)

\section*{DEVICE SIZING FOR PERFORMANCE}
\[
\mathrm{t}_{\mathrm{p}}=0.69 \mathrm{R}_{\text {ref }} \mathrm{C}_{\text {iref }}\left(I+\mathrm{C}_{\text {ext }} /\left(\mathrm{SC}_{\text {iref }}\right)\right)=\mathrm{t}_{\mathrm{p} 0}\left(I+\mathrm{C}_{\text {ext }} /\left(\mathrm{SC}_{\text {iref }}\right)\right)
\]

What can we conclude from this?
- \(t_{p 0}\) is independent of the sizing of the gate; with no load the drive of the gate is totally offset by the increased capacitance
- Any \(S\) sufficiently larger than \(\left(C_{\text {ext }} / C_{\text {ind }}\right)\) yields the best performance gains with least area impact
```

