

DIGITAL ELECTRONICS SYSTEM DESIGN

FALL 2019

PROF. IRIS BAHAR

NOVEMBER 11, 2019

LECTURE 18:ADDING SIGNED NUMBERS & MINIMIZING DELAY

SEMINAR SPEAKER THIS TUESDAY

Hannah Chung Co-founder & Head of Design of Sproutel Tuesday, November 12 B&H 190, 12-1pm

From Mechanical Engineering to Designer ---The Sproutel Story

Hannah will share her story of finding her voice as a designer and engineer as she pursues her passion for designing for good in healthcare

UPDATES TO LAB HOURS THIS WEEK

 Monica has to cancel her lab hours Tuesday I-4pm. She will schedule makeup hours later this week. Stay tuned.

SIGNED MAGNITUDE

- The Most Significant Bit (MSB) is the sign bit: 0 → positive, 1 → negative
- The rest of the bits define the magnitude
- Need to know how many bits are available to represent a number!
- Example: $(2)_{10} = (0010)_2 = (0010)_{S&M}$ $(-2)_{10} = (1010)_{S&M}$
- Makes adding and subtracting a pain
- Can't just add them regularly
- Also, two representations for zero (+0 and -0)

2'S COMPLEMENT REPRESENTATION MSB has weight -2ⁿ⁻¹ Range of an n-bit number is -2ⁿ⁻¹ through 2ⁿ⁻¹-1 Smallest negative number (-2ⁿ⁻¹) has no positive counterpart -2² -21 -20 0 0 0 0 0 0 1 Т 0 2 3 Т Т 0 -4 0 -3 0 1 -2 0 Т 1 1 1 -1

2'S COMPLEMENT • To negate in 2's complement, complement (flip) each bit and then add 1 • Example: Represent (-5)₁₀ in 2's complement using 4 bits (5)₁₀ = (0101)_{2's comp} 1010 + 1 ----011 ÷ (-5)₁₀ = (1011)_{2's comp} • Like sign and magnitude, the MSB indicates the sign of the number • Sign extension: Pad the high bits with the value of the MSB Example: (-6)₁₀ = (1010)₂ = (111010)₂ • Range: for n bits: [-2ⁿ⁻¹, (2ⁿ⁻¹-1)] → 1 more neg, than pos. number

	SINARY	' NUME	ERS	
Table 1.3 Signed Binary Numbers				
Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude	
+7	0111	0111	0111	
+6	0110	0110	0110	
+5	0101	0101	0101	
+4	0100	0100	0100	
+3	0011	0011	0011	
+2	0010	0010	0010	
+1	0001	0001	0001	
+0	0000	0000	0000	
-0	-	1111	1000	
$^{-1}$	1111	1110	1001	
$^{-2}$	1110	1101	1010	
-3	1101	1100	1011	
-4	1100	1011	1100	
-5	1011	1010	1101	
-6	1010	1001	1110	
-7	1001	1000	1111	
-8	1000	_	_	

GRAY CODES				
	Decimal	Gray code		
	0	0000		
Represent decimal numbers 0-8	I.	0001		
in binary such that only bit	2	0011		
changes value as you count	3	0010		
up/down	4	0110		
- \\//huuuauld auch an anaadina	5	0111		
• vvny would such an encoding be advente secura?	6	0101		
De auvantageous:	7	0100		
	8	1100		
	9	1101		

2'S COMPLEMENT SUBTRACTION Negate second operand and add:				
- 00010001	(17)			
01101000	(104)			
- 0	(-17)			
01010111	(87)			

MODELING PROPAGATION DELAY

Model circuit as first-order RC network

HOW CAN WE IMPROVE PERFORMANCE?

- Reduce R_n, R_p
 - Increase W/L ratio of the transistor
 - most powerful and effective performance optimization tool for designer
 - But what happens to the intrinsic capacitance with larger W/L?
- Reduce C₁
 - Keep drain diffusions small
 - Limit interconnect capacitance
 - Limit fanout
- Increase V_{DD}
 - Trade off energy for performance
 - Increase V_{DD} above a certain level yields minimal improvements
 - Reliability concerns enforce an upper bound on V_{DD}

NMOS/PMOS RATIO

- So far we have sized the PMOS and NMOS so that the R_{eq} values match (i.e., $\beta = (W/L_p)/(W/L_n) = W_p/W_p = 2$ to 2.8)
 - Symmetric VTC
 - Equal high-to-low and low-to-high propagation delays
- If speed is the only concern, reduce the width of the PMOS device!
- = Widening the PMOS degrades the t_{pHL} due to larger intrinsic capacitance
- What does this imply if we want to minimize delay for an inverter?

- Given the equation for t_p : $t_p = 0.345 \left((1+\beta)(C_{dn1} + C_{gn2}) + C_w \right) R_{eqn} \left(1 + \frac{r}{\beta} \right)$
- Minimize t_p as a function of β ...
- Compute the optimal value of β by setting $\partial t_p / \partial \beta = 0$

$$\beta_{opt} = \sqrt{r \left(1 + \frac{C_W}{C_{dn1} + C_{gn2}}\right)}$$

Where $r=R_{eqp}/R_{eqn}$ =resistance ratio for identically sized PMOS, NMOS $\beta_{ont} = \sqrt{r}$ when C_W is negligible

$$t_p = 0.69 R_{ref} C_{iref} (I + C_{ext}/(SC_{iref})) = t_{p0}(I + C_{ext}/(SC_{iref}))$$

What can we conclude from this?

- t_{p0} is independent of the sizing of the gate; with no load the drive of the gate is totally offset by the increased capacitance
- Any S sufficiently larger than (C_{ext}/C_{int}) yields the best performance gains with least area impact

