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DIGITAL ELECTRONICS  
SYSTEM DESIGN

FALL 2019

PROF. IRIS BAHAR

NOVEMBER 11, 2019

LECTURE 18: ADDING SIGNED NUMBERS & MINIMIZING 
DELAY

SEMINAR SPEAKER THIS TUESDAY

Hannah Chung
Co-founder & Head of Design of Sproutel
Tuesday, November 12
B&H 190, 12-1pm

From Mechanical Engineering to Designer ---
The Sproutel Story

Hannah will share her story of finding her voice as a designer and 
engineer as she pursues her passion for designing for good in 
healthcare

UPDATES TO LAB HOURS THIS WEEK

 Monica has to cancel her lab hours Tuesday 1-4pm.  She will 
schedule makeup hours later this week.  Stay tuned.

HALF ADDER

a    b         carry    sum

0   0            0          0
0   1            0          1
1   0            0          1
1   1            1          0

Truth Table
a

b

Sum

Carry
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FULL ADDER

Id      a    b   cin carry    sum

0      0   0    0             0          0
1      0   0    1             0          1
2      0   1    0             0          1
3      0   1    1             1          0
4      1   0    0             0          1
5      1   0    1             1          0
6      1   1    0             1          0
7      1   1    1             1          1

Truth Table

a

b

Sum

Carry

Cin

 How do you express sum and carry as Boolean functions?

BUILDING A BINARY ADDER

 Inputs & outputs for the ith bit position

 Inputs:  Ai, Bi, and Ci (carry-in)

 Outputs: Si (sum) and  Ci+1 (carry out)

 Carry out of a bit position is the carry in for the next bit position

1    1     1
1    0    1

+      1    1    1
1    1    0   0

Carryout         Sums

Carry bits
5    (A)
7    (B)

12    (S)

THE RIPPLE CARRY ADDER

 The carry out of one stage ripples to the carry in of the 
next

A0 B0

S0

C0=CinFA

A1 B1

S1

FA

A2 B2

S2

FA

A3 B3

S3

FACout=C4

WHAT ABOUT NEGATIVE NUMBERS?

 So far we have just considered unsigned numbers when 
converting from base 10 to binary.

 What about negative numbers and how do we add two 
signed numbers in binary?

 3 ways of representing signed numbers:
 Signed magnitude

 1’s complement

 2’s complement
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SIGNED MAGNITUDE

 The Most Significant Bit (MSB) is the sign bit: 0  positive, 1 
negative

 The rest of the bits define the magnitude

 Need to know how many bits are available to represent a number!

 Example: (2)10 = (0010)2 = (0 010)S&M
(-2)10 =  (1 010)S&M

 Makes adding and subtracting a pain 
 Can’t just add them regularly

 Also, two representations for zero (+0 and -0)

SIGNED MAGNITUDE ADDITION

(1) 10          0001
+  (5) 10          + 0101
---------- ---------

(6) 10                       0110   (both positive, so a positive result)

(-2) 10          1010
+  (-4) 10          + 1100
---------- ---------

(-6) 10                       1110  (both negative, so keep the negative sign)

( 4) 10          0100   (larger number – smaller number)
+  (-3) 10          + 1011   (keep the sign of the larger number)
---------- ---------

( 1) 10                     0001  (signs are different  subtract smaller from
larger number, keep sign of larger number) 

 Need a comparator to supplement adder/subtractor

1’S COMPLEMENT

 To negate a number, complement (invert, flip) each bit

 Example:  ( 4)10 = (0100)2 = (0100)1’s comp
(-4)10 = (1011)1’s comp

 Like sign and magnitude, the high bit indicates the sign of the 
number

 What about adding and subtracting?

1’S COMPLEMENT ADD/SUBTRACT

(-2) 10          1101
+  (-4) 10          + 1011
---------- ---------

(-6) 10                     11000  -- not right, (-6)10 = (1001)1’s comp
+      1    add Cout back to LSB
---------
1001   -- now it works

(4) 10          0100
+  (-3) 10          + 1100 

---------- ---------
(1) 10 10000  -- not right, add Cout back to LSB

+       1
---------
0001   -- now it works

 Better than sign and magnitude (can subtract by adding the negative)

 But requires 2 addition operations (need to conditionally add Cout)
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ANOTHER ENCODING FOR BINARY 2’S COMPLEMENT REPRESENTATION
 MSB has weight -2n-1

 Range of an n-bit number is -2n-1 through 2n-1-1
 Smallest negative number (-2n-1) has no positive counterpart

-22 -21 -20

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 -4

1 0 1 -3

1 1 0 -2

1 1 1 -1

2’S COMPLEMENT

 To negate in 2’s complement, complement (flip) each bit and then 
add 1

 Example:  Represent (-5)10 in 2’s complement using 4 bits
(5) 10 = (0101)2’s comp 1010

+  1
--------
1011  (-5)10 = (1011)2’s comp

 Like sign and magnitude, the MSB indicates the sign of the number

 Sign extension:  Pad the high bits with the value of the MSB
Example:  (-6)10 = (1010)2 = (111010)2 

 Range:  for n bits: [-2n-1, (2n-1–1)]   1 more neg. than pos. number

2’S COMPLEMENT ADDITION

 Add numbers as you would for unsigned addition
 Examples with 4 bits:

4     0100
- 4     +  1100   (subtract by negating 2nd number & adding)

------ ------
0     10000  (ignore carry out since signs were different)

5    0101   
+    6    +  0110

------ -------
11           1011  -- overflow (two positives, got a negative)

 2’s complement has one representation for 0 and arithmetic is easier
 It’s the most commonly used negative number representation
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SIGNED BINARY NUMBERS GRAY CODES

 Represent decimal numbers 0-8 
in binary such that only bit 
changes value as you count 
up/down

 Why would such an encoding 
be advantageous?

Decimal Gray code

0 0000

1 0001

2 0011

3 0010

4 0110

5 0111

6 0101

7 0100

8 1100

9 1101

2’S COMPLEMENT SUBTRACTION
 Negate second operand and add:

01101000 (104)

– 00010001 (17)

01101000 (104)

– 11101111 (-17)

01010111 (87)

 Ripple Carry Adder (RCA) 
built out of 64 Full Adders

 Subtraction – complement all 
subtrahend bits (xor gates) 
and set low order carry-in

 RCA
 Simple logic, so low (area) 

cost

 Slow:  (O(N) for N bits) and 
lots of glitching

A 64-BIT ADDER/SUBTRACTOR

1-bit 
FA S0

C0=Cin

C1

1-bit 
FA S1

C2

1-bit 
FA S2

C3

C64=Cout

1-bit 
FA S63

C63

. . 
.

A0

B0

A1

B1

A2

B2

A63

B63

add/subt
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 Propagation delay is proportional to the time-constant of 
the network formed by the pull-down resistor and the 
load capacitance.

INVERTER PROPAGATION DELAY

tpHL = f(Rn , CL)

VDD

Rn

Vout = 0

Vin = V DD

CL

Rp

wireextL

DSAT

DD
eqn

CCCC
I
VRR





int

4
3

Want to have equal rise/fall delays
Make Rn=Rp

 Model circuit as first-order RC network

MODELING PROPAGATION DELAY

R

C

vin

vout

vout (t)  =  (1 – e–t/)Vin

where  = RC

Time to reach 50% point is
t = ln(2)  = 0.69 

Time to reach 90% point is
t = ln(9)  = 2.2 

2/)(69.02/)( pnLpLHpHLp RRCttt 

 Reduce Rn, Rp

 Increase W/L ratio of the transistor 
 most powerful and effective performance optimization tool for designer

 But what happens to the intrinsic capacitance with larger W/L?

 Reduce CL

 Keep drain diffusions small

 Limit interconnect capacitance

 Limit fanout

 Increase VDD

 Trade off energy for performance

 Increase VDD above a certain level yields minimal improvements

 Reliability concerns enforce an upper bound on VDD

HOW CAN WE IMPROVE 
PERFORMANCE?

 So far we have sized the PMOS and NMOS so that the Req values 
match (i.e.,  = (W/Lp)/(W/Ln) = Wp/Wn = 2 to 2.8)

 Symmetric VTC

 Equal high-to-low and low-to-high propagation delays

 If speed is the only concern, reduce the width of the PMOS device!

 Widening the PMOS degrades the tpHL due to larger intrinsic capacitance

 What does this imply if we want to minimize delay for an inverter?

NMOS/PMOS RATIO

In 1 2
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 We define propagation delay as:

 And define

 So we have

 Now, optimize tp with respect to β…

NMOS/PMOS RATIO








 





2
/

69.0
2

eqpeqn
L

pLHpHL
p

RR
C

tt
t

WgndnL

WgngpdndpL

CCCβC

CCCCCC





))(1(

)()(

21

2211

 
eqn

eqp
eqnwgndnp

eqpeqnwgndnp

R
R

rrRCCCt

RRCCCt













       where,1))(1(345.0

)/)())(1((345.0

21

21






 Given the equation for tp :

 Minimize tp as a function of β…

 Compute the optimal value of β by setting ∂tp/∂β = 0

Where r=Reqp/Reqn=resistance ratio for identically sized PMOS, NMOS

NMOS/PMOS RATIO

negligible is   when Wopt Crβ 















21

1
gndn

W
opt CC

Crβ

  










 rRCCCt eqnwgndnp 1))(1(345.0 21

3

3.5

4

4.5

5

1 2 3 4 5

PMOS/NMOS RATIO EFFECTS

 = (W/Lp)/(W/Ln)

x 10-11  = (W/Lp)/(W/Ln)

tpLH

tp

tpHL

 of 2.4 gives symmetrical 
response

 of 1.6 to 1.9 gives optimal 
performance

DEVICE SIZING FOR PERFORMANCE

 Divide capacitive load, CL, into

 Cint :  intrinsic  diffusion

 Cext :  extrinsic  fanout (gate-channel cap and wiring)

tp = 0.69 Req Cint (1 + Cext/Cint) = tp0 (1 + Cext/Cint)

 tp0 = 0.69 Req Cint is the intrinsic (unloaded) delay of the gate

 Widening both PMOS and NMOS by a factor S reduces Req by an 
identical factor (Req = Rref/S), but raises the intrinsic 
capacitance by the same factor (Cint = SCiref)

tp = 0.69 Rref Ciref (1 + Cext/(SCiref)) = tp0(1 + Cext/(SCiref))



11/12/2019

8

DEVICE SIZING FOR PERFORMANCE

tp = 0.69 Rref Ciref (1 + Cext/(SCiref)) = tp0(1 + Cext/(SCiref))

What can we conclude from this?

 tp0 is independent of the sizing of the gate; with no load the drive of the 
gate is totally offset by the increased capacitance

 Any S sufficiently larger than (Cext/Cint) yields the best performance 
gains with least area impact

2
2.2
2.4
2.6
2.8
3

3.2
3.4
3.6
3.8

1 3 5 7 9 11 13 15

SIZING IMPACTS ON DELAY

S 

x 10-11 

The majority of the 
improvement is already 
obtained for S = 5.  Sizing 
factors larger than 10 barely 
yield any extra gain (and 
cost significantly more area).

for a fixed load

self-loading effect 
(intrinsic capacitance 
dominates)For Cext/Cint=1.05


