

NMOS/PMOS RATIO

- = So far we have sized the PMOS and NMOS so that the R_{eq} values match (i.e., $\beta = (W/L_p)/(W/L_n) = W_p/W_n = 2 \text{ to } 2.8)$
- Symmetric VTC
- Equal high-to-low and low-to-high propagation delays
- If speed is the only concern, reduce the width of the PMOS device!
 - Widening the PMOS degrades the t_{pHL} due to larger intrinsic capacitance
- What does this imply if we want to minimize delay for an inverter?

• We define propagation delay as: • $t_p = \frac{t_{pHL} + t_{pLH}}{2} = 0.69C_L \left(\frac{R_{eqn} + R_{eqp} / \beta}{2}\right)$ • And define $C_L = (C_{dp1} + C_{dn1}) + (C_{gp2} + C_{gn2}) + C_W$ $C_L \approx (1 + \beta)(C_{dn1} + C_{gn2}) + C_W$ • So we have

$$t_{p} = 0.345((1+\beta)(C_{dn1} + C_{gn2}) + C_{w})(R_{eqn} + R_{eqp} / \beta)$$

$$t_{p} = 0.345((1+\beta)(C_{dn1} + C_{gn2}) + C_{w})R_{eqn}\left(1 + \frac{r}{\beta}\right), \text{ where } r = \frac{R_{eqp}}{R_{eqn}}$$

• Now, optimize t_{p} with respect to $\beta...$

NMOS/PMOS RATIO
• Given the equation for
$$t_p$$
:
 $t_p = 0.345((1+\beta)(C_{dn1}+C_{gn2})+C_w)R_{eqn}\left(1+\frac{r}{\beta}\right)$
• Minimize t_p as a function of β ...
• Compute the optimal value of β by setting $\partial t_p/\partial \beta = 0$
 $\beta_{opt} = \sqrt{r\left(1+\frac{C_W}{C_{dn1}+C_{gn2}}\right)}$
Where $r=R_{eqp}/R_{eqn}=resistance$ ratio for identically sized PMOS, NMOS
 $\beta_{opt} = \sqrt{r}$ when C_W is negligible

DEVICE SIZING FOR PERFORMANCE

- Divide capacitive load, C₁, into
 - C_{int} : intrinsic \rightarrow diffusion
 - C_{ext}: extrinsic → fanout (gate-channel cap and wiring)

$$t_p = 0.69 R_{eq} C_{int} (I + C_{ext}/C_{int}) = t_{p0} (I + C_{ext}/C_{int})$$

- $t_{p0} = 0.69 R_{eq} C_{int}$ is the intrinsic (unloaded) delay of the gate
- Widening both PMOS and NMOS by a factor S reduces R_{eq} by an identical factor (R_{eq} = R_{ref}/S), but raises the intrinsic capacitance by the same factor (C_{int} = SC_{iref})

 $t_p = 0.69 R_{ref} C_{iref} (I + C_{ext}/(SC_{iref})) = t_{p0}(I + C_{ext}/(SC_{iref}))$

