School of Engineering

DIGITAL ELECTRONICS

 SYSTEM DESIGN
NMOS/PMOS RATIO

- So far we have sized the PMOS and NMOS so that the $R_{\text {eq }}$ values match (i.e., $\beta=\left(W / L_{p}\right) /\left(W / L_{n}\right)=W_{p} / W_{n}=2$ to 2.8$)$
- Symmetric VTC
- Equal high-to-low and low-to-high propagation delays
- If speed is the only concern, reduce the width of the PMOS device!
- Widening the PMOS degrades the $\mathrm{t}_{\mathrm{pHL}}$ due to larger intrinsic capacitance
- What does this imply if we want to minimize delay for an inverter?

NMOS/PMOS RATIO

- Given the equation for t_{p} :

$$
t_{p}=0.345\left((1+\beta)\left(C_{d n 1}+C_{g n 2}\right)+C_{w}\right) R_{e q n}\left(1+\frac{r}{\beta}\right)
$$

- Minimize t_{p} as a function of $\beta \ldots$
- Compute the optimal value of β by setting $\partial t_{p} / \partial \beta=0$

$$
\beta_{o p t}=\sqrt{r\left(1+\frac{C_{W}}{C_{d n 1}+C_{g n 2}}\right)}
$$

Where $r=R_{\text {eqp }} / R_{\text {eqn }}=$ resistance ratio for identically sized PMOS, NMOS

$$
\beta_{\text {opt }}=\sqrt{r} \text { when } C_{W} \text { is negligible }
$$

PMOS/NMOS RATIO EFFECTS

$\beta=\left(W / L_{\mathrm{p}}\right) /\left(W / L_{\mathrm{n}}\right)$
β of 2.4 gives symmetrical response
β of I. 6 to I. 9 gives optimal performance

DEVICE SIZING FOR PERFORMANCE

- Divide capacitive load, C_{L}, into
- $\mathrm{C}_{\text {int }}$: intrinsic \rightarrow diffusion
- $C_{\text {ext }}$: extrinsic \rightarrow fanout (gate-channel cap and wiring)

$$
t_{p}=0.69 R_{e q} C_{i n t}\left(I+C_{e x t} / C_{i n t}\right)=t_{p 0}\left(I+C_{e x t} / C_{i n t}\right)
$$

- $t_{p 0}=0.69 R_{e q} C_{\text {int }}$ is the intrinsic (unloaded) delay of the gate
- Widening both PMOS and NMOS by a factor S reduces $R_{\text {eq }}$ by an identical factor $\left(R_{e q}=R_{\text {ref }} / S\right)$, but raises the intrinsic capacitance by the same factor $\left(\mathrm{C}_{\mathrm{int}}=\mathrm{SC}_{\mathrm{iref}}\right)$

$$
t_{p}=0.69 R_{\text {ref }} C_{\text {iref }}\left(I+C_{\text {ext }} /\left(S C_{\text {ireff }}\right)\right)=t_{p 0}\left(I+C_{\text {ext }} /\left(S C_{\text {iref }}\right)\right)
$$

IMPACT OF FANOUT ON DELAY
 $$
t_{p}=t_{p 0}\left(I+C_{e x t} / C_{i n t}\right)
$$

- Extrinsic capacitance, $C_{\text {ext }}$, is a function of the gates being driven by the gate under question (i.e. the fanout)

$$
\text { larger fanout } \square \text { larger external load. }
$$

- Re-express the intrinsic capacitance $\left(\mathrm{C}_{\mathrm{int}}\right)$ in terms of input gate capacitance:

$$
\begin{aligned}
& C_{\text {int }}=\gamma C_{g}, \quad \text { where } \gamma \approx I \\
& \quad t_{p}=t_{p 0}\left(I+C_{\text {ext }} / \gamma C_{g}\right)=t_{p 0}(I+f / \gamma) \\
& \quad f=C_{\text {ext }} / C_{g} \text { is the effective fanout }
\end{aligned}
$$

SIZING THE INVERTERS IN THE CHAIN

- Goal is to minimize the delay through an inverter chain

- The delay of the $\mathrm{j}^{\text {th }}$ inverter stage is
$\mathrm{t}_{\mathrm{p}, \mathrm{j}}=\mathrm{t}_{\mathrm{p} 0}\left(1+\mathrm{C}_{\mathrm{g}, \mathrm{j}+1} 1\left(\gamma \mathrm{C}_{\mathrm{g}, \mathrm{j}}\right)\right)=\mathrm{t}_{\mathrm{p} 0}\left(I+\mathrm{f}_{\mathrm{j}} / \gamma\right)$
and $t_{p}=t_{p, 1}+t_{p, 2}+\ldots+t_{p, N}$
so $\quad \mathrm{t}_{\mathrm{p}}=\sum \mathrm{t}_{\mathrm{p}, \mathrm{j}}=\mathrm{t}_{\mathrm{p} 0} \sum\left(1+\mathrm{C}_{\mathrm{g}, \mathrm{j}+1} /\left(\gamma \mathrm{C}_{\mathrm{g}, \mathrm{j}}\right)\right)$
- If C_{L} and $C_{g, 1}$ are given, we have 2 different optimizations
- How should the inverters be sized to minimize delay?
- What is the optimal number of inverters to minimize the delay?

- After a bit of calculus, we find that for minimum delay:

$$
C_{g, j+1} / C_{g, j}=C_{g, j} / C_{g, j-1} \quad \text { for } j=2 \ldots \mathrm{~N}
$$

- What does this imply?
- All gates have the same effective fanout, f
- Each gate should be scaled up by the same factor w.r.t. its preceding gate
- What is the effective fanout for a gate given C_{L} and $C_{g, 1}$?
- With a bit of algebra and inductive reasoning we find that:

$$
f=\sqrt[N]{C_{L} / C_{g, 1}}=\sqrt[N]{F}
$$

- $\mathrm{F}=\mathrm{C}_{\mathrm{L}} / \mathrm{C}_{8,0}$ is the overall effective fanout
- What is the minimum delay through the chain?

$$
t_{p}=N t_{p 0}(1+\sqrt[N]{F} / \gamma)
$$

OPTIMAL NUMBER OF INVERTERS

- What is the optimal value for N given F ? (where $F=f^{N}$)
- if the number of stages is too large, the intrinsic delay of the stages dominates
- if the number of stages is too small, the effective fan-out of each stage dominates $t_{p}=N t_{p 0}(1+\sqrt[N]{F} / \gamma)$
$\partial t_{p} / \partial N=\gamma+\sqrt[N]{F}-\frac{\sqrt[N]{F} \ln F}{N}=0$ $\rightarrow f=e^{(1+\gamma / f)}$
- For $\gamma=0$ (ignoring self-loading) $N=\ln (F)$ and the effective-fan out (tapering factor) becomes $f=\mathrm{e}=2.718$
- For $\gamma=1$ (the typical case) the optimum effective fan-out can be solved numerically and turns out to be close to 3.6

- Too many stages has a substantial negative impact on delay
- Choosing f slightly larger than optimum has little effect on delay and reduces the number of stages (and area).
- Common practice to use $\mathrm{f}=4$ (for $\gamma=1$)
\square Fanout of 4 (FO4) rule of thumb delay metric is based on this result

Truth Table

Id	a	b	$\mathrm{c}_{\text {in }}$	carry	sum		
0	0	0	0	0	0		
1	0	0	1	0	1		
2	0	1	0	0	1		
3	0	1	1	1	0		
4	1	0	0	0	1		
5	1	0	1	1	0		
6	1	1	0	1	0		
7	1	1	1	1	1		carry as Boolean functions?
:---							

- Inputs \& outputs for the $\mathrm{i}^{\text {th }}$ bit position
- Inputs: $\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}$, and C_{i} (carry-in)
- Outputs: S_{i} (sum) and $\mathrm{C}_{\mathrm{i}+1}$ (carry out)
- Carry out of a bit position is the carry in for the next bit position

- The carry out of one stage ripples to the carry in of the next

2'S COMPLEMENT SUBTRACTION

- Negate second operand and add:

01101000
-00010001

01101000

$$
\underline{-11101111}
$$

01010111

FAST CARRY CHAIN DESIGN

- The key to fast addition is a low latency carry network
- What matters is whether in a given position a carry is
- generated $G_{i}=A_{i} \& B_{i}=A_{i} B_{i}$
- propagated $\quad P_{i}=A_{i} \oplus B_{i}$
- annihilated (killed) $K_{i}=!A_{i} \&!B_{i}$
- Giving a carry recurrence of

$$
C_{i+1}=G_{i}+P_{i} C_{i}
$$

$C_{1}=G_{0}+P_{0} C_{0}$

$C_{2}=G_{1}+P_{1} C_{1}=G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{0}$
$C_{3}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{0}$
$C_{4}=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} C_{0}$

32-BIT CARRY LOOKAHEAD ADDER WITH 4-BIT RIPPLE CARRY ADDERS

- Carry out logic gets more complicated beyond 4 bits
- CLAs are often implemented as 4-bit modules and instantiated in a hierarchical way to realize wider adders

CARRY OUT LOGIC FOR 4-BIT ADDER

- Ps and Gs are computed at time 0
- $C_{4}=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} C_{0}$
$=\underbrace{G_{3}+P_{3}\left(G_{2}+P_{2}\left(G_{1}+P_{1} G_{0}\right)\right.})+(\underbrace{\left(P_{3} P_{2} P_{1} P_{0}\right.}) C_{0}$

$\mathrm{G}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}} \& \mathrm{~B}$
$P_{i}=A_{i} \oplus B_{i}$
P_{i} can also be expressed as $\mathrm{P}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}$

