FALL 2019
PROF. IRIS BAHAR
NOVEMBER 18,20I9
LECTURE 20: FAST ADDITION,

DIGITAL ELECTRONICS SYSTEM DESIGN

GROUP 2 LAB EXTENSION

- I have decided to extend the deadline for group 2 labs to Wednesday, Nov. 20 at 6:30pm
- Please note that you should not expect similar extensions for groups 3 and 4. Please plan your time accordingly
- For lab 7, please note that now is a good time to make use of the logic analyzer for your debugging, if you haven't done so already

MIDTERM EXAM

- The exam has been graded. Here are some stats:
- Average: 68.5
- Min: 35
- Max: 92
- Median: 69
- Here is a rough grade distribution:
- A: ≥ 76
- A/B: $70 \leq B \leq 75$
- B: $60 \leq \mathrm{B} \leq 69$
- B/C: $55 \leq B \leq 59$
- C: $40 \leq \mathrm{B} \leq 54$
- F: < 40

Truth Table

- How do you express sum and carry as Boolean functions?

- The carry out of one stage ripples to the carry in of the next

FAST CARRY CHAIN DESIGN

- The key to fast addition is a low latency carry network
- What matters is whether in a given position a carry is
- generated $G_{i}=A_{i} \& B_{i}=A_{i} B_{i}$
- propagated $\quad P_{i}=A_{i} \oplus B_{i}$
- annihilated (killed) $K_{i}=!A_{i} \&!B_{i}$
- Giving a carry recurrence of


```
C
```

$C_{2}=G_{1}+P_{1} C_{1}=G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{0}$
$C_{3}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{0}$
$C_{4}=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} C_{0}$

32-BIT CARRY LOOKAHEAD ADDER WITH 4-BIT RIPPLE CARRY ADDERS

- Carry out logic gets more complicated beyond 4 bits
- CLAs are often implemented as 4-bit modules and instantiated in a hierarchical way to realize wider adders

CARRY OUT LOGIC FOR 4-BIT ADDER

- Ps and Gs are computed at time 0
- $C_{4}=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} C_{0}$
$=\underbrace{G_{3}+P_{3}\left(G_{2}+P_{2}\left(G_{1}+P_{1} G_{0}\right)\right.})+(\underbrace{\left(P_{3} P_{2} P_{1} P_{0}\right)} C_{0}$

from bits 3-0

$\mathrm{G}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}} \& B$
$P_{i}=A_{i} \oplus B_{i}$
P_{i} can also be expressed as
$P_{i}=A_{i}+B_{i}$

32-BIT CLA WITH 4-BIT RCAS

CARRY-SKIP (CARRY-BYPASS) ADDER

If $\left(P_{0} \& P_{1} \& P_{2} \& P_{3}=1\right)$ then $C_{0,4}=C_{i, 0}$ otherwise the block itself kills or generates the carry internally (and doesn't need $\mathrm{C}_{\mathrm{i}, 0}$ to compute $\mathrm{C}_{0,4}$)

- What is the longest delay to compute the full add?

MANCHESTER CARRY CHAIN

4-BIT SLICED MCC ADDER

CARRY-SKIP (CARRY-BYPASS) ADDER

If $\left(P_{0} \& P_{1} \& P_{2} \& P_{3}=1\right)$ then $C_{0,4}=C_{i, 0}$ otherwise the block itself kills or generates the carry internally (and doesn't need $\mathrm{C}_{\mathrm{i}, 0}$ to compute $\mathrm{C}_{\mathrm{o}, 4}$)

CARRY-SKIP CHAIN IMPLEMENTATION

carry-out block carry-out
Not strictly necessary

CARRY-SKIP CHAIN IMPLEMENTATION

Worst-case delay \rightarrow carry from bit 0 to bit 15
carry generated in bit 0 , ripples through bits 1,2 , and 3 , skips the middle two groups (B is the group size in bits), ripples in the last group from bit 12 to bit 15
$\mathrm{T}_{\text {add }}={t_{\text {setup }}}+B \dagger_{\text {carry }}+((\mathrm{N} / \mathrm{B})-1) \mathrm{t}_{\text {skip }}+\mathrm{B} \dagger_{\text {carry }}+\dagger_{\text {sum }}$

CARRY SELECT ADDER

- AND/OR Mux select "carry-I" or "carry-0" block depending on carry in of previous stage
- Here, C_{4} starts the Mux selection process.
- Compared to carry skip, avoids having to wait for the ripple carry of the last block.

$T_{\text {add }}=t_{\text {setup }}+B t_{\text {carry }}+N / B t_{\text {mux }}+t_{\text {sum }}$

