FALL 2019
PROF. IRIS BAHAR
NOVEMBER 20, 2019
LECTURE 2I: MULTIPLICATION,

DIGITAL ELECTRONICS SYSTEM DESIGN

ADJUSTED LAB HOURS

- Jarod moved his hours from this Monday to TODAY from 6:30-8:30pm.
- You have an extra 2 hours to complete your group 2 labs
- Pratistha is canceling her hours this Friday and instead holding additional hours 12-I pm on Tuesday Nov. 26, Dec. 3
- I've updated the calendar

INTEGER MULTIPLICATION REVISITED

- Right shift and add
- Partial product rows accumulated from top to bottom on an N-bit adder
- Time for N bits Tserial_mult $=O\left(N t_{\text {adder }}\right)=O\left(N^{2}\right)$ for a RCA
- Making it faster
- Use a faster adder
- Use carry-save-adders and avoid carry propagate at each cycle
- Use multiple adders (array multiplier) with carry save adder cells.
- Can be easily and efficiently pipelined

UNSIGNED MULTIPLICATION: VERSION I

Multiplicand
Multiplier

Partial products (can be formed in parallel)

Double Precision Result

UNSIGNED MULTIPLICATION, VERSION II

CARRY SAVE ADDITION

- A full adder in the $\mathrm{i}^{\text {th }}$ position sums 3 inputs and produces 2 outputs
- Carry output belongs to $(\mathrm{i}+\mathrm{I})^{\text {th }}$ bit, sum belongs to $\mathrm{i}^{\text {th }}$ bit
- N full adders in parallel are called carry save adder (CSA)
- Produce N sums and N carry outs

Carry bits

- A single carry-save adder is a collection of n independent adders
- Each addition results in a pair of bit vectors, C, S, stored separately in P
- The sum, carry bits of P are fed into the CSA in the following stage, B inputs of CSA are
- Requires a separate carry-propagate add at the end to combine the last carry, sum parts
- Still takes n cycles to compute, but each stage is faster.
- Avoid waiting for carry to ripple through at each stage (save for later)

