
11/20/2019

1

DIGITAL ELECTRONICS  
SYSTEM DESIGN

FALL 2019

PROF. IRIS BAHAR

NOVEMBER 20, 2019

LECTURE 21:  MULTIPLICATION,

ADJUSTED LAB HOURS

 Jarod moved his hours from this Monday to TODAY from 
6:30-8:30pm.  
 You have an extra 2 hours to complete your group 2 labs

 Pratistha is canceling her hours this Friday and instead 
holding additional hours 12-1pm on Tuesday Nov. 26, Dec. 3

 I’ve updated the calendar 

LABS A, B, & C

 Prof. Patterson has set up an FPGA board with a 
speaker on one of the computers on the south side 
of the lab.
 Use this setup for lab B
 Should work for lab C but still needs to be validated

 Other lab setups will be put out later this week or 
early next week.

INTEGER MULTIPLICATION REVISITED

 Right shift and add

 Partial product rows accumulated from top to bottom on an N-bit adder

 Time for N bits         Tserial_mult = O(N tadder) = O(N2) for a RCA

 Making it faster

 Use a faster adder

 Use carry-save-adders and avoid carry propagate at each cycle

 Use multiple adders (array multiplier) with carry save adder cells.

 Can be easily and efficiently pipelined



11/20/2019

2

THE BINARY MULTIPLICATION

x

+

Partial products
(can be formed in parallel)

Multiplicand

Multiplier

Double Precision Result

1   0   1   0   1   0

1   0   1   0   1   0

1   0   1   0   1   0

1   1   1   0   0   1   1   1   0

0   0   0   0   0   0

1   0   1   0   1   0

1   0   1   1

UNSIGNED MULTIPLICATION: 
VERSION I

64-bit ALU

Control test

Multiplier
Shift right

Product
Write

Multiplicand
Shift left

64 bits

64 bits

32 bits

Start
i=0

Multiplier0=1 1. Test 
Multiplier0

2.  Shift the Multiplicand register left 1 bit

1a.  Add multiplicand to product and 
place the result in Product register

is i < 31?
No:  i = i++

3.  Shift the Multiplier register right 1 bit

Multiplier0=0

Yes:  32 repetitions 
completed

Done

UNSIGNED MULTIPLICATION, 
VERSION II

Control
testWrite

32 bits

64 bits

Shift rightProduct

Multiplicand

32-bit ALU

What is the main advantage here?
Done

1.  Test 
Product0

1a.  Add multiplicand to the left half 
of the product and place the result in 
the left half of the Product register

2.  Shift the product register right 1 bit

Start
i=0

Is i<31? No:  i=i++

Yes.  32 repetitions

Product0 = 1 Product0 = 0

CARRY SAVE ADDITION
 A full adder in the ith position sums 3 inputs and produces 2 

outputs
 Carry output belongs to (i+1)th bit, sum belongs to ith bit

 N full adders in parallel are called carry save adder (CSA)
 Produce N sums and N carry outs

Z4Y4X4

S4C4

Z3Y3X3

S3C3

Z2Y2X2

S2C2

Z1Y1X1

S1C1

XN...1 YN...1 ZN...1

SN...1CN...1

n-bit CSA



11/20/2019

3

CARRY-SAVE MULTIPLIER

 A single carry-save adder is a collection of n independent adders
 Each addition results in a pair of bit vectors, C, S, stored separately in P
 The sum, carry bits of P are fed into the CSA in the following stage, B inputs of CSA are 

set to 0 if LSB of A=0.
 Requires a separate carry-propagate add at the end to combine the last carry, sum parts
 Still takes n cycles to compute, but each stage is faster.

 Avoid waiting for carry to ripple through at each stage (save for later)

UNSIGNED MULTIPLICATION, 
VERSION III

Control
testWrite

32 bits

64 bits

Shift rightSum & Carry

Multiplicand

32-bit CSA

32-bit CPA

CPA
Resolve final 

sum/carry bits

1.  Test 
Product0

1a.  Add multiplicand to the left half 
of the product and place the result in 
the left half of the Product register

2.  Shift the product register right 1 bit

Start
i=0

Is i<31? No:  i=i++

Yes.  32 repetitions

Product0 = 1 Product0 = 0

Done

THE ARRAY MULTIPLIER

Finding the critical path is not straightforward !

Y 0

Y 1

X3 X2 X1 X0

X3

HA

X2

FA

X1

FA

X0

HA

Y 2X3

FA

X2

FA

X1

FA

X0

HA

Z1

Z3Z6Z7 Z5 Z4

Y 3X3

FA

X2

FA

X1

FA

X0

HA

Z2

Z0

CARRY-SAVE MULTIPLIER

tmult = (N-1)tcarry + tand + tmerge

HA HA HA HA

FAFAFAHA

FAHA FA FA

FAHA FA HA Vector Merging Adder

Reduces the 
number of clock 
stages



11/20/2019

4

PIPELINED ARRAY MULTIPLIER
Y0

Y1

X3 X2 X1 X0

X3

HA

X2

FA

X1

FA

X0

HA

Y2X3

FA

X2

FA

X1

FA

X0

HA

Z1

Z3Z6Z7 Z5 Z4

Y3X3

FA

X2

FA

X1

FA

X0

HA

Z2

Z0

Y 4X3

HA

X2

FA

X1

FA

X0

HA

Y 2X3

FA

X2

FA

X1

FA

X0

HA

Z1

Z3Z6Z7 Z5 Z4

Y 3X3

FA

X2

FA

X1

FA

X0

HA

Z2

Can be designed with 
CSAs or CPAs

Pipelining increases 
throughput


