

COURSE EVALUATIONS

- Course evaluation forms are now available
- Please access using Banner self service
- Filling out this form provides me with important feedback about your experience with this course.
- Comments are confidential
- Available to me only after grades have been submitted.
- Thanks!

READ/WRITE MEMORIES (RAMS) Static – SRAM data is stored as long as voltage supply is enabled large cells (6 FETs/cell) → fewer bits/chip

- fast \rightarrow used where speed is important (e.g., caches)
- Dynamic DRAM
 - periodic refresh required (every 1 to 4 ms)
 - small cells (1 to 3 FETs/cell) → more bits/chip
 - slower \rightarrow used for main memories

The !Q side of the cell cannot be pulled high enough to ensure writing of 1 (because of the on state of M_1). So, the new value of the cell has to be written through M_{A} .

WRITEVOLTAGE RATIOS

- Need to pull Q below V_{thn} to turn off M₁
- Keep cell size minimal while allowing writes
 - Make M₄ and M₆ minimum size
- Be sure to consider worst case process corners

TRANSFORMING SRAM TO DRAM

I-T DRAM CELL OBSERVATIONS

- Cell is single ended (complicates the design of the sense amp)
- Cell requires a sense amp for each bit line due to charge redistribution based read
 - all previous designs used SAs for speed, not functionality
- Cell read is destructive; refresh must follow to restore data
- Cell requires an extra capacitor (CS) that must be explicitly included in the design
 - not always compatible with logic CMOS process
- A threshold voltage is lost when writing a 1 (can be circumvented by bootstrapping the word lines to a higher value than VDD)